Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1398: 155-177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36717493

RESUMO

There are at least eight aquaporins (AQPs) expressed in the kidney. Including AQP1 expressed in proximal tubules, thin descending limb of Henle and vasa recta; AQP2, AQP3, AQP4, AQP5, and AQP6 expressed in collecting ducts; AQP7 expressed in proximal tubules; AQP8 expressed in proximal tubules and collecting ducts; and AQP11 expressed in the endoplasmic reticulum of proximal tubular epithelial cells. Over years, researchers have constructed different AQP knockout mice and explored the effect of AQP knockout on kidney function. Thus, the roles of AQPs in renal physiology are revealed, providing very useful information for addressing fundamental questions about transepithelial water transport and the mechanism of near isoosmolar fluid reabsorption. This chapter introduces the localization and function of AQPs in the kidney and their roles in different kidney diseases to reveal the prospects of AQPs in further basic and clinical studies.


Assuntos
Aquaporinas , Nefropatias , Camundongos , Animais , Aquaporina 2 , Aquaporinas/genética , Rim , Túbulos Renais Proximais , Camundongos Knockout
2.
Am J Physiol Renal Physiol ; 318(4): F936-F955, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32088967

RESUMO

Kidney water conservation requires a hypertonic medullary interstitium, NaCl in the outer medulla and NaCl and urea in the inner medulla, plus a vascular configuration that protects against washout. In this work, a multisolute model of the rat kidney is revisited to examine its capacity to simulate antidiuresis. The first step was to streamline model computation by parallelizing its Jacobian calculation, thus allowing finer medullary spatial resolution and more extensive examination of model parameters. It is found that outer medullary NaCl is modestly increased when transporter density in ascending Henle limbs from juxtamedullary nephrons is scaled to match the greater juxtamedullary solute flow. However, higher NaCl transport produces greater CO2 generation and, by virtue of countercurrent vascular flows, establishment of high medullary Pco2. This CO2 gradient can be mitigated by assuming that a fraction of medullary transport is powered anaerobically. Reducing vascular flows or increasing vessel permeabilities does little to further increase outer medullary solute gradients. In contrast to medullary models of others, vessels in this model have solute reflection coefficients close to zero; increasing these coefficients provides little enhancement of solute profiles but does generate high interstitial pressures, which distort tubule architecture. Increasing medullary urea delivery via entering vasa recta increases inner medullary urea, although not nearly to levels found in rats. In summary, 1) medullary Na+ and urea gradients are not captured by the model and 2) the countercurrent architecture that provides antidiuresis also produces exaggerated Pco2 profiles and is an unappreciated constraint on models of medullary function.


Assuntos
Simulação por Computador , Rim/irrigação sanguínea , Rim/metabolismo , Modelos Biológicos , Natriurese , Circulação Renal , Reabsorção Renal , Sódio/urina , Animais , Dióxido de Carbono/metabolismo , Pressão Hidrostática , Oxigênio/metabolismo , Permeabilidade , Potássio/urina , Ratos , Ureia/metabolismo
3.
Am J Physiol Renal Physiol ; 317(3): F735-F742, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31313955

RESUMO

The mechanism by which solutes accumulate in the inner medulla of the mammalian kidney has remained incompletely understood. That persistent mystery has led to hypotheses based on the peristaltic contractions of the pelvic wall smooth muscles. It has been demonstrated the peristaltic contractions propel fluid down the collecting duct in boluses. In antidiuresis, boluses are sufficiently short that collecting ducts may be collapsed most of the time. In this study, we investigated the mechanism by which about half of the bolus volume is reabsorbed into the collecting duct cells despite the short contact time. To accomplish this, we developed a dynamic mathematical model of solute and water transport along a collecting duct of a rat papilla undergoing peristaltic contractions. The model predicts that, given preexisting axial concentration gradients along the loops of Henle, ∼40% of the bolus volume is reabsorbed as the bolus flows down the inner medullary collecting duct. Additionally, simulation results suggest that while the contraction-induced luminal hydrostatic pressure facilitates water extraction from the bolus, that pressure is not necessary to concentrate the bolus. Also, neither the negative interstitial pressure generated during the relaxation phase nor the concentrating effect of hyaluronic acid has a significant effect on bolus concentration. Taken together, these findings indicate that the high collecting duct apical water permeability allows a substantial amount of water to be extracted from the bolus, despite its short transit time. However, the potential role of the peristaltic waves in the urine-concentrating mechanism remains to be revealed.


Assuntos
Água Corporal/metabolismo , Túbulos Renais Coletores/metabolismo , Modelos Biológicos , Músculo Liso/fisiologia , Peristaltismo , Reabsorção Renal , Cloreto de Sódio/metabolismo , Ureia/metabolismo , Animais , Túbulos Renais Coletores/anatomia & histologia , Músculo Liso/anatomia & histologia , Concentração Osmolar , Pelve , Permeabilidade , Pressão , Ratos , Fatores de Tempo
4.
Am J Physiol Renal Physiol ; 312(6): F925-F950, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28179254

RESUMO

A model of the rat nephron (Weinstein. Am J Physiol Renal Physiol 308: F1098-F1118, 2015) has been extended with addition of medullary vasculature. Blood vessels contain solutes from the nephron model, plus additional species from the model of Atherton et al. (Am J Physiol Renal Fluid Electrolyte Physiol 247: F61-F72, 1984), representing hemoglobin buffering. In contrast to prior models of the urine-concentrating mechanism, reflection coefficients for DVR are near zero. Model unknowns are initial proximal tubule pressures and flows, connecting tubule pressure, and medullary interstitial pressures and concentrations. The model predicts outer medullary (OM) interstitial gradients for Na+, K+, CO2, and [Formula: see text], such that at OM-IM junction, the respective concentrations relative to plasma are 1.2, 3.0, 2.7, and 8.0; within IM, there is high urea and low [Formula: see text], with concentration ratios of 11 and 0.5 near the papillary tip. Quantitative similarities are noted between K+ and urea handling (medullary delivery and permeabilities). The model K+ gradient is physiologic, and the urea gradient is steeper due to restriction of urea permeability to distal collecting duct. Nevertheless, the predicted urea gradient is less than expected, suggesting reconsideration of proposals of an unrecognized reabsorptive urea flux. When plasma K+ is increased from 5.0 to 5.5 mM, Na+ and K+ excretion increase 2.3- and 1.3-fold, respectively. The natriuresis derives from a 3.3% decrease in proximal Na+ reabsorption and occurs despite delivery-driven increases in Na+ reabsorption in distal segments; kaliuresis derives from a 30% increase in connecting tubule Na+ delivery. Thus this model favors the importance of proximal over distal events in K+-induced diuresis.


Assuntos
Diurese , Capacidade de Concentração Renal , Modelos Biológicos , Néfrons/irrigação sanguínea , Néfrons/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Animais , Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Concentração de Íons de Hidrogênio , Microcirculação , Potássio/sangue , Potássio/urina , Ratos , Circulação Renal , Eliminação Renal , Reabsorção Renal , Sódio/sangue , Sódio/urina , Ureia/metabolismo
5.
Adv Exp Med Biol ; 969: 131-148, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28258571

RESUMO

Several aquaporin (AQP )-type water channels are expressed in kidney: AQP1 in the proximal tubule, thin descending limb of Henle, and vasa recta; AQP2 -6 in the collecting duct; AQP7 in the proximal tubule; AQP8 in the proximal tubule and collecting duct; and AQP11 in the endoplasmic reticulum of proximal tubule cells. AQP2 is the vasopressin-regulated water channel that is important in hereditary and acquired diseases affecting urine-concentrating ability. The roles of AQPs in renal physiology and transepithelial water transport have been determined using AQP knockout mouse models. This chapter describes renal physiologic insights revealed by phenotypic analysis of AQP knockout mice and the prospects for further basic and clinical studies.


Assuntos
Aquaporina 1/metabolismo , Rim/metabolismo , Poliúria/metabolismo , Ureia/metabolismo , Água/metabolismo , Animais , Aquaporina 1/genética , Transporte Biológico , Regulação da Expressão Gênica , Humanos , Rim/citologia , Capacidade de Concentração Renal/fisiologia , Camundongos , Camundongos Knockout , Concentração Osmolar , Poliúria/genética , Poliúria/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia
6.
Am J Physiol Renal Physiol ; 309(7): F627-37, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26290371

RESUMO

The architecture of the inner stripe of the outer medulla of the human kidney has long been known to exhibit distinctive configurations; however, inner medullary architecture remains poorly defined. Using immunohistochemistry with segment-specific antibodies for membrane fluid and solute transporters and other proteins, we identified a number of distinctive functional features of human inner medulla. In the outer inner medulla, aquaporin-1 (AQP1)-positive long-loop descending thin limbs (DTLs) lie alongside descending and ascending vasa recta (DVR, AVR) within vascular bundles. These vascular bundles are continuations of outer medullary vascular bundles. Bundles containing DTLs and vasa recta lie at the margins of coalescing collecting duct (CD) clusters, thereby forming two regions, the vascular bundle region and the CD cluster region. Although AQP1 and urea transporter UT-B are abundantly expressed in long-loop DTLs and DVR, respectively, their expression declines with depth below the outer medulla. Transcellular water and urea fluxes likely decline in these segments at progressively deeper levels. Smooth muscle myosin heavy chain protein is also expressed in DVR of the inner stripe and the upper inner medulla, but is sparsely expressed at deeper inner medullary levels. In rodent inner medulla, fenestrated capillaries abut CDs along their entire length, paralleling ascending thin limbs (ATLs), forming distinct compartments (interstitial nodal spaces; INSs); however, in humans this architecture rarely occurs. Thus INSs are relatively infrequent in the human inner medulla, unlike in the rodent where they are abundant. UT-B is expressed within the papillary epithelium of the lower inner medulla, indicating a transcellular pathway for urea across this epithelium.


Assuntos
Medula Renal/anatomia & histologia , Medula Renal/fisiologia , Aquaporina 1/metabolismo , Capilares/metabolismo , Epitélio/metabolismo , Humanos , Imageamento Tridimensional , Imuno-Histoquímica , Técnicas In Vitro , Capacidade de Concentração Renal/fisiologia , Túbulos Renais/metabolismo , Túbulos Renais Coletores/metabolismo , Consumo de Oxigênio
7.
Am J Physiol Renal Physiol ; 307(12): F1363-72, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25298523

RESUMO

Urea transporters (UT) play an important role in the urine concentration mechanism by mediating intrarenal urea recycling, suggesting that UT inhibitors could have therapeutic use as a novel class of diuretic. Recently, we found a thienoquinolin UT inhibitor, PU-14, that exhibited diuretic activity. The purpose of this study was to identify more potent UT inhibitors that strongly inhibit UT-A isoforms in the inner medullary collecting duct (IMCD). Efficient thienoquinolin UT inhibitors were identified by structure-activity relationship analysis. Urea transport inhibition activity was assayed in perfused rat terminal IMCDs. Diuretic activity of the compound was determined in rats and mice using metabolic cages. The results show that the compound PU-48 exhibited potent UT-A inhibition activity. The inhibition was 69.5% with an IC50 of 0.32 µM. PU-48 significantly inhibited urea transport in perfused rat terminal IMCDs. PU-48 caused significant diuresis in UT-B null mice, which indicates that UT-A is the target of PU-48. The diuresis caused by PU-48 did not change blood Na(+), K(+), or Cl(-) levels or nonurea solute excretion in rats and mice. No toxicity was detected in cells or animals treated with PU-48. The results indicate that thienoquinolin UT inhibitors induce a diuresis by inhibiting UT-A in the IMCD. This suggests that they may have the potential to be developed as a novel class of diuretics with fewer side effects than classical diuretics.


Assuntos
Diurese/efeitos dos fármacos , Diuréticos/farmacologia , Túbulos Renais Coletores/efeitos dos fármacos , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Quinolinas/farmacologia , Ureia/metabolismo , Animais , Transporte Biológico , Biomarcadores/sangue , Cloretos/sangue , Diuréticos/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Feminino , Humanos , Capacidade de Concentração Renal/efeitos dos fármacos , Túbulos Renais Coletores/metabolismo , Masculino , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Concentração Osmolar , Potássio/sangue , Isoformas de Proteínas , Quinolinas/química , Ratos Sprague-Dawley , Sódio/sangue , Relação Estrutura-Atividade , Fatores de Tempo
8.
Am J Physiol Renal Physiol ; 307(6): F649-55, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25056344

RESUMO

Renal medullary function is characterized by corticopapillary concentration gradients of various molecules. One example is the generally decreasing axial gradient in oxygen tension (Po2). Another example, found in animals in the antidiuretic state, is a generally increasing axial solute gradient, consisting mostly of NaCl and urea. This osmolality gradient, which plays a principal role in the urine concentrating mechanism, is generally considered to involve countercurrent multiplication and countercurrent exchange, although the underlying mechanism is not fully understood. Radial oxygen and solute gradients in the transverse dimension of the medullary parenchyma have been hypothesized to occur, although strong experimental evidence in support of these gradients remains lacking. This review considers anatomic features of the renal medulla that may impact the formation and maintenance of oxygen and solute gradients. A better understanding of medullary architecture is essential for more clearly defining the compartment-to-compartment flows taken by fluid and molecules that are important in producing axial and radial gradients. Preferential interactions between nephron and vascular segments provide clues as to how tubular and interstitial oxygen flows contribute to safeguarding active transport pathways in renal function in health and disease.


Assuntos
Medula Renal/metabolismo , Microvasos/anatomia & histologia , Oxigênio/metabolismo , Animais , Humanos , Medula Renal/irrigação sanguínea
9.
Am J Physiol Renal Physiol ; 306(1): F123-9, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24197065

RESUMO

To better understand the role that water and urea fluxes play in the urine concentrating mechanism, we determined transepithelial osmotic water permeability (Pf) and urea permeability (Purea) in isolated perfused Munich-Wistar rat long-loop descending thin limbs (DTLs) and ascending thin limbs (ATLs). Thin limbs were isolated either from 0.5 to 2.5 mm below the outer medulla (upper inner medulla) or from the terminal 2.5 mm of the inner medulla. Segment types were characterized on the basis of structural features and gene expression levels of the water channel aquaporin 1, which was high in the upper DTL (DTLupper), absent in the lower DTL (DTLlower), and absent in ATLs, and the Cl-(1) channel ClCK1, which was absent in DTLs and high in ATLs. DTLupper Pf was high (3,204.5 ± 450.3 µm/s), whereas DTLlower showed very little or no osmotic Pf (207.8 ± 241.3 µm/s). Munich-Wistar rat ATLs have previously been shown to exhibit no Pf. DTLupper Purea was 40.0 ± 7.3 × 10(-5) cm/s and much higher in DTLlower (203.8 ± 30.3 × 10(-5) cm/s), upper ATL (203.8 ± 35.7 × 10(-5) cm/s), and lower ATL (265.1 ± 49.8 × 10(-5) cm/s). Phloretin (0.25 mM) did not reduce DTLupper Purea, suggesting that Purea is not due to urea transporter UT-A2, which is expressed in short-loop DTLs and short portions of some inner medullary DTLs close to the outer medulla. In summary, Purea is similar in all segments having no osmotic Pf but is significantly lower in DTLupper, a segment having high osmotic Pf. These data are inconsistent with the passive mechanism as originally proposed.


Assuntos
Alça do Néfron/metabolismo , Ureia/metabolismo , Água/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , Alça do Néfron/anatomia & histologia , Masculino , Pressão Osmótica , Permeabilidade , Ratos , Técnicas de Cultura de Tecidos , Ureia/química , Água/química
10.
Am J Physiol Renal Physiol ; 305(5): F745-52, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23825077

RESUMO

Every collecting duct (CD) of the rat inner medulla is uniformly surrounded by about four abutting ascending vasa recta (AVR) running parallel to it. One or two ascending thin limbs (ATLs) lie between and parallel to each abutting AVR pair, opposite the CD. These structures form boundaries of axially running interstitial compartments. Viewed in transverse sections, these compartments appear as four interstitial nodal spaces (INSs) positioned symmetrically around each CD. The axially running compartments are segmented by interstitial cells spaced at regular intervals. The pairing of ATLs and CDs bounded by an abundant supply of AVR carrying reabsorbed water, NaCl, and urea make a strong argument that the mixing of NaCl and urea within the INSs and countercurrent flows play a critical role in generating the inner medullary osmotic gradient. The results of this study fully support that hypothesis. We quantified interactions of all structures comprising INSs along the corticopapillary axis for two rodent species, the Munich-Wistar rat and the kangaroo rat. The results showed remarkable similarities in the configurations of INSs, suggesting that the structural arrangement of INSs is a highly conserved architecture that plays a fundamental role in renal function. The number density of INSs along the corticopapillary axis directly correlated with a loop population that declines exponentially with distance below the outer medullary-inner medullary boundary. The axial configurations were consistent with discrete association between near-bend loop segments and INSs and with upper loop segments lying distant from INSs.


Assuntos
Medula Renal/ultraestrutura , Túbulos Renais Coletores/ultraestrutura , Animais , Dipodomys , Feminino , Medula Renal/metabolismo , Masculino , Ratos , Ratos Wistar
11.
Math Biosci ; 258: 44-56, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25223232

RESUMO

The urine formation and excretion system have long been of interest for mathematicians and physiologists to elucidate the obscurities within the process happens in renal tissue. In this study, a novel three-dimensional approach is utilized for modeling the urine concentrating mechanism in rat renal outer medulla which is essentially focused on demonstrating the significance of tubule's architecture revealed in anatomic studies and physiological literature. Since nephrons and vasculatures work interdependently through a highly structured arrangement in outer medulla which is dominated by vascular bundles, a detailed functional unit is proposed based on this specific configuration. Furthermore, due to relatively lesser influence of vasa recta on interstitial medullary osmolality and osmotic gradients as well as model structure simplicity, central core assumption is employed. The model equations are based on three spatial dimensional mass, momentum and species transport equations as well as standard expressions for solutes and water transmural transport. Our model can simulate preferential interactions between different tubules and it is shown that such interactions promote solute cycling and subsequently, enhance urine-concentrating capability. The numerical results are well consistent with tissue slice experiments and moreover, our model predicts more corticomedullary osmolality gradient in outer medulla than previous influential 1-D simulations.


Assuntos
Capacidade de Concentração Renal/fisiologia , Medula Renal/fisiologia , Modelos Biológicos , Animais , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa