Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Differentiation ; 129: 4-16, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35961887

RESUMO

Human gonadal development culminating in testicular differentiation is described through analysis of histologic sections derived from 33-day to 20-week human embryos/fetuses, focusing on early development (4-8 weeks of gestation). Our study updates the comprehensive studies of Felix (1912), van Wagenen and Simpson (1965), and Juric-Lekic et al. (2013), which were published in books and thus are unsearchable via PubMed. Human gonads develop from the germinal ridge, a thickening of coelomic epithelium on the medial side of the urogenital ridge. The bilateral urogenital ridges contain elements of the mesonephric kidney, namely the mesonephric duct, mesonephric tubules, and mesonephric glomeruli. The germinal ridge, into which primordial germ cells migrate, is initially recognized as a thickening of coelomic epithelium on the urogenital ridge late in the 4th week of gestation. Subsequently, in the 5th week of gestation, a dense mesenchyme develops sub-adjacent to the epithelium of the germinal ridge, and together these elements bulge into the coelomic cavity forming bilateral longitudinal ridges attached to the urogenital ridges. During development, primordial cells migrate into the germinal ridge and subsequently into testicular cords that form within the featureless dense mesenchyme of the germinal ridge at 6-8 weeks of gestation. The initial low density of testicular cords seen at 8 weeks remodels into a dense array of testicular cords surrounded by α-actin-positive myoid cells during the second trimester. Human testicular development shares many features with that of mice being derived from 4 elements: coelomic epithelium, sub-adjacent mesenchyme, primordial germ cells, and the mesonephros.


Assuntos
Gônadas , Testículo , Masculino , Humanos , Animais , Camundongos , Mesonefro , Ductos Mesonéfricos , Embrião de Mamíferos
2.
Dev Dyn ; 251(7): 1223-1243, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35247020

RESUMO

BACKGROUND: Alternative splicing provides a broad strategy to amplify the genome. Yet how alternative splicing influences neurodevelopment or indeed which variants are translated at developmental choice points remains poorly explored. Here we focused on a gene important for neurodevelopment, the Lim homeodomain transcription factor, Lhx9. Lhx9 has two noncanonical splice variants, Lhx9a and Lhx9b which compared with the canonical variant Lhx9c have a truncated homeodomain and an alternative C-terminal sequence, suggesting that, if translated, these variants could differently impact on cellular function. RESULTS: We created a unique antibody tool designed to selectively detect noncanonical Lhx9 variants (Lhx9ab) and used this to examine the protein expression dynamics in embryos. Lhx9ab variants were translated and dynamically expressed similarly between mouse and chicken at key developmental choice points in the spinal cord, limbs and urogenital ridge. Within the spinal cord, enrichment of Lhx9c vs Lhx9ab expression was observed during key migration and axonal projection choice points. CONCLUSIONS: These data support the notion that the expression dynamics between canonical and noncanonical Lhx9 variants could play an important role in spinal neuron maturation. More broadly, determining the temporal dynamics of alternative protein variants is a key entry point to understand how splicing influences developmental processes.


Assuntos
Proteínas com Homeodomínio LIM , Fatores de Transcrição , Animais , Galinhas , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Mutação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vertebrados/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa