Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(3): 662-677, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37909415

RESUMO

Upland rice is a distinctive drought-aerobic ecotype of cultivated rice highly resistant to drought stress. However, the genetic and genomic basis for the drought-aerobic adaptation of upland rice remains largely unclear due to the lack of genomic resources. In this study, we identified 25 typical upland rice accessions and assembled a high-quality genome of one of the typical upland rice varieties, IRAT109, comprising 384 Mb with a contig N50 of 19.6 Mb. Phylogenetic analysis revealed upland and lowland rice have distinct ecotype differentiation within the japonica subgroup. Comparative genomic analyses revealed that adaptive differentiation of lowland and upland rice is likely attributable to the natural variation of many genes in promoter regions, formation of specific genes in upland rice, and expansion of gene families. We revealed differentiated gene expression patterns in the leaves and roots of the two ecotypes and found that lignin synthesis mediated by the phenylpropane pathway plays an important role in the adaptive differentiation of upland and lowland rice. We identified 28 selective sweeps that occurred during domestication and validated that the qRT9 gene in selective regions can positively regulate drought resistance in rice. Eighty key genes closely associated with drought resistance were appraised for their appreciable potential in drought resistance breeding. Our study enhances the understanding of the adaptation of upland rice and provides a genome navigation map of drought resistance breeding, which will facilitate the breeding of drought-resistant rice and the "blue revolution" in agriculture.


Assuntos
Resistência à Seca , Oryza , Oryza/metabolismo , Filogenia , Melhoramento Vegetal , Secas , Genômica
2.
Plant Cell Environ ; 46(4): 1037-1045, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36805595

RESUMO

A key to achieve the goals put forward in the UN's 2030 Agenda for Sustainable Development, it will need transformative change to our agrifood systems. We must mount to the global challenge to achieve food security in a sustainable manner in the context of climate change, population growth, urbanization, and depletion of natural resources. Rice is one of the major staple cereal crops that has contributed, is contributing, and will still contribute to the global food security. To date, rice yield has held pace with increasing demands, due to advances in both fundamental and biological studies, as well as genomic and molecular breeding practices. However, future rice production depends largely on the planting of resilient cultivars that can acclimate and adapt to changing environmental conditions. This Special Issue highlight with reviews and original research articles the exciting and growing field of rice-environment interactions that could benefit future rice breeding. We also outline open questions and propose future directions of 2050 rice research, calling for more attentions to develop environment-resilient rice especially hybrid rice, upland rice and perennial rice.


Assuntos
Oryza , Oryza/genética , Grão Comestível , Produtos Agrícolas , Adaptação Fisiológica , Genômica
3.
BMC Genomics ; 23(1): 336, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35490237

RESUMO

BACKGROUND: Drought has become the major abiotic stress that causes losses in rice yields and consequently is one of the main environmental factors threatening food security. Long non-coding RNA (lncRNA) is known to play an important role in plant response to drought stress, while the mechanisms of competing endogenous RNA (ceRNA) in drought resistance in upland rice have been rarely reported. RESULTS: In our study, a total of 191 lncRNAs, 2115 mRNAs and 32 miRNAs (microRNAs) were found by strand-specific sequencing and small RNA sequencing to be differentially expressed in drought-stressed rice. Functional analysis of results indicate that they play important roles in hormone signal transduction, chlorophyll synthesis, protein synthesis and other pathways. Construction of a ceRNA network revealed that MSTRG.28732.3 may interact with miR171 in the chlorophyll biosynthesis pathway and affect the ability of plants to withstand drought stress by regulating Os02g0662700, Os02g0663100 and Os06g0105350. The accuracy of the regulatory network was verified by qRT-PCR. CONCLUSION: Our results provide a theoretical basis for future studies on the potential function of lncRNA in plant drought resistance, and they provide new genetic resources for drought-resistant rice breeding.


Assuntos
MicroRNAs , Oryza , RNA Longo não Codificante , Clorofila , Secas , MicroRNAs/genética , Oryza/metabolismo , Melhoramento Vegetal , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
4.
BMC Genomics ; 23(1): 862, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585635

RESUMO

Shanlan upland rice is an important landrace rice resource and is characterized with high drought stress (DS) tolerance relative to cultivated rice. However, the molecular mechanism of DS response in Shanlan upland rice remains unclear. In this study, we performed an integrated analysis of transcriptome and targeted metabolism to decipher the key biological pathways that responded to drought tolerance using two Shanlan upland rice lines. Results show that SL10 possesses 64% higher photosynthetic efficiency (Pn) and 2-fold higher water use efficiency (WUE) than that in SL1 exposed to DS. The decrease in Pn by DS is not due to stomatal limitation effects for SL1. Transcriptome analysis suggests photosynthesis relevant pathways (photosynthesis-antenna proteins and carbon fixation) and photorespiration relevant pathway (glycine, serine and threonine metabolism) in SL1 under DS were significantly enriched in the down-regulated and up-regulated DEGs list, respectively. There are 412 up-regulated and 233 down-regulated drought responsive genes (DRGs) in SL10 relative to SL1 induced by DS. Targeted metabolism results suggest that the contents across five metabolites related to carbon fixation pathway were declined by 36 and 8% in SL1 and SL10 caused by DS, respectively. We finally summarized the both gene expression and metabolites involved in photorespiration and carbon fixation pathways in response to DS in both rice lines. This study provides valuable information for better understanding the molecular mechanism underlying drought tolerance in Shanlan rice.


Assuntos
Oryza , Transcriptoma , Oryza/genética , Oryza/metabolismo , Secas , Perfilação da Expressão Gênica , Fotossíntese/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
5.
J Integr Plant Biol ; 64(1): 135-148, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34742166

RESUMO

Traditional upland rice generally exhibits insufficient grains resulting from abnormal endosperm development compared to paddy rice. However, the underlying molecular mechanism of this trait is poorly understood. Here, we cloned the uridine 5'-diphospho (UDP)-glucosyltransferase gene EDR1 (Endosperm Development in Rice) responsible for differential endosperm development between upland rice and paddy rice by performing quantitative trait loci analysis and map-based cloning. EDR1 was highly expressed in developing seeds during grain filling. Natural variations in EDR1 significantly reduced the UDP-glucosyltransferase activity of EDR1YZN compared to EDR1YD1 , resulting in abnormal endosperm development in the near-isogenic line, accompanied by insufficient grains and changes in grain quality. By analyzing the distribution of the two alleles EDR1YD1 and EDR1YZN among diverse paddy rice and upland rice varieties, we discovered that EDR1 was conserved in upland rice, but segregated in paddy rice. Further analyses of grain chalkiness in the alleles of EDR1YD1 and EDR1YZN varieties indicated that rice varieties harboring EDR1YZN and EDR1YD1 preferentially showed high chalkiness, and low chalkiness, respectively. Taken together, these results suggest that the UDP-glucosyltransferase gene EDR1 is an important determinant controlling differential endosperm development between upland rice and paddy rice.


Assuntos
Oryza , Alelos , Endosperma/genética , Glucosiltransferases/genética , Oryza/genética , Uridina
6.
Plant Cell Physiol ; 62(7): 1168-1184, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33836080

RESUMO

To discover new mutants conferring enhanced tolerance to drought stress, we screened a mutagenized upland rice (Oryza sativa) population (cv. IAPAR9) and identified a mutant, named idr1-1 (increased drought resistance 1-1), with obviously increased drought tolerance under upland field conditions. The idr1-1 mutant possessed a significantly enhanced ability to tolerate high-drought stresses. Map-based cloning revealed that the gene LOC_Os05g26890, residing in the mapping region of IDR1 locus, carried a single-base deletion in the idr1-1 mutant. IDR1 encodes the Gα subunit of the heterotrimeric G protein (also known as RGA1), and this protein was localized in nucleus and to plasma membrane or cell periphery. Further investigations indicated that the significantly increased drought tolerance in idr1-1 mutants stemmed from a range of physiological and morphological changes, including greater leaf potentials, increased proline contents, heightened leaf thickness and upregulation of antioxidant-synthesizing and drought-induced genes, under drought-stressed conditions. Especially, reactive oxygen species (ROS) production might be remarkably impaired, while ROS-scavenging ability appeared to be markedly enhanced due to significantly elevated expression of ROS-scavenging enzyme genes in idr1-1 mutants under drought-stressed conditions. In addition, idr1-1 mutants showed reduced expression of OsBRD1. Altogether, these results suggest that mutation of IDR1 leads to alterations in multiple layers of regulations, which ultimately leads to changes in the physiological and morphological traits and limiting of ROS levels, and thereby confers obviously increased drought tolerance to the idr1-1 mutant.


Assuntos
Genes de Plantas/genética , Oryza/genética , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Cloroplastos/metabolismo , Clonagem Molecular , Desidratação , Genes de Plantas/fisiologia , Mutação , Oryza/metabolismo , Oryza/fisiologia , Estresse Oxidativo , Proteínas de Plantas/fisiologia , Transcriptoma
7.
Arch Microbiol ; 203(2): 609-620, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32995980

RESUMO

Upland rice is an ecotype crop resulting from the long-term domestication and evolution of rice in dry land without a water layer. Generally, the stems and leaves are thick and luxuriant, while the leaves also typically broad and light. The root system is developed with abundant root hair, and the osmotic pressure of the root and cell juice concentration in the leaves is high, while this plant is drought-resistant, heat-resistant, and water absorbent. This study aims to reveal the "core flora" of the endophytes in upland rice seeds by examining their diversity and community structures. It further intends to reveal the impact of the soil environment on the formation of endophyte community structures in upland rice seeds by comparing the environmental soil microorganisms in upland rice habitats. In this study, high-throughput sequencing technology based on the Illumina Hiseq 2500 platform was used to investigate the structure and diversity of endophytic bacterial communities using upland rice varieties collected from different locations and soil samples from unified planting sites as materials. Here, 42 endophytic OTUs were found to coexist in the 14 samples. At the phylum level, the first dominant phyla in all the samples were Proteobacteria (93.81-99.99%). At the genus level, Pantoea (8.77-87.77%), Pseudomonas (1.15-61.58%), Methylobacterium (0.40-4.64%), Sphingomonas (0.26-3.85%), Microbacterium (0.01-4.67%) and Aurantimonas (0.04-4.34%), which represent the core microflora in upland rice seeds, served as the dominant genera that coexisted in all the upland rice seeds tested. This study significant for the isolation, screening, functional evaluation, and re-action of various functional microorganisms in upland rice to improve its agronomic traits. It also provides a specific reference for the interaction between microorganisms and plants.


Assuntos
Bactérias/genética , Endófitos/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Oryza/microbiologia , Sementes/microbiologia , Bactérias/classificação , Endófitos/classificação , Endófitos/isolamento & purificação , Solo/química
8.
Arch Microbiol ; 203(6): 3533-3540, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33938971

RESUMO

Plant growth-promoting rhizobacteria (PGPR) are known to stimulate plant growth because of their versatility in nutrient transformation. However, the success of PGPR inoculation depends not only on their ability to promote plant growth but also on their capacity to metabolize substrates that can be used as energy for the development and survival of the crops. Given the important influence of seed germination and vigor on crop yield, this study investigated the biochemical characteristics and effectiveness of multi-trait PGPR isolates in enhancing upland rice seedling growth and vigor. Biochemical identification was done using Biolog GEN III Microbial Identification System. Isolates were characterized based on their ability to metabolize all major classes of biochemicals in the carbon source utilization and chemical sensitivity assays. Identified rhizobacterial isolates were tested in vitro to evaluate their inoculation effects on the growth of PSB Rc23 upland rice seedlings. Biochemical identification results showed that rhizobacterial isolates have extensive metabolic activities in a wide range of carbon sources. Inoculation effects revealed that isolate IBBw1a was the most effective in enhancing root length and vigor index of rice seedlings in vitro, yielding a significant increase of 60% and 53%, respectively, over the uninoculated control. This study suggests that rhizobacterial isolates from upland rice may have commercial significance to improve seedling growth and vigor. These isolates will undergo a further assessment of their effectiveness in actual upland rice field conditions as they were already proven effective growth promoters in laboratory and screenhouse conditions. Such future activity can uncover their efficacy as potential biofertilizers in the actual soil environment.


Assuntos
Oryza , Rhizobiaceae , Plântula , Microbiologia do Solo , Oryza/microbiologia , Desenvolvimento Vegetal , Rhizobiaceae/fisiologia , Plântula/microbiologia , Solo
9.
J Environ Manage ; 298: 113516, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391103

RESUMO

Little is known about the impact of the combined application of intercropping and arbuscular mycorrhizal fungus (AMF) on the plant growth and Cd accumulation in the two intercropped plants. A greenhouse pot experiment was performed to investigate the effects of intercropping (IC) and AMF-Glomus versiforme (GV) on the growth, photosynthesis, Cd accumulation and antioxidant activities in the two intercropped plants-upland rice and Cd hyperaccumulator Sphagneticola calendulacea (L.) Pruski in the soils added with 5 mg Cd kg-1. It was found that the GV inoculation and the combined treatment of IC and GV (IC + GV) significantly (p < 0.05) increased the biomasses and the P contents of upland rice and S. calendulacea. In addition, the Cd concentrations and uptakes of plants in IC, GV and IC + GV treatments were significantly (p < 0.05) dropped in upland rice but increased in S. calendulacea compared with the monocropping control, and the compound treatment showed better effect on decreasing Cd accumulation in upland rice (especially grains) and increasing Cd uptake by S. calendulacea compared with the single intercropping or AMF treatment. Moreover, IC, GV and IC + GV treatments significantly (p < 0.05) improved the net photosynthetic rate, stomatal conductance and transpiration rate of the two intercropped plants. Finally, IC, GV and IC + GV treatments all significantly increased the catalase activities and total antioxidant capacities, while decreased the malondialdehyde contents in upland rice and S. calendulacea. The present work could provide a feasible strategy for safe production of upland rice and phytoremediation of Cd contaminated soils.


Assuntos
Micorrizas , Oryza , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Fungos , Raízes de Plantas/química , Solo , Poluentes do Solo/análise
10.
J Environ Sci Health B ; 56(9): 828-837, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34348078

RESUMO

A novel voltammetric method with practically no sample pretreatment was developed for determination of Quinclorac (QNC) in rice samples by using a working Carbon Paste Electrode (CPE) modified with ionic liquid, with deposition potential (ED) of -1.43 V for 30 s in NaOH 0.01 mol L-1. The systematic influence of cations and anions of imidazole ionic liquids on the composition of CPE has evaluated. The best electrode composition was 65% (w/w) of graphite powder, 30% (w/w) of mineral oil and 5.0% (w/w) of C4min+BF4- ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate). The matrices analyzed were deionized water and extracts of upland rice: white, brown, peel and seed. The limits of quantification ranged between 0.954 mg kg-1 and 3.61 mg kg-1. The recovery percentages of QNC in rice samples ranged between 90% and 121%. The simplicity and good analytical frequency enable the proposed method to be used to obtain preliminary information on the presence of QNC, prior to the implementation of more detailed, costly and elaborate quantitative analyses. The technique can be applied in the study and evaluation of sorption mechanisms, metabolization of the herbicide in plants and its persistence and degradation in the environment.


Assuntos
Oryza , Quinolinas , Adsorção , Eletrodos
11.
Ann Bot ; 126(4): 789-806, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32597468

RESUMO

BACKGROUND AND AIMS: Upland rice is often grown where water and phosphorus (P) are limited. To better understand the interaction between water and P availability, functional-structural models that mechanistically represent small-scale nutrient gradients and water dynamics in the rhizosphere are needed. METHODS: Rice was grown in large columns using a P-deficient soil at three P supplies in the topsoil (deficient, sub-optimal and non-limiting) in combination with two water regimes (field capacity vs. drying periods). Root system characteristics, such as nodal root number, lateral types, interbranch distance, root diameters and the distribution of biomass with depth, as well as water and P uptake, were measured. Based on the observed root data, 3-D root systems were reconstructed by calibrating the structural architecure model CRootBox for each scenario. Water flow and P transport in the soil to each of the individual root segments of the generated 3-D root architectures were simulated using a multiscale flow and transport model. Total water and P uptake were then computed by adding up the uptake by all the root segments. KEY RESULTS: Measurements showed that root architecture was significantly affected by the treatments. The moist, high P scenario had 2.8 times the root mass, double the number of nodal roots and more S-type laterals than the dry, low P scenario. Likewise, measured plant P uptake increased >3-fold by increasing P and water supply. However, drying periods reduced P uptake at high but not at low P supply. Simulation results adequately predicted P uptake in all scenarios when the Michaelis-Menten constant (Km) was corrected for diffusion limitation. They showed that the key drivers for P uptake are the different types of laterals (i.e. S- and L-type) and growing root tips. The L-type laterals become more important for overall water and P uptake than the S-type laterals in the dry scenarios. This is true across all the P treatments, but the effect is more pronounced as the P availability decreases. CONCLUSIONS: This functional-structural model can predict the function of specific rice roots in terms of P and water uptake under different P and water supplies, when the structure of the root system is known. A future challenge is to predict how the structure root systems responds to nutrient and water availability.


Assuntos
Oryza , Meristema , Fosfatos , Raízes de Plantas , Solo
12.
Physiol Mol Biol Plants ; 26(6): 1237-1247, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32549686

RESUMO

Genetic assessment of rice landraces is important for germplasm evaluation and genetic resource utilization. Rice landraces in peninsular Thailand have adapted to unique environmental stresses over time and have great significance as a genetic resource for crop improvement. In this study, rice landraces derived from rice research centers and farmers from different areas of peninsular Thailand were genetically assessed using 16 polymorphic InDel markers from putative stress-related genes. A total of 36 alleles were obtained. The average PIC value was 0.27/marker. The FST varied from 0.46 to 1.00. Genetic diversity was observed both within and between populations. AMOVA indicated that genetic variations occurred mainly between populations (70%) rather than within populations (30%). The dendrogram, population structure, and PCoA scatter plot clearly demonstrated the differentiation of the two major groups, i.e., landraces from upland and lowland rice ecosystems. The unique alleles of Indel1922, -2543, -6746, -7447 and -8538, which lie in genes encoding putative WAX2, heavy metal-associated domain-containing protein, GA20ox2, PTF1, and PLETHORA2, respectively, were only found in rice from upland ecosystems. Putative WAX2, GA20ox2, and PLETHORA2 are likely related to drought and salt stress. Our findings demonstrate the diversity of landraces in peninsular Thailand. The preservation of these landraces should be facilitated with effective markers to maintain all variant alleles and to protect the genetic diversity. Indel1922, -2543, -6746, -7447 and -8538 have the potential to differentiate upland rice from lowland rice. Furthermore, Indel1922, -6746 and -8538 might be effective markers for drought and salt tolerance.

13.
Biochem Genet ; 57(3): 421-442, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30604320

RESUMO

Upland rice landraces from different villages of Mizoram, Northeast India were analyzed for seed morphology, amylose content, aromatic characteristic, seed storage protein profiling and genetic diversity. Results revealed variation in grain length, width, weight and shape. Protein profiling showed polypeptide bands ranging from 7 to 10 with similarity coefficient from 0.556 to 1.000 in the studied populations. Population genetic analysis using simple sequence repeats markers revealed a total of 63 alleles with a high level of gene diversity at 0.6468. High values of Fst and PIC estimates were found at 0.7239 and 0.5984 respectively. The Biruchuk population was found to be the most genetically diverse cultivar and least gene diversity was found in Tuikuk buh. The UPGMA trees based on seed morphology, seed storage protein profiling and simple sequence repeats diversity showed the grouping of rice cultivars into three clusters which were further supported by model-based STRUCTURE analysis. This finding is the first-hand report in upland rice of the state and can be useful for selecting suitable rice lines for prebreeding and germplasm conservation of indigenous hill rice cultivars of Mizoram.


Assuntos
Genes de Plantas , Variação Genética , Oryza/genética , Alelos , Amilose/metabolismo , Biomarcadores , Índia , Odorantes , Oryza/embriologia , Oryza/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Sementes/metabolismo
14.
Breed Sci ; 68(2): 200-209, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29875603

RESUMO

Seed dormancy is important in rice breeding because it confers resistance to pre-harvest sprouting (PHS). To detect quantitative trait loci (QTLs) for pre-harvest sprouting resistance, we used chromosome segment substitution lines (CSSLs) derived from a cross between the Japanese upland rice cultivar 'Owarihatamochi' and the lowland rice cultivar 'Koshihikari'. In the CSSLs, several chromosomal regions were associated with PHS resistance. Among these, the chromosome 9 segment from 'Owarihatamochi' had the greatest association with increased PHS resistance. Further QTL analysis using an advanced backcross population (BC4F2) derived from a 'Koshihikari' × 'Owarihatamochi' cross revealed two putative QTLs, here designated qSDR9.1 (Seed dormancy 9.1) and qSDR9.2, on chromosome 9. The 'Owarihatamochi' alleles of the two QTLs reduced germination. Further fine mapping revealed that qSDR9.1 and qSDR9.2 were located within 4.1-Mb and 2.3-Mb intervals (based on the 'Nipponbare' reference genome sequence) defined by the simple sequence repeat marker loci RM24039 and RM24260 and Indel_2 and RM24540, respectively. We thus identified two QTLs for PHS resistance in 'Owarihatamochi', even though resistance levels are relatively low in this cultivar. This unexpected finding suggests the advantages of using CSSLs for QTL detection.

15.
Plant Cell Physiol ; 56(5): 951-64, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25735958

RESUMO

Lowland rice (Nipponbare) and upland rice (Gaoshan 1) that are comparable under normal and moderate drought conditions showed dramatic differences in severe drought conditions, both naturally occurring long-term drought and simulated rapid water deficits. We focused on their root response and found that enhanced tolerance of upland rice to severe drought conditions was mainly due to the lower level of ABA in its roots than in those of the lowland rice. We first excluded the effect of ABA biosynthesis and catabolism on root-accumulated ABA levels in both types of rice by monitoring the expression of four OsNCED genes and two OsABA8ox genes. Next, we excluded the impact of the aerial parts on roots by suppressing leaf-biosynthesized ABA with fluridone and NDGA (nordihydroguaiaretic acid), and measuring the ABA level in detached roots. Instead, we proved that upland rice had the ability to export considerably more root-sourced ABA than lowland rice under severe drought, which improved ABA-dependent drought adaptation. The investigation of apoplastic pH in root cells and root anatomy showed that ABA leakage in the root system of upland rice was related to high apoplastic pH and the absence of Casparian bands in the sclerenchyma layer. Finally, taking some genes as examples, we predicted that different ABA levels in rice roots stimulated distinct ABA perception and signaling cascades, which influenced its response to water stress.


Assuntos
Ácido Abscísico/metabolismo , Adaptação Fisiológica , Secas , Oryza/fisiologia , Raízes de Plantas/metabolismo , Ácido Abscísico/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Desidratação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Concentração de Íons de Hidrogênio , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Polietilenoglicóis/farmacologia , Prolina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Tempo
16.
J Exp Bot ; 66(9): 2723-32, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25769309

RESUMO

Breeding for strong root systems is an important strategy for improving drought avoidance in rice. To clone genes responsible for strong root traits, an upland rice introgression line IL392 with thicker and longer roots than the background parent lowland rice Yuefu was selected. A quantitative trait locus (QTL), qRT9, controlling root thickness and root length was detected under hydroponic culture using 203 F(2:3) populations derived from a cross between Yuefu and IL392. The qRT9 locus explained 32.5% and 28.1% of the variance for root thickness and root length, respectively. Using 3185 F2 plants, qRT9 was ultimately narrowed down to an 11.5 kb region by substitution mapping. One putative basic helix-loop-helix (bHLH) transcription factor gene, LOC_Os09g28210 (named OsbHLH120), is annotated in this region. Sequences of OsbHLH120 in 11 upland rice and 13 lowland rice indicated that a single nucleotide polymorphism (SNP) at position 82 and an insertion/deletion (Indel) at position 628-642 cause amino acid changes and are conserved between upland rice and lowland rice. Phenotypic analysis indicated that the two polymorphisms were significantly associated with root thickness and root length under hydroponic culture. Quantitative real-time PCR showed that OsbHLH120 was strongly induced by polyethylene glycol (PEG), salt, and abscisic acid, but higher expression was present in IL392 roots than in Yuefu under PEG and salt stress. The successfully isolated locus, qRT9, enriches our knowledge of the genetic basis for drought avoidance and provides an opportunity for breeding drought avoidance varieties by utilizing valuable genes in the upland rice germplasm.


Assuntos
Oryza/genética , Locos de Características Quantitativas , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Estudos de Associação Genética , Dados de Sequência Molecular , Oryza/anatomia & histologia , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Melhoramento Vegetal , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Estresse Fisiológico
17.
Field Crops Res ; 170: 83-94, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26089591

RESUMO

The parasitic weeds Striga asiatica and Striga hermonthica cause high yield losses in rain-fed upland rice in Africa. Two resistance classes (pre- and post-attachment) and several resistant genotypes have been identified among NERICA (New Rice for Africa) cultivars under laboratory conditions (in vitro) previously. However, little is known about expression of this resistance under field conditions. Here we investigated (1) whether resistance exhibited under controlled conditions would express under representative Striga-infested field conditions, and (2) whether NERICA cultivars would achieve relatively good grain yields under Striga-infested conditions. Twenty-five rice cultivars, including all 18 upland NERICA cultivars, were screened in S. asiatica-infested (in Tanzania) and S. hermonthica-infested (in Kenya) fields during two seasons. Additionally, a selection of cultivars was tested in vitro, in mini-rhizotron systems. For the first time, resistance observed under controlled conditions was confirmed in the field for NERICA-2, -5, -10 and -17 (against S. asiatica) and NERICA-1 to -5, -10, -12, -13 and -17 (against S. hermonthica). Despite high Striga-infestation levels, yields of around 1.8 t ha-1 were obtained with NERICA-1, -9 and -10 (in the S. asiatica-infested field) and around 1.4 t ha-1 with NERICA-3, -4, -8, -12 and -13 (in the S. hermonthica-infested field). In addition, potential levels of tolerance were identified in vitro, in NERICA-1, -17 and -9 (S. asiatica) and in NERICA-1, -17 and -10 (S. hermonthica). These findings are highly relevant to rice agronomists and breeders and molecular geneticists working on Striga resistance. In addition, cultivars combining broad-spectrum resistance with good grain yields in Striga-infested fields can be recommended to rice farmers in Striga-prone areas.

18.
Mol Plant ; 17(10): 1573-1593, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39228126

RESUMO

Drought is a major environmental stress limiting crop yields worldwide. Upland rice (Oryza sativa) has evolved complex genetic mechanisms for adaptative growth under drought stress. However, few genetic variants that mediate drought resistance in upland rice have been identified, and little is known about the evolution of this trait during rice domestication. In this study, using a genome-wide association study we identified ROOT LENGTH 1 (RoLe1) that controls rice root length and drought resistance. We found that a G-to-T polymorphism in the RoLe1 promoter causes increased binding of the transcription factor OsNAC41 and thereby enhanced expression of RoLe1. We further showed that RoLe1 interacts with OsAGAP, an ARF-GTPase activating protein involved in auxin-dependent root development, and interferes with its function to modulate root development. Interestingly, RoLe1 could enhance crop yield by increasing the seed-setting rate under moderate drought conditions. Genomic evolutionary analysis revealed that a newly arisen favorable allelic variant, proRoLe1-526T, originated from the midwest Asia and was retained in upland rice during domestication. Collectively, our study identifies an OsNAC41-RoLe1-OsAGAP module that promotes upland rice root development and drought resistance, providing promising genetic targets for molecular breeding of drought-resistant rice varieties.


Assuntos
Secas , Oryza , Proteínas de Plantas , Raízes de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oryza/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estudo de Associação Genômica Ampla , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Estresse Fisiológico/genética , Resistência à Seca
19.
J Microbiol Biotechnol ; 34(6): 1239-1248, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38783698

RESUMO

Peatlands are marginal agricultural lands due to highly acidic soil conditions and poor drainage systems. Drought stress is a big problem in peatlands as it can affect plants through poor root development, so technological innovations are needed to increase the productivity and sustainability of upland rice on peatlands. Rhizobacteria can overcome the effects of drought stress by altering root morphology, regulating stress-responsive genes, and producing exopolysaccharides and indole acetic acid (IAA). This study aimed to determine the ability of rhizobacteria in upland rice to produce exopolysaccharides and IAA, identify potential isolates using molecular markers, and prove the effect of rhizobacteria on viability and vigor index in upland rice. Rhizobacterial isolates were grown on yeast extract mannitol broth (YEMB) medium for exopolysaccharides production testing and Nutrient Broth (NB)+L-tryptophan medium for IAA production testing. The selected isolates identify using sequence 16S rRNA. The variables observed in testing the effect of rhizobacteria were germination ability, vigour index, and growth uniformity. EPS-1 isolate is the best production of exopolysaccharides (41.6 mg/ml) and IAA (60.83 ppm). The isolate EPS-1 was identified as Klebsiella variicola using 16S rRNA sequencing and phylogenetic analysis. The isolate EPS-1 can increase the viability and vigor of upland rice seeds. K. variicola is more adaptive and has several functional properties that can be developed as a potential bioagent or biofertilizer to improve soil nutrition, moisture and enhance plant growth. The use of rhizobacteria can reduce dependence on the use of synthetic materials with sustainable agriculture.


Assuntos
Secas , Ácidos Indolacéticos , Oryza , Filogenia , Raízes de Plantas , Polissacarídeos Bacterianos , RNA Ribossômico 16S , Microbiologia do Solo , Oryza/microbiologia , Ácidos Indolacéticos/metabolismo , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/biossíntese , RNA Ribossômico 16S/genética , Raízes de Plantas/microbiologia , Estresse Fisiológico , Klebsiella/genética , Klebsiella/metabolismo , Klebsiella/isolamento & purificação , Germinação
20.
Int J Biol Macromol ; 231: 123387, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36693603

RESUMO

Rice (Oryza sativa L.) is an important grain crop worldwide, and drought has become an important factor restricting rice yield. As a unique rice germplasm in Hainan (China), Shanlan upland rice has rich genetic diversity and certain advantage for breeding water-saving and drought-resistance rice. 48 varieties, including 41 Shanlan upland rice, 3 upland rice, and 4 irrigated rice varieties was cultivated in soil pots. The drought resistance was assessed at the seedling stage using the stress coefficients of seven indicators, as the D value calculating from five principal components to rank the varieties. Five cultivars with strong, medium, and low resistance, were selected for transcriptome sequencing. The results of the GSEA analysis showed that free amino acid content increased through the redistribution of energy in Shanlan upland rice to cope with drought stress. In addition, we found that Os03g0623100 was significantly up-regulated under drought stress conditions in varieties with high drought resistance, as compared with low resistance cultivars. The Os03g0623100 was predicted to interact with LEA protein in the STRING database, which may contribute to maintaining the energy metabolisms to under stress conditions. This study provides a view of Shanlan upland rice as a drought-resistant germplasm resource, and a deeper understanding of the molecular mechanism of crop drought resistance.


Assuntos
Oryza , Oryza/metabolismo , Resistência à Seca , Transcriptoma , Melhoramento Vegetal , Fenótipo , Secas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa