Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(19): e2121653119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35507872

RESUMO

Glutamate transporters carry out the concentrative uptake of glutamate by harnessing the ionic gradients present across cellular membranes. A central step in the transport mechanism is the coupled binding of Na+ and substrate. The sodium coupled Asp transporter, GltPh is an archaeal homolog of glutamate transporters that has been extensively used to probe the transport mechanism. Previous studies have shown that hairpin-2 (HP2) functions as the extracellular gate for the aspartate binding site and plays a key role in the coupled binding of sodium and aspartate to GltPh. The binding sites for three Na+ ions (Na1-3) have been identified in GltPh, but the specific roles of the individual Na+ sites in the binding process have not been elucidated. In this study, we developed assays to probe Na+ binding to the Na1 and Na3 sites and to monitor the conformational switch in the NMDGT motif. We used these assays along with a fluorescence assay to monitor HP2 movement and EPR spectroscopy to show that Na+ binding to the Na3 site is required for the NMDGT conformational switch while Na+ binding to the Na1 site is responsible for the partial opening of HP2. Complete opening of HP2 requires the conformational switch of the NMDGT motif and therefore Na+ binding to both the Na1 and the Na3 sites. Based on our studies, we also propose an alternate pathway for the coupled binding of Na+ and Asp.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Sódio , Sistema X-AG de Transporte de Aminoácidos/química , Sítios de Ligação , Ácido Glutâmico/metabolismo , Íons/metabolismo , Sódio/metabolismo
2.
J Physiol ; 602(14): 3297-3313, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38695316

RESUMO

Various methods for characterizing binding forces as well as for monitoring and remote control of ion channels are still emerging. A recent innovation is the direct incorporation of unnatural amino acids (UAAs) with corresponding biophysical or biochemical properties, which are integrated using genetic code expansion technology. Minimal changes to natural amino acids, which are achieved by chemical synthesis of corresponding UAAs, are valuable tools to provide insight into the contributions of physicochemical properties of side chains in binding events. To gain unique control over the conformational changes or function of ion channels, a series of light-sensitive, chemically reactive and posttranslationally modified UAAs have been developed and utilized. Here, we present the existing UAA tools, their mode of action, their potential and limitations as well as their previous applications to Ca2+-permeable ion channels.


Assuntos
Canais de Cálcio , Código Genético , Humanos , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Cálcio/metabolismo
3.
Biochem Soc Trans ; 52(2): 747-760, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38526208

RESUMO

An important calcium (Ca2+) entry pathway into the cell is the Ca2+ release-activated Ca2+ (CRAC) channel, which controls a series of downstream signaling events such as gene transcription, secretion and proliferation. It is composed of a Ca2+ sensor in the endoplasmic reticulum (ER), the stromal interaction molecule (STIM), and the Ca2+ ion channel Orai in the plasma membrane (PM). Their activation is initiated by receptor-ligand binding at the PM, which triggers a signaling cascade within the cell that ultimately causes store depletion. The decrease in ER-luminal Ca2+ is sensed by STIM1, which undergoes structural rearrangements that lead to coupling with Orai1 and its activation. In this review, we highlight the current understanding of the Orai1 pore opening mechanism. In this context, we also point out the questions that remain unanswered and how these can be addressed by the currently emerging genetic code expansion (GCE) technology. GCE enables the incorporation of non-canonical amino acids with novel properties, such as light-sensitivity, and has the potential to provide novel insights into the structure/function relationship of CRAC channels at a single amino acid level in the living cell.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Cálcio , Retículo Endoplasmático , Proteína ORAI1 , Molécula 1 de Interação Estromal , Animais , Humanos , Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo
4.
Chemistry ; 30(30): e202400691, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38527252

RESUMO

Targeting immunosuppressive metastatic cancer cells is a key challenge in therapy. We recently have shown that a rigid-rod aromatic, pBP-NBD, that responds to enzymes and kill immunosuppressive metastatic osteosarcoma (mOS) and castration resistant prostate cancer (CRPC) cells in mimetic bone microenvironment. However, pBP-NBD demonstrated moderate efficacy against CRPC cells. To enhance activity, we incorporated the unnatural amino acid L- or D-4,4'-biphenylalanine (L- or D-BiP) into pBP-NBD, drastically increasing cellular uptake and CRPC inhibition. Specifically, we inserted BiP into pBP-NBD to target mOS (Saos2 and SJSA1) and CRPC (VCaP and PC3) cells with overexpressed phosphatases. Our results show that the D-peptide backbone with an aspartate methyl diester at the C-terminal offers the highest activity against these immunosuppressive mOS and CRPC cells. Importantly, imaging shows that the peptide assemblies almost instantly enter the cells and accumulate primarily within the endoplasmic reticulum of Saos2, SJSA1, and PC3 cells and at the lysosomes of VCaP cells. By using BiP to boost cellular uptake and self-assembly within cancer cells, this work illustrates an unnatural hydrophobic amino acid as a versatile and effective residue to boost endocytosis of synthetic peptides for intracellular self-assembly.


Assuntos
Aminoácidos , Humanos , Linhagem Celular Tumoral , Aminoácidos/química , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Masculino , Antineoplásicos/farmacologia , Antineoplásicos/química , Endocitose/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
5.
Chemistry ; : e202402272, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037007

RESUMO

Site-selective chemical modifications of proteins have emerged as a potent technology in chemical biology, materials science, and medicine, facilitating precise manipulation of proteins with tailored functionalities for basic biology research and developing innovative therapeutics. Compared to traditional recombinant expression methods, one of the prominent advantages of chemical protein modification lies in its capacity to decorate proteins with a wide range of functional moieties, including non-genetically encoded ones, enabling the generation of novel protein conjugates with enhanced or previously unexplored properties. Among these, approaches for dual or multiple protein modifications are increasingly garnering attention, as it has been found that single modifications of proteins are inadequate to meet current demands. Therefore, in light of the rapid developments in this field, this review provides a timely and comprehensive overview of the latest advancements in chemical and biological approaches for protein dual functionalization. It further discusses their advantages, limitations, and potential future directions in this relatively nascent area.

6.
J Pept Sci ; 30(3): e3548, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37779097

RESUMO

Cyclic peptides offer many advantages compared to their linear counterparts, including prolonged stability within the biological environment and enhanced binding affinity. Typically, peptides are cyclized by forming an amide bond, either on-resin or in solution, through extensive use of orthogonal protecting groups or chemoselective ligation strategies, respectively. Here, we show that the chemoselective tetrazine-thiol exchange is a powerful tool for rapid in situ cyclization of peptides without the need for additional activation reagents or extensive protecting group reshuffling. The reaction between N-terminal sulfide-bearing unsymmetric tetrazines and internal cysteines occurs spontaneously within a mildly acidic environment (pH 6.5) and is of traceless nature. The rapidly available unsymmetric sulfide tetrazine building blocks can be incorporated on resin using standard solid-phase peptide synthesis protocols and are orthogonal to trifluoroacetic acid cleavage conditions. The cyclized peptides display high stability, even when incubated with a large excess of free thiols. Due to its traceless and mild nature, we expect that the tetrazine-thiol exchange will be of high value for the in situ formation of cyclic peptide libraries, thus being applicable in drug discovery and development.


Assuntos
Compostos Heterocíclicos , Compostos de Sulfidrila , Ciclização , Peptídeos/química , Peptídeos Cíclicos/química , Sulfetos
7.
Chimia (Aarau) ; 78(1-2): 22-31, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38430060

RESUMO

Genetic code expansion (GCE) can enable the site-selective incorporation of non-canonical amino acids (ncAAs) into proteins. GCE has advanced tremendously in the last decade and can be used to create biorthogonal handles, monitor and control proteins inside cells, study post-translational modifications, and engineer new protein functions. Since establishing our laboratory, our research has focused on applications of GCE in protein and enzyme engineering using aminoacyl-tRNA synthetase/tRNA (aaRS/tRNA) pairs. This topic has been reviewed extensively, leaving little doubt that GCE is a powerful tool for engineering proteins and enzymes. Therefore, for this young faculty issue, we wanted to provide a more technical look into the methods we use and the challenges we think about in our laboratory. Since starting the laboratory, we have successfully engineered over a dozen novel aaRS/tRNA pairs tailored for various GCE applications. However, we acknowledge that the field can pose challenges even for experts. Thus, herein, we provide a review of methodologies in ncAA incorporation with some practical commentary and a focus on challenges, emerging solutions, and exciting developments.


Assuntos
Aminoacil-tRNA Sintetases , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Código Genético , Engenharia de Proteínas/métodos , Aminoácidos/genética , Aminoácidos/química , RNA de Transferência/genética
8.
Angew Chem Int Ed Engl ; 63(19): e202403271, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497510

RESUMO

Unnatural amino acids, and their synthesis by the late-stage functionalization (LSF) of peptides, play a crucial role in areas such as drug design and discovery. Historically, the LSF of biomolecules has predominantly utilized traditional synthetic methodologies that exploit nucleophilic residues, such as cysteine, lysine or tyrosine. Herein, we present a photocatalytic hydroarylation process targeting the electrophilic residue dehydroalanine (Dha). This residue possesses an α,ß-unsaturated moiety and can be combined with various arylthianthrenium salts, both in batch and flow reactors. Notably, the flow setup proved instrumental for efficient scale-up, paving the way for the synthesis of unnatural amino acids and peptides in substantial quantities. Our photocatalytic approach, being inherently mild, permits the diversification of peptides even when they contain sensitive functional groups. The readily available arylthianthrenium salts facilitate the seamless integration of Dha-containing peptides with a wide range of arenes, drug blueprints, and natural products, culminating in the creation of unconventional phenylalanine derivatives. The synergistic effect of the high functional group tolerance and the modular characteristic of the aryl electrophile enables efficient peptide conjugation and ligation in both batch and flow conditions.


Assuntos
Alanina , Alanina/análogos & derivados , Peptídeos , Peptídeos/química , Peptídeos/síntese química , Catálise , Alanina/química , Processos Fotoquímicos , Estrutura Molecular
9.
Angew Chem Int Ed Engl ; : e202414679, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39305229

RESUMO

The chemical synthesis of unnatural amino acids (UAA) is a key strategy for preparing designed peptides, including pharmaceutically active compounds. Alterations of existing amino acid residues such as dehydroalanine (Dha) are particularly important since selected positions can be addressed without the necessity of a complete de novo synthesis. The intriguing UAA 4,5-dihydroxynorvaline (Dnv) is found in a variety of naturally occurring peptides and biologically active compounds. However, no method is currently available to modify an existing peptide with this residue. We report the use of flavin catalysts and visible light irradiation for this challenge, which serves as a versatile strategy for converting Dha into Dnv. Our study shows that excited flavins are competent hydrogen atom abstraction catalysts for ethers and acetals, which allows masked 1,2-dihydroxyethylene functionalization from 2,2-dimethyl-1,3-dioxolane. The masked diol was successfully coupled to Dha residues, and a series of Dnv-containing products is reported. A mild and orthogonal protocol for deprotection of the acetal group was also identified, allowing free Dnv-modified peptides to be obtained. This method provides a straightforward strategy for Dnv functionalization, which is envisioned to be crucial for accessing natural products and synthetic analogues with pharmaceutical activity.

10.
Chembiochem ; 24(7): e202200721, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642698

RESUMO

The use of light to control protein function is a critical tool in chemical biology. Here we describe the addition of a photocaged histidine to the genetic code. This unnatural amino acid becomes histidine upon exposure to light and allows for the optical control of enzymes that utilize active-site histidine residues. We demonstrate light-induced activation of a blue fluorescent protein and a chloramphenicol transferase. Further, we genetically encoded photocaged histidine in mammalian cells. We then used this approach in live cells for optical control of firefly luciferase and, Renilla luciferase. This tool should have utility in manipulating and controlling a wide range of biological processes.


Assuntos
Aminoácidos , Histidina , Animais , Histidina/genética , Aminoácidos/química , Proteínas/metabolismo , Luciferases de Renilla/genética , Código Genético , Mamíferos/genética , Mamíferos/metabolismo
11.
Chembiochem ; 24(7): e202200716, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36691854

RESUMO

Understanding the post-translational modifications of targeted proteins is of great significance for manipulating the physiological processes of eukaryotes. Chemical biology tools have been used to investigate the biological roles of those post-translational modifications at particular sites, especially genetic code expansion technology, which can also be combined with the concept of synthetic biology to generate a genetically modified organism with a synthetic auxotroph for co-translational modification components. In this concept, we will introduce applications, limitations, and perspectives of genetic code expansion technology for studying post-translational modification based on recent progresses. Future perspectives of genetically modified organisms also will be discussed in regard to the application of post-translational modification research.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas , Proteínas/química , Código Genético
12.
Chemistry ; 29(54): e202301632, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37518839

RESUMO

Selective linear 1,3-dienylations are essential transformations, and numerous synthetic efforts have been documented. However, a general method enabling access to electron-rich, -poor, and biologically relevant dienyl molecules is in high demand. Hence, we report a straightforward method of manganese(I)-catalyzed C-H dienylation of arenes by using iso-pentadienyl carbonate as a five carbon synthon. This is a highly unprecedented report for selective linear 1,3-dienylation using manganese C-H activation catalysis. Our method facilitates the synthesis of varieties of dienes, including those suitable for normal or inverse electron demand Diels-Alder reactions, dienyl glycoconjugates, and unnatural amino acids. Extensive mechanistic studies, including isolation of C-H activated organo-manganese complex and isotopic analyses, have supported the proposed mechanism of this dienylation. The synthetic applicability of this method eased to deliver a 6/6/5-fused tricyclic nagilactone scaffold.

13.
Int J Mol Sci ; 24(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37629060

RESUMO

The utilization of an expanded genetic code and in vivo unnatural amino acid crosslinking has grown significantly in the past decade, proving to be a reliable system for the examination of protein-protein interactions. Perhaps the most utilized amino acid crosslinker, p-benzoyl-(l)-phenylalanine (pBPA), has delivered a vast compendium of structural and mechanistic data, placing it firmly in the upper echelons of protein analytical techniques. pBPA contains a benzophenone group that is activated with low energy radiation (~365 nm), initiating a diradical state that can lead to hydrogen abstraction and radical recombination in the form of a covalent bond to a neighboring protein. Importantly, the expanded genetic code system provides for site-specific encoding of the crosslinker, yielding spatial control for protein surface mapping capabilities. Paired with UV-activation, this process offers a practical means for spatiotemporal understanding of protein-protein dynamics in the living cell. The chromatin field has benefitted particularly well from this technique, providing detailed mapping and mechanistic insight for numerous chromatin-related pathways. We provide here a brief history of unnatural amino acid crosslinking in chromatin studies and outlooks into future applications of the system for increased spatiotemporal resolution in chromatin related research.


Assuntos
Aminoácidos , Cromatina , Cromatina/genética , Fenilalanina , Código Genético , Hidrogênio
14.
Molecules ; 28(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37959675

RESUMO

Bearing in mind the interest in the development and application of amino acids/peptides as bioinspired systems for sensing, a series of new phenylalanine derivatives bearing thiosemicarbazone and hydrazone units at the side chain were synthesised and evaluated as fluorimetric chemosensors for ions. Thiosemicarbazone and hydrazone moieties were chosen because they are considered both proton-donor and proton-acceptor, which is an interesting feature in the design of chemosensors. The obtained compounds were tested for the recognition of organic and inorganic anions (such as AcO-, F-, Cl-, Br-, I-, ClO4-, CN-, NO3-, BzO-, OH-, H2PO4- and HSO4-) and of alkaline, alkaline-earth, and transition metal cations, (such as Na+, K+, Cs+, Ag+, Cu+, Cu2+, Ca2+, Cd2+, Co2+, Pb2+, Pd2+, Ni2+, Hg2+, Zn2+, Fe2+, Fe3+ and Cr3+) in acetonitrile and its aqueous mixtures in varying ratios via spectrofluorimetric titrations. The results indicate that there is a strong interaction via the donor N, O and S atoms at the side chain of the various phenylalanines, with higher sensitivity for Cu2+, Fe3+ and F- in a 1:2 ligand-ion stoichiometry. The photophysical and metal ion-sensing properties of these phenylalanines suggest that they might be suitable for incorporation into peptide chemosensory frameworks.

15.
Molecules ; 28(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37110560

RESUMO

Unnatural amino acids with enhanced properties, such as increased complexing ability and luminescence, are considered to be highly attractive building blocks for bioinspired frameworks, such as probes for biomolecule dynamics, sensitive fluorescent chemosensors, and peptides for molecular imaging, among others. Therefore, a novel series of highly emissive heterocyclic alanines bearing a benzo[d]oxazolyl unit functionalized with different heterocyclic π-spacers and (aza)crown ether moieties was synthesized. The new compounds were completely characterized using the usual spectroscopic techniques and evaluated as fluorimetric chemosensors in acetonitrile and aqueous mixtures in the presence of various alkaline, alkaline-earth, and transition metal ions. The different crown ether binding moieties as well as the electronic nature of the π-bridge allowed for fine tuning of the sensory properties of these unnatural amino acids towards Pd2+ and Fe3+, as seen by spectrofluorimetric titrations.

16.
Angew Chem Int Ed Engl ; 62(27): e202302983, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37154671

RESUMO

Transition-metal catalyzed enantioconvergent cross-coupling of tertiary alkyl halides with ammonia offers a rapid avenue to chiral unnatural α,α-disubstituted amino acids. However, the construction of chiral C-N bonds between tertiary-carbon electrophiles and nitrogen nucleophiles presented a great challenge owing to steric congestion. We report a copper-catalyzed enantioconvergent radical C-N cross-coupling of alkyl halides with sulfoximines (as ammonia surrogates) under mild conditions by employing a chiral anionic N,N,N-ligand with a long spreading side arm. An array of α,α-disubstituted amino acid derivatives were obtained with good efficiency and enantioselectivity. The synthetic utility of the strategy has been showcased by the elaboration of the coupling products into different chiral α-fully substituted amine building blocks.

17.
Trends Biochem Sci ; 43(6): 436-451, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29650383

RESUMO

Approaches to remotely control and monitor ion channel operation with light are expanding rapidly in the biophysics and neuroscience fields. A recent development directly introduces light sensitivity into proteins by utilizing photosensitive unnatural amino acids (UAAs) incorporated using the genetic code expansion technique. The introduction of UAAs results in unique molecular level control and, when combined with the maximal spatiotemporal resolution and poor invasiveness of light, enables direct manipulation and interrogation of ion channel functionality. Here, we review the diverse applications of light-sensitive UAAs in two superfamilies of ion channels (voltage- and ligand-gated ion channels; VGICs and LGICs) and summarize existing UAA tools, their mode of action, potential, caveats, and technical considerations to their use in illuminating ion channel structure and function.


Assuntos
Aminoácidos/metabolismo , Aminoácidos/efeitos da radiação , Canais Iônicos/química , Canais Iônicos/metabolismo , Luz , Animais , Canais Iônicos/efeitos da radiação
18.
Chembiochem ; 23(8): e202200133, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35263494

RESUMO

Di-ubiquitin (diUB) conjugates of defined linkages are useful tools for probing the functions of UB ligases, UB-binding proteins and deubiquitinating enzymes (DUBs) in coding, decoding and editing the signals carried by the UB chains. Here we developed an efficient method for linkage-specific synthesis of diUB probes based on the incorporation of the unnatural amino acid (UAA) Nϵ -L-thiaprolyl-L-Lys (L-ThzK) into UB for ligation with another UB at a defined Lys position. The diUB formed by the UAA-mediated ligation reaction has a G76C mutation on the side of donor UB for conjugation with E2 and E3 enzymes or undergoing dethiolation to generate a covalent trap for DUBs. The development of UAA mutagenesis for diUB synthesis provides an easy route for preparing linkage-specific UB-based probes to decipher the biological signals mediated by protein ubiquitination.


Assuntos
Aminoácidos , Ubiquitina , Aminoácidos/metabolismo , Lisina/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
19.
Chembiochem ; 23(1): e202100491, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34652056

RESUMO

Lysine malonylation is a recently characterized post-translational modification involved in the regulation of energy metabolism and gene expression. One unique feature of this post-translational modification is its potential susceptibility to decarboxylation, which poses possible challenges to its study. As a step towards addressing these challenges, we report the synthesis and evaluation of a stable isostere of malonyllysine. First, we find that synthetic substitution of the malonyl group with a tetrazole isostere results in amino acid's resistant to thermal decarboxylation. Next, we demonstrate that protected variants of this amino acid are readily incorporated into peptides. Finally, we show that tetrazole isosteres of malonyllysine can be recognized by anti-malonyllysine antibodies and histone deacylases, validating their ability to mimic features of the endogenous lysine modification. Overall, this study establishes a new chemical strategy for stably mimicking a metabolite-derived post-translational modification, providing a foothold for tool development and functional analyses.


Assuntos
Lisina/química , Tetrazóis/síntese química , Lisina/análogos & derivados , Conformação Molecular , Tetrazóis/química
20.
Amino Acids ; 54(7): 1041-1053, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35419750

RESUMO

Vibrio natriegens is the fastest growing organism identified so far. The minimum doubling time of only 9.4 min, the ability to utilize over 60 different carbon sources and its non-pathogenic properties make it an interesting alternative to E. coli as a new production host for recombinant proteins. We investigated the ability of the engineered V. natriegens strain, Vmax™ Express, to incorporate the non-canonical amino acid (ncAA) p-azido-L-phenylalanine (AzF) into recombinant proteins for NMR applications. AzF was incorporated into enhanced yellow fluorescent protein (EYFP) and MlaC, an intermembrane transport protein, by stop codon suppression. AzF incorporation into EYFP resulted in an improved suppression efficiency (SE) of up to 35.5 ± 0.8% and a protein titer of 26.7 ± 0.7 mg/L. The expression levels of MlaC-AzF even exceeded those of E. coli BL21 cells. For the recording of 1H-15N and 19F NMR spectra, EYFP-AzF was expressed and isotopically labeled in minimal medium and the newly introduced azido-group was used as coupling site for NMR sensitive 19F-tags. Our findings show that Vmax is a flexible expression host, suitable for the incorporation of ncAAs in recombinant proteins with the potential to surpass protein yields of E. coli. The presented method suggests the implementation of V. natriegens for expression of isotopically labeled proteins containing ncAAs, which can be chemically modified for the application in protein-observed 19F-NMR.


Assuntos
Aminoácidos , Aminoacil-tRNA Sintetases , Aminoácidos/química , Aminoacil-tRNA Sintetases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fenilalanina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vibrio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa