Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(9): 4226-4236, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38380822

RESUMO

Prior studies have shown that people of color (POC) in the United States are exposed to higher levels of pollution than non-Hispanic White people. We show that the city of Denver, Colorado, displays similar race- and ethnicity-based air pollution disparities by using a combination of high-resolution satellite data, air pollution modeling, historical demographic information, and areal apportionment techniques. TROPOMI NO2 columns and modeled PM2.5 concentrations from 2019 are higher in communities subject to redlining. We calculated and compared Spearman coefficients for pollutants and race at the census tract level for every city that underwent redlining to contextualize the disparities in Denver. We find that the location of polluting infrastructure leads to higher populations of POC living near point sources, including 40% higher Hispanic and Latino populations. This influences pollution distribution, with annual average PM2.5 surface concentrations of 6.5 µg m-3 in census tracts with 0-5% Hispanic and Latino populations and 7.5 µg m-3 in census tracts with 60-65% Hispanic and Latino populations. Traffic analysis and emission inventory data show that POC are more likely to live near busy highways. Unequal spatial distribution of pollution sources and POC have allowed for pollution disparities to persist despite attempts by the city to rectify them. Finally, we identify the core causes of the pollution disparities to provide direction for remediation.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Exposição Ambiental/análise , Material Particulado/análise , Estados Unidos , Óxidos de Nitrogênio/análise
2.
Environ Sci Technol ; 58(28): 12563-12574, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38950186

RESUMO

Urban air pollution can vary sharply in space and time. However, few monitoring strategies can concurrently resolve spatial and temporal variation at fine scales. Here, we present a new measurement-driven spatiotemporal modeling approach that transcends the individual limitations of two complementary sampling paradigms: mobile monitoring and fixed-site sensor networks. We develop, validate, and apply this model to predict black carbon (BC) using data from an intensive, 100-day field study in West Oakland, CA. Our spatiotemporal model exploits coherent spatial patterns derived from a multipollutant mobile monitoring campaign to fill spatial gaps in time-complete BC data from a low-cost sensor network. Our model performs well in reconstructing patterns at fine spatial and temporal resolution (30 m, 15 min), demonstrating strong out-of-sample correlations for both mobile (Pearson's R ∼ 0.77) and fixed-site measurements (R ∼ 0.95) while revealing features that are not effectively captured by a single monitoring approach in isolation. The model reveals sharp concentration gradients near major emission sources while capturing their temporal variability, offering valuable insights into pollution sources and dynamics.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Carbono , Fuligem , Cidades
3.
Environ Sci Technol ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264297

RESUMO

Tire wear particles (TWPs) containing tire wear chemicals (TWCs) are of global concern due to their large emissions and potential toxicity. However, TWP contributions to urban fine particles are poorly understood. Here, 72 paired gas-phase and PM2.5 samples were collected in the urban air of the Pearl River Delta, China. The concentrations of 54 compounds were determined, and 28 TWCs were detected with total concentrations of 3130-317,000 pg/m3. Most p-phenylenediamines (PPDs) were unstable in solvent, likely leading to their low detection rates. The TWCs were mainly (73 ± 26%) in the gas phase. 2-OH-benzothiazole contributed 82 ± 21% of the gas-phase TWCs and benzothiazole-2-sulfonic acid contributed 74 ± 18% of the TWCs in PM2.5. Guangzhou and Foshan were "hotspots" for atmospheric TWCs. Most TWC concentrations significantly correlated with the road length nearby. More particulate TWCs were observed than model predictions, probably due to the impacts of nonexchangeable portion and sampling artifacts. Source apportionment combined with characteristic molecular markers indicated that TWPs contributed 13 ± 7% of urban PM2.5. Our study demonstrates that TWPs are important contributors to urban air pollution that could pose risks to humans. There is an urgent need to develop strategies to decrease TWP emissions, along with broader urban air quality improvement strategies.

4.
Environ Sci Technol ; 58(20): 8835-8845, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38722766

RESUMO

Volatile methyl siloxanes (VMS) are a group of organosilicon compounds of interest because of their potential health effects, their ability to form secondary organic aerosols, and their use as tracer compounds. VMS are emitted in the gas-phase from using consumer and personal care products, including deodorants, lotions, and hair conditioners. Because of this emission route, airborne concentrations are expected to increase with population density, although there are few studies in large urban centers. Here, we report summertime concentrations and daily variations of VMS congeners measured in New York City. Median concentrations of the 6 studied congeners, D3 (20 ng m-3), D4 (57 ng m-3), D5 (230 ng m-3), D6 (11 ng m-3), L5 (2.5 ng m-3), and L7 (1.3 ng m-3) are among the highest reported outdoor concentrations in the literature to date. Average congener ratios of D5:D4 and D5:D6 were consistent with previously reported emissions ratios, suggesting that concentrations were dominated by local emissions. Measured concentrations agree with previously published results from a Community Multiscale Air Quality model and support commonly accepted emissions rates for D4, D5, and D6 of 32.8, 135, and 6.1 mg per capita per day. Concentrations of D4, D5, D6, L5, and L7 and total VMS were significantly lower during the day than during the night, consistent with daytime oxidation reactivity. Concentrations of D3 did not show the same diurnal trend but exhibited a strong directional dependence, suggesting that it may be emitted by industrial point sources in the area rather than personal care product use. Concentrations of all congeners had large temporal variations but showed relatively weak relationships with wind speed, temperature, and mixing height.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Siloxanas , Cidade de Nova Iorque , Siloxanas/análise , Poluentes Atmosféricos/análise , Indústrias , Humanos , Volatilização , Estações do Ano , Cosméticos/análise , Compostos Orgânicos Voláteis/análise
5.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34728567

RESUMO

Improvements in rechargeable batteries are enabling several electric urban air mobility (UAM) aircraft designs with up to 300 mi of range with payload equivalents of up to seven passengers. Novel UAM aircraft consume between 130 Wh/passenger-mi and ∼ 1,200 Wh/passenger-mi depending on the design and utilization, compared to an expected consumption of over 220 Wh/passenger-mi and 1,000 Wh/passenger-mi for terrestrial electric vehicles and combustion engine vehicles, respectively. We also find that several UAM aircraft designs are approaching technological viability with current Li-ion batteries, based on the specific power and energy, while rechargeability and lifetime performance remain uncertain. These aspects highlight the technological readiness of a new segment of transportation.

6.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34155116

RESUMO

Although leaded gasoline was banned at the end of the last century, lead (Pb) remains significantly enriched in airborne particles in large cities. The remobilization of historical Pb deposited in soils from atmospheric removal has been suggested as an important source providing evidence for the hypothetical long-term persistency of lead, and possibly other pollutants, in the urban environment. Here, we present data on Pb isotopic composition in airborne particles collected in London (2014 to 2018), which provide strong support that lead deposited via gasoline combustion still contributes significantly to the lead burden in present-day London. Lead concentration and isotopic signature of airborne particles collected at a heavily trafficked site did not vary significantly over the last decade, suggesting that sources remained unchanged. Lead isotopic composition of airborne particles matches that of road dust and topsoils and can only be explained with a significant contribution (estimate of 32 ± 10 to 43 ± 9% based on a binary mixing model) of Pb from leaded gasoline. The lead isotopes furthermore suggest significant contributions from nonexhaust traffic emissions, even though isotopic signatures of anthropogenic sources are increasingly overlapping. Lead isotopic composition of airborne particles collected at building height shows a similar signature to that collected at street level, suggesting effective mixing of lead within the urban street canyon. Our results have important implications on the persistence of Pb in urban environments and suggest that atmospheric Pb reached a baseline in London that is difficult to decrease further with present policy measures.


Assuntos
Atmosfera/química , Chumbo/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Gasolina/análise , História do Século XX , Isótopos/análise , Londres , Material Particulado/análise , Fatores de Tempo
7.
Sensors (Basel) ; 24(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339697

RESUMO

Future UAV (unmanned aerial vehicle) operations in urban environments demand a PNT (position, navigation, and timing) solution that is both robust and resilient. While a GNSS (global navigation satellite system) can provide an accurate position under open-sky assumptions, the complexity of urban operations leads to NLOS (non-line-of-sight) and multipath effects, which in turn impact the accuracy of the PNT data. A key research question within the research community pertains to determining the appropriate hybrid fusion architecture that can ensure the resilience and continuity of UAV operations in urban environments, minimizing significant degradations of PNT data. In this context, we present a novel federated fusion architecture that integrates data from the GNSS, the IMU (inertial measurement unit), a monocular camera, and a barometer to cope with the GNSS multipath and positioning performance degradation. Within the federated fusion architecture, local filters are implemented using EKFs (extended Kalman filters), while a master filter is used in the form of a GRU (gated recurrent unit) block. Data collection is performed by setting up a virtual environment in AirSim for the visual odometry aid and barometer data, while Spirent GSS7000 hardware is used to collect the GNSS and IMU data. The hybrid fusion architecture is compared to a classic federated architecture (formed only by EKFs) and tested under different light and weather conditions to assess its resilience, including multipath and GNSS outages. The proposed solution demonstrates improved resilience and robustness in a range of degraded conditions while maintaining a good level of positioning performance with a 95th percentile error of 0.54 m for the square scenario and 1.72 m for the survey scenario.

8.
J Environ Manage ; 365: 121400, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936028

RESUMO

Outdoor exposure to particulate matter (PM2.5 and PM10) in urban areas can vary considerably depending on the mode of transport. This study aims to quantify this difference in exposure during daily travel, by carrying out a micro-sensor measurement campaign. The pollutant exposure was assessed simultaneously over predefined routes in order to allow comparison between different transport modes having the same starting and ending points. During the six-week measurement campaign, the average reference values for PM background concentrations were 13.72 and 17.92µg/m3 for the PM2.5 and PM10, respectively. The results revealed that the mode with the highest exposure to PM2.5 adjusted to background concentration (PM2.5Norm) was the bus (1.65) followed by metro (1.51), walking (1.33), tramway (1.31), car (1.09) and finally the bike (1.06). For PM10Norm, the tramway had the highest exposure (1.86), followed by walking (1.68), metro (1.65), bus (1.61), bike (1.43) and finally the car (1.39). The level of urbanization around the route and the presence of preferential lanes for public transportation influenced the concentration to which commuters were exposed. For the active modes (bike and walking), we observed frequent variations in concentrations during the trip, characterized by punctual peaks in concentration, depending on the local characteristics of road traffic and urban morphology. Fluctuations in particulate matter inside public transport vehicles were partly explained by the opening and closing of doors during stops, as well as the passenger flows, influencing the re-suspension of particles. The car was one of the least exposed modes overall, with the lowest concentration variability, although these concentrations can vary greatly depending on the ventilation parameters used. These results encourage measures to move the most exposed users away from road traffic, by developing a network of lanes entirely dedicated to cycling and walking, particularly in densely populated areas, as well as encouraging the renewal of motorized vehicles to use less polluting fuels with efficient ventilation systems.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Material Particulado , Meios de Transporte , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , França , Emissões de Veículos/análise , Humanos , Poluição do Ar/análise
9.
J Environ Manage ; 356: 120533, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492422

RESUMO

This paper examines the impact of air pollution control policies targeting key polluting enterprises, highlighting a strategic shift towards precision pollution control that concentrates on high-emission, high-risk businesses. The paper explores the efficacy of these policies and their potential spatial spillover effects, utilizing panel data from 259 Chinese cities from 2013 to 2021. Employing the difference-in-differences (DID) model and spatial Durbin model, the study analyzes both the direct local effects and the broader spatial consequences of these regulatory measures on air quality. The findings indicate a significant reduction in air pollutant concentrations in urban areas, attributing this improvement to factors such as industrial restructuring, increased investment in science and technology, and economic growth. Spatial econometric analysis further reveals a substantial positive correlation in air quality among Chinese cities. However, estimates of the spillover effect indicate that while such policies successfully reduce pollution locally, they could unintentionally degrade air quality in adjacent areas. The study highlights the need for nuanced policy strategies to mitigate unintended spatial spillovers and enhance overall effectiveness. It recommends tailored policies that integrate environmental and socioeconomic objectives, national and regional coordination for consistent enforcement, technology-driven compliance strategies, and incentives for sustainable enterprise practices.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluição Ambiental/prevenção & controle , Poluição Ambiental/análise , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Cidades , Políticas , Desenvolvimento Econômico , China
10.
Environ Monit Assess ; 196(3): 282, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369612

RESUMO

The increase in heavy metal concentrations in the air, especially after the Industrial Revolution, is notable for the scientific world because of the adverse effects that threaten environmental and human health. Among the trace elements, nickel (Ni) is carcinogenic, and all barium (Ba) compounds are toxic. Trace elements are critical for human and environmental health. Their threat further increases, especially in the urban areas and surroundings with a high population. In urban areas, the trace element contamination in the airborne can be reduced using plants. However, which plant and plant organs absorb trace elements could not be determined. In the present study, Ni and Ba concentrations in the branch, wood, and leaf samples of 14 species collected from the city center of Mersin province were determined. As a result, broad-leaved species' Ni and Ba concentrations in their leaf sample were generally higher than other species. Almost all species had the lowest Ni and Ba concentrations in their wood samples. Among these 14 species, it was found that Ni concentration was very high, especially in non-washed leaves of Platanus orientalis, Photinia serrulata, and Citrus reticulate, and Ba concentration was very high in Citrus reticulata, Chamaecyparis lawsoniana, Laurus nobilis, and Acer hyrcanum. Using broad-leaved species in urban areas where pollution is at high levels will significantly contribute to reducing Ni and Ba pollution. It is recommended that these points be considered in future urban landscaping projects.


Assuntos
Metais Pesados , Oligoelementos , Humanos , Níquel , Turquia , Monitoramento Ambiental , Metais Pesados/análise , Plantas
11.
Environ Monit Assess ; 196(8): 693, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963455

RESUMO

Clean air is imperative to the survival of all life forms on the planet. However, recent times have witnessed enormous escalation in urban pollution levels. It is therefore, incumbent upon us to decipher measures to deal with it. In perspective, the present study was carried out to assess PM10 and PM2.5 loading, metallic constituents, gaseous pollutants, source contributions, health impact and noise level of nine-locations, grouped as residential, commercial, and industrial in Lucknow city for 2019-21. Mean concentrations during pre-monsoon for PM10, PM2.5, SO2 and NO2 were: 138.2 ± 35.2, 69.1 ± 13.6, 8.5 ± 3.3 and 32.3 ± 7.4 µg/m3, respectively, whereas post-monsoon concentrations were 143.0 ± 33.3, 74.6 ± 14.5, 12.5 ± 2.1, and 35.5 ± 6.3 µg/m3, respectively. Exceedance percentage of pre-monsoon PM10 over National Ambient Air Quality Standards (NAAQS) was 38.2% while that for post-monsoon was 43.0%; whereas corresponding values for PM2.5 were 15.2% and 24.3%. Post-monsoon season showed higher particulate loading owing to wintertime inversion and high humidity conditions. Order of elements associated with PM2.5 is Co < Cd < Cr < Ni < V < Be < Mo < Mn < Ti < Cu < Pb < Se < Sr < Li < B < As < Ba < Mg < Al < Zn < Ca < Fe < K < Na and that with PM10 is Co < Cd < Ni < Cr < V < Ti < Be < Mo < Cu < Pb < Se < Sr < Li < B < As < Mn < Ba < Mg < Al < Fe < Zn < K < Na < Ca. WHO AIRQ + ascertained 1654, 144 and 1100 attributable cases per 0.1 million of population to PM10 exposure in 2019-21. Source apportionment was carried out using USEPA-PMF and resolved 6 sources with highest percent contributions including road dust re-entrainment, biomass burning and vehicular emission. It is observed that residents of Lucknow city regularly face exposure to particulate pollutants and associated constituents making it imperative to develop pollution abetment strategies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Cidades , Monitoramento Ambiental , Material Particulado , Índia , Poluentes Atmosféricos/análise , Material Particulado/análise , Poluição do Ar/estatística & dados numéricos , Estações do Ano , Análise Espaço-Temporal , Emissões de Veículos/análise
12.
Environ Monit Assess ; 196(6): 513, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709416

RESUMO

Anthropogenic pollution impacts human and environmental health, climate change, and air quality. Karabük, an industrial area from the Black Sea Region in northern Türkiye, is vulnerable to environmental pollution, particularly soil and air. In this research on methodological aspects, we analyzed the concentrations of six potential toxic metals in the atmospheric deposition of the city using the passive method of moss biomonitoring. The ground-growing terrestrial moss, Hypnum cupressiforme Hedw., was collected during the dry season of August 2023 at 20 urban points. The concentrations of Cr, Cu, Cd, Ni, Pb, and Co were determined in mosses by the ICP-MS method. Descriptive statistical analysis was employed to evaluate the status and variance in the spatial distribution of the studied metals, and multivariate analysis, Pearson correlation, and cluster analysis were used to investigate the associations of elements and discuss the most probable sources of these elements in the study area. Cd and Co showed positive and significant inter-element correlations (r > 0.938), representing an anthropogenic association mostly present in the air particles emitted from several metal plants. The results showed substantial impacts from local industry, manufactured activity, and soil dust emissions. Steel and iron smelter plants and cement factories are the biggest emitters of trace metals in the Karabük area and the primary sources of Cr, Cd, Ni, and Co deposition.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Metais Pesados , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Monitoramento Biológico/métodos , Cidades , Briófitas/química , Indústrias , Poluição do Ar/estatística & dados numéricos , Turquia
13.
Environ Sci Technol ; 57(1): 96-108, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36548159

RESUMO

We performed more than a year of mobile, 1 Hz measurements of lung-deposited surface area (LDSA, the surface area of 20-400 nm diameter particles, deposited in alveolar regions of lungs) and optically assessed fine particulate matter (PM2.5), black carbon (BC), and nitrogen dioxide (NO2) in central London. We spatially correlated these pollutants to two urban emission sources: major roadways and restaurants. We show that optical PM2.5 is an ineffective indicator of tailpipe emissions on major roadways, where we do observe statistically higher LDSA, BC, and NO2. Additionally, we find pollutant hot spots in commercial neighborhoods with more restaurants. A low LDSA (15 µm2 cm-3) occurs in areas with fewer major roadways and restaurants, while the highest LDSA (25 µm2 cm-3) occurs in areas with more of both sources. By isolating areas that are higher in one source than the other, we demonstrate the comparable impacts of traffic and restaurants on LDSA. Ratios of hyperlocal enhancements (ΔLDSA:ΔBC and ΔLDSA:ΔNO2) are higher in commercial neighborhoods than on major roadways, further demonstrating the influence of restaurant emissions on LDSA. We demonstrate the added value of using particle surface in identifying hyperlocal patterns of health-relevant PM components, especially in areas with strong vehicular emissions where the high LDSA does not translate to high PM2.5.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Material Particulado/análise , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Londres , Emissões de Veículos/análise , Pulmão , Monitoramento Ambiental , Poluição do Ar/análise
14.
Environ Sci Technol ; 57(48): 19532-19544, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37934506

RESUMO

In the United States (U.S.), studies on nitrogen dioxide (NO2) trends and pollution-attributable health effects have historically used measurements from in situ monitors, which have limited geographical coverage and leave 66% of urban areas unmonitored. Novel tools, including remotely sensed NO2 measurements and estimates of NO2 estimates from land-use regression and photochemical models, can aid in assessing NO2 exposure gradients, leveraging their complete spatial coverage. Using these data sets, we find that Black, Hispanic, Asian, and multiracial populations experience NO2 levels 15-50% higher than the national average in 2019, whereas the non-Hispanic White population is consistently exposed to levels that are 5-15% lower than the national average. By contrast, the in situ monitoring network indicates more moderate ethnoracial NO2 disparities and different rankings of the least- to most-exposed ethnoracial population subgroup. Validating these spatially complete data sets against in situ observations reveals similar performance, indicating that all these data sets can be used to understand spatial variations in NO2. Integrating in situ monitoring, satellite data, statistical models, and photochemical models can provide a semiobservational record, complete geospatial coverage, and increasingly high spatial resolution, enhancing future efforts to characterize, map, and track exposure and inequality for highly spatially heterogeneous pollutants like NO2.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Estados Unidos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Dióxido de Nitrogênio/análise , Monitoramento Ambiental , Exposição Ambiental , Material Particulado/análise
15.
Environ Sci Technol ; 57(26): 9683-9692, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37327457

RESUMO

Air quality policies have made substantial gains by reducing pollutant emissions from the transportation sector. In March 2020, New York City's activities were severely curtailed in response to the COVID-19 pandemic, resulting in 60-90% reductions in human activity. We continuously measured major volatile organic compounds (VOCs) during January-April 2020 and 2021 in Manhattan. Concentrations of many VOCs decreased significantly during the shutdown with variations in daily patterns reflective of human activity perturbations, resulting in a temporary ∼28% reduction in chemical reactivity. However, the limited effect of these dramatic measures was outweighed by larger increases in VOC-related reactivity during the anomalously warm spring 2021. This emphasizes the diminishing returns from transportation-focused policies alone and the risk of increased temperature-dependent emissions undermining policy-related gains in a warming climate.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Compostos Orgânicos Voláteis , Humanos , Poluentes Atmosféricos/análise , Pandemias , COVID-19/epidemiologia , Poluição do Ar/análise , Estações do Ano , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , Emissões de Veículos/análise
16.
Environ Sci Technol ; 57(29): 10708-10720, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37437161

RESUMO

Particulate matter air pollution is a leading cause of global mortality, particularly in Asia and Africa. Addressing the high and wide-ranging air pollution levels requires ambient monitoring, but many low- and middle-income countries (LMICs) remain scarcely monitored. To address these data gaps, recent studies have utilized low-cost sensors. These sensors have varied performance, and little literature exists about sensor intercomparison in Africa. By colocating 2 QuantAQ Modulair-PM, 2 PurpleAir PA-II SD, and 16 Clarity Node-S Generation II monitors with a reference-grade Teledyne monitor in Accra, Ghana, we present the first intercomparisons of different brands of low-cost sensors in Africa, demonstrating that each type of low-cost sensor PM2.5 is strongly correlated with reference PM2.5, but biased high for ambient mixture of sources found in Accra. When compared to a reference monitor, the QuantAQ Modulair-PM has the lowest mean absolute error at 3.04 µg/m3, followed by PurpleAir PA-II (4.54 µg/m3) and Clarity Node-S (13.68 µg/m3). We also compare the usage of 4 statistical or machine learning models (Multiple Linear Regression, Random Forest, Gaussian Mixture Regression, and XGBoost) to correct low-cost sensors data, and find that XGBoost performs the best in testing (R2: 0.97, 0.94, 0.96; mean absolute error: 0.56, 0.80, and 0.68 µg/m3 for PurpleAir PA-II, Clarity Node-S, and Modulair-PM, respectively), but tree-based models do not perform well when correcting data outside the range of the colocation training. Therefore, we used Gaussian Mixture Regression to correct data from the network of 17 Clarity Node-S monitors deployed around Accra, Ghana, from 2018 to 2021. We find that the network daily average PM2.5 concentration in Accra is 23.4 µg/m3, which is 1.6 times the World Health Organization Daily PM2.5 guideline of 15 µg/m3. While this level is lower than those seen in some larger African cities (such as Kinshasa, Democratic Republic of the Congo), mitigation strategies should be developed soon to prevent further impairment to air quality as Accra, and Ghana as a whole, rapidly grow.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Gana , Monitoramento Ambiental , República Democrática do Congo , Material Particulado/análise , Poluição do Ar/análise
17.
Atmos Environ (1994) ; 303: 119746, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37016698

RESUMO

The COVID-19 pandemic altered the human mobility and economic activities immensely, as authorities enforced unprecedented lock down regulations. In order to reduce the spread of COVID-19, a complete lockdown was observed between 24 March - 31 May 2020 in Pakistan. This paper aims at investigating the PM2.5, AOD and column amounts of six trace gases (NO2, SO2, CH4, HCHO, C2H2O2, and O3) by comparing periods of reduced emissions during lockdown periods with reference periods without emission reductions over Lahore, Pakistan. HYSPLIT cluster trajectory analyses were performed, which confirmed similar meteorological flow conditions during lockdown and reference periods. This provides confidence that any change in air quality conditions would be due to changes in human activities and associated emissions. The results show about 38% reduction in ambient surface PM2.5 levels during the lockdown period. This change also positively correlated with MODISDB and AERONETAOD data with a decrease of AOD by 42% and 35%, respectively. Reductions for tropospheric columns of NO2 and SO2 were about 20% and 50%, respectively during a semi lockdown period, while no reduction in the CH4, C2H2O2, HCHO and O3 levels occurred. During the lockdown period NO2, O3 and CH4 were about 50%, 45% and 25% lower, respectively, but no reduction in SO2, C2H2O2 and HCHO levels were noticed compared to the reference lockdown period for Lahore. HYSPLIT cluster trajectory analysis revealed the greatest impact on Lahore air quality through local emissions and regional transport from the east (agricultural burning and industry).

18.
Ecotoxicol Environ Saf ; 263: 115358, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595350

RESUMO

Seasonal effects on subclinical cardiovascular functions (CVFs) are an important emerging health issue for people living in urban environment. The objectives of this study were to demonstrate the effects of seasonal variations of temperature, relative humidity, and PM2.5 air pollution on CVFs. A total of 86 office workers in Taipei City were recruited, their arterial pressure waveform was recorded by cuff sphygmomanometer using an oscillometric blood pressure (BP) device for CVFs assessment. Results of paried t-test with Bonferroni correction showed significantly increased systolic and diastolic BP (SBP, DBP), central end-systolic and diastolic BP (cSBP, cDBP) and systemic vascular resistance, but decreased heart rate (HR), stroke volume (SV), cardio output (CO), and cardiac index in winter compared with other seasons. After controlling for related confounding factors, SBP, DBP, cSBP, cDBP, LV dp/dt max, and brachial-ankle pulse wave velocity (baPWV) were negatively associated with, and SV was positively associated with seasonal temperature changes. Seasonal changes of air pollution in terms of PM2.5 were significantly positively associated with DBP and cDBP, as well as negatively associated with HR and CO. Seasonal changes of relative humidity were significantly negatively associated with DBP, and cDBP, as well as positively associated with HR, CO, and baPWV. This study provides evidence of greater susceptibility to cardiovascular events in winter compared with other seasons, with ambient temperature, relative humidity, and PM2.5 as the major factors of seasonal variation of CVFs.


Assuntos
Poluição do Ar , Índice Tornozelo-Braço , Humanos , Estações do Ano , Temperatura , Umidade , Análise de Onda de Pulso , Poluição do Ar/efeitos adversos , Material Particulado
19.
Transp Res D Transp Environ ; 115: 103580, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36573137

RESUMO

While the decrease in air pollutant concentration during the COVID-19 lockdown is well documented, neighborhood-scale and multi-city data have not yet been explored systematically to derive a generalizable quantitative link to the drop in vehicular traffic. To bridge this gap, high spatial resolution air quality and georeferenced traffic datasets were compiled for the city of London during three weeks with significant differences in traffic. The London analysis was then augmented with a meta-analysis of lower-resolution studies from 12 other cities. The results confirm that the improvement in air quality can be partially attributed to the drop of traffic density, and more importantly quantifies the elasticity (0.71 for NO2 & 0.56 for PM2.5) of their linkages. The findings can also inform on the future impacts of the ongoing shift to electric vehicles and micro-mobility on urban air quality.

20.
Artigo em Inglês | MEDLINE | ID: mdl-36711192

RESUMO

It is well-documented that subway stations exhibit high fine particulate matter (PM2.5) concentrations. Little is known about the potential of river-tunnels to increase PM2.5 concentrations in subways. We hypothesized a "river-tunnel" effect exists: Stations adjacent to poorly ventilated tunnels that travel beneath rivers exhibit higher PM2.5 concentrations than more distant stations. Accordingly, the PM2.5 concentrations were monitored at stations adjacent to and two- and three-stations distant from the river-tunnel. Multivariate linear regression analysis was conducted to disentangle how proximity to a river-tunnel and other factors (e.g., depth) influence concentrations. Stations adjacent to a river-tunnel had 80-130% higher PM2.5 concentrations than more distant stations. Moreover, distance from a river-tunnel was the strongest PM2.5-influencing factor This distance effect was not observed at underground stations adjacent to a river-bridge. The "river-tunnel" effect explains some of the inter-station variability in subway PM2.5 concentrations. These results support the need for improving ventilation systems in subways.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa