Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Alzheimers Dement ; 20(2): 1201-1213, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37932910

RESUMO

INTRODUCTION: Cost-effective screening tools for vascular contributions to cognitive impairment and dementia (VCID) has significant implications. We evaluated non-imaging indicators of VCID using magnetic resonance imaging (MRI)-measured white matter (WM) damage and hypothesized that these indicators differ based on age. METHODS: In 745 participants from the Mayo Clinic Study of Aging (≥50 years of age) with serial WM assessments from diffusion MRI and fluid-attenuated inversion recovery (FLAIR)-MRI, we examined associations between baseline non-imaging indicators (demographics, vascular risk factors [VRFs], gait, behavioral, plasma glial fibrillary acidic protein [GFAP], and plasma neurofilament light chain [NfL]) and WM damage across three age tertiles. RESULTS: VRFs and gait were associated with diffusion changes even in low age strata. All measures (VRFs, gait, behavioral, plasma GFAP, plasma NfL) were associated with white matter hyperintensities (WMHs) but mainly in intermediate and high age strata. DISCUSSION: Non-imaging indicators of VCID were related to WM damage and may aid in screening participants and assessing outcomes for VCID. HIGHLIGHTS: Non-imaging indicators of VCID can aid in prediction of MRI-measured WM damage but their importance differed by age. Vascular risk and gait measures were associated with early VCID changes measured using diffusion MRI. Plasma markers explained variability in WMH across age strata. Most non-imaging measures explained variability in WMH and vascular WM scores in intermediate and older age groups. The framework developed here can be used to evaluate new non-imaging VCID indicators proposed in the future.


Assuntos
Disfunção Cognitiva , Demência Vascular , Substância Branca , Humanos , Idoso , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Disfunção Cognitiva/patologia , Envelhecimento/patologia , Demência Vascular/patologia
2.
J Neuroinflammation ; 20(1): 199, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658433

RESUMO

BACKGROUND: Epidemiological data suggests statins could reduce the risk of dementia, and more specifically, Alzheimer's disease (AD). Pre-clinical data suggests statins reduce the risk of dementia through their pleiotropic effects rather than their cholesterol lowering effects. While AD is a leading cause of dementia, it is frequently found co-morbidly with cerebral small vessel disease and other vascular contributions to cognitive impairment and dementia (VCID), which are another leading cause of dementia. In this study, we determined if atorvastatin ameliorated hyperhomocysteinemia (HHcy)-induced VCID. METHODS: Wild-type (C57Bl6/J) mice were placed on a diet to induce HHcy or a control diet each with or without atorvastatin for 14 weeks. Mice underwent novel object recognition testing before tissue collection. Plasma total cholesterol and total homocysteine as well as related metabolites were measured. Using qPCR and NanoString technology, we profiled glial cell-associated gene expression changes. Finally, microglial morphology, astrocyte end feet, and microhemorrhages were analyzed using histological methods. RESULTS: Atorvastatin treatment of HHcy in mice led to no changes in total cholesterol but decreases in total homocysteine in plasma. While HHcy decreased expression of many glial genes, atorvastatin rescued these gene changes, which mostly occurred in oligodendrocytes and microglia. Microglia in HHcy mice with atorvastatin were trending towards fewer processes compared to control with atorvastatin, but there were no atorvastatin effects on astrocyte end feet. While atorvastatin treatment was trending towards increasing the area of microhemorrhages in HHcy mice in the frontal cortex, it only slightly (non-significantly) reduced the number of microhemorrhages. Finally, atorvastatin treatment in HHcy mice led to improved cognition on the novel object recognition task. CONCLUSIONS: These data suggest that atorvastatin rescued cognitive changes induced by HHcy most likely through lowering plasma total homocysteine and rescuing gene expression changes rather than impacts on vascular integrity or microglial changes.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Demência Vascular , Inibidores de Hidroximetilglutaril-CoA Redutases , Hiper-Homocisteinemia , Animais , Camundongos , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Cognição , Homocisteína/toxicidade
3.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233223

RESUMO

S-equol, a metabolite of soy isoflavone daidzein transformed by the gut microbiome, is the most biologically potent among all soy isoflavones and their metabolites. Soy isoflavones are phytoestrogens and exert their actions through estrogen receptor-ß. Epidemiological studies in East Asia, where soy isoflavones are regularly consumed, show that dietary isoflavone intake is inversely associated with cognitive decline and dementia; however, randomized controlled trials of soy isoflavones in Western countries did not generally show their cognitive benefit. The discrepant results may be attributed to S-equol production capability; after consuming soy isoflavones, 40-70% of East Asians produce S-equol, whereas 20-30% of Westerners do. Recent observational and clinical studies in Japan show that S-equol but not soy isoflavones is inversely associated with multiple vascular pathologies, contributing to cognitive impairment and dementia, including arterial stiffness and white matter lesion volume. S-equol has better permeability to the blood-brain barrier than soy isoflavones, although their affinity to estrogen receptor-ß is similar. S-equol is also the most potent antioxidant among all known soy isoflavones. Although S-equol is available as a dietary supplement, no long-term trials in humans have examined the effect of S-equol supplementation on arterial stiffness, cerebrovascular disease, cognitive decline, or dementia.


Assuntos
Disfunção Cognitiva , Demência , Microbioma Gastrointestinal , Isoflavonas , Antioxidantes , Disfunção Cognitiva/prevenção & controle , Demência/prevenção & controle , Equol/metabolismo , Receptor beta de Estrogênio , Humanos , Isoflavonas/metabolismo , Isoflavonas/farmacologia , Fitoestrógenos/metabolismo , Receptores de Estrogênio
4.
J Neuroinflammation ; 18(1): 236, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654436

RESUMO

BACKGROUND: Decreased cerebral blood flow and systemic inflammation during heart failure (HF) increase the risk for vascular contributions to cognitive impairment and dementia (VCID) and Alzheimer disease-related dementias (ADRD). We previously demonstrated that PNA5, a novel glycosylated angiotensin 1-7 (Ang-(1-7)) Mas receptor (MasR) agonist peptide, is an effective therapy to rescue cognitive impairment in our preclinical model of VCID. Neurofilament light (NfL) protein concentration is correlated with cognitive impairment and elevated in neurodegenerative diseases, hypoxic brain injury, and cardiac disease. The goal of the present study was to determine (1) if treatment with Ang-(1-7)/MasR agonists can rescue cognitive impairment and decrease VCID-induced increases in NfL levels as compared to HF-saline treated mice and, (2) if NfL levels correlate with measures of cognitive function and brain cytokines in our VCID model. METHODS: VCID was induced in C57BL/6 male mice via myocardial infarction (MI). At 5 weeks post-MI, mice were treated with daily subcutaneous injections for 24 days, 5 weeks after MI, with PNA5 or angiotensin 1-7 (500 microg/kg/day or 50 microg/kg/day) or saline (n = 15/group). Following the 24-day treatment protocol, cognitive function was assessed using the Novel Object Recognition (NOR) test. Cardiac function was measured by echocardiography and plasma concentrations of NfL were quantified using a Quanterix Simoa assay. Brain and circulating cytokine levels were determined with a MILLIPLEX MAP Mouse High Sensitivity Multiplex Immunoassay. Treatment groups were compared via ANOVA, significance was set at p < 0.05. RESULTS: Treatment with Ang-(1-7)/MasR agonists reversed VCID-induced cognitive impairment and significantly decreased NfL levels in our mouse model of VCID as compared to HF-saline treated mice. Further, NfL levels were significantly negatively correlated with cognitive scores and the concentrations of multiple pleiotropic cytokines in the brain. CONCLUSIONS: These data show that treatment with Ang-(1-7)/MasR agonists rescues cognitive impairment and decreases plasma NfL relative to HF-saline-treated animals in our VCID mouse model. Further, levels of NfL are significantly negatively correlated with cognitive function and with several brain cytokine concentrations. Based on these preclinical findings, we propose that circulating NfL might be a candidate for a prognostic biomarker for VCID and may also serve as a pharmacodynamic/response biomarker for therapeutic target engagement.


Assuntos
Angiotensina I/agonistas , Angiotensina I/metabolismo , Disfunção Cognitiva/metabolismo , Citocinas/metabolismo , Demência Vascular/metabolismo , Proteínas de Neurofilamentos/metabolismo , Fragmentos de Peptídeos/agonistas , Fragmentos de Peptídeos/metabolismo , Angiotensina I/uso terapêutico , Animais , Biomarcadores/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/patologia , Demência Vascular/tratamento farmacológico , Demência Vascular/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/uso terapêutico , Prognóstico , Volume Sistólico/fisiologia
5.
FASEB J ; 34(11): 15108-15122, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32939871

RESUMO

Mid-life metabolic disease (ie, obesity, diabetes, and prediabetes) causes vascular dysfunction and is a risk factor for vascular contributions to cognitive impairment and dementia (VCID), particularly in women. Using middle-aged mice, we modeled metabolic disease (obesity/prediabetes) via chronic high-fat (HF) diet and modeled VCID via unilateral common carotid artery occlusion. VCID impaired spatial memory in both sexes, but episodic-like memory in females only. HF diet caused greater weight gain and glucose intolerance in middle-aged females than males. HF diet alone impaired episodic-like memory in both sexes, but spatial memory in females only. Finally, the combination of HF diet and VCID elicited cognitive impairments in all tests, in both sexes. Sex-specific correlations were found between metabolic outcomes and memory. Notably, both visceral fat and the pro-inflammatory cytokine tumor necrosis factor alpha correlated with spatial memory deficits in middle-aged females, but not males. Overall, our data show that HF diet causes greater metabolic impairment and a wider array of cognitive deficits in middle-aged females than males. The combination of HF diet with VCID elicits deficits across multiple cognitive domains in both sexes. Our data are in line with clinical data, which shows that mid-life metabolic disease increases VCID risk, particularly in females.


Assuntos
Disfunção Cognitiva/etiologia , Demência Vascular/complicações , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Memória Espacial , Animais , Disfunção Cognitiva/patologia , Feminino , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais
6.
Alzheimers Dement ; 17(4): 716-725, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480157

RESUMO

The MarkVCID consortium was formed under cooperative agreements with the National Institute of Neurologic Diseases and Stroke (NINDS) and National Institute on Aging (NIA) in 2016 with the goals of developing and validating biomarkers for the cerebral small vessel diseases associated with the vascular contributions to cognitive impairment and dementia (VCID). Rigorously validated biomarkers have consistently been identified as crucial for multicenter studies to identify effective strategies to prevent and treat VCID, specifically to detect increased VCID risk, diagnose the presence of small vessel disease and its subtypes, assess prognosis for disease progression or response to treatment, demonstrate target engagement or mechanism of action for candidate interventions, and monitor disease progression during treatment. The seven project sites and central coordinating center comprising MarkVCID, working with NINDS and NIA, identified a panel of 11 candidate fluid- and neuroimaging-based biomarker kits and established harmonized multicenter study protocols (see companion paper "MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols" for full details). Here we describe the MarkVCID neuroimaging protocols with specific focus on validating their application to future multicenter trials. MarkVCID procedures for participant enrollment; clinical and cognitive evaluation; and collection, handling, and instrumental validation of fluid samples are described in detail in a companion paper. Magnetic resonance imaging (MRI) has long served as the neuroimaging modality of choice for cerebral small vessel disease and VCID because of its sensitivity to a wide range of brain properties, including small structural lesions, connectivity, and cerebrovascular physiology. Despite MRI's widespread use in the VCID field, there have been relatively scant data validating the repeatability and reproducibility of MRI-based biomarkers across raters, scanner types, and time intervals (collectively defined as instrumental validity). The MRI protocols described here address the core MRI sequences for assessing cerebral small vessel disease in future research studies, specific sequence parameters for use across various research scanner types, and rigorous procedures for determining instrumental validity. Another candidate neuroimaging modality considered by MarkVCID is optical coherence tomography angiography (OCTA), a non-invasive technique for directly visualizing retinal capillaries as a marker of the cerebral capillaries. OCTA has theoretical promise as a unique opportunity to visualize small vessels derived from the cerebral circulation, but at a considerably earlier stage of development than MRI. The additional OCTA protocols described here address procedures for determining OCTA instrumental validity, evaluating sources of variability such as pupil dilation, and handling data to maintain participant privacy. MRI protocol and instrumental validation The core sequences selected for the MarkVCID MRI protocol are three-dimensional T1-weighted multi-echo magnetization-prepared rapid-acquisition-of-gradient-echo (ME-MPRAGE), three-dimensional T2-weighted fast spin echo fluid-attenuated-inversion-recovery (FLAIR), two-dimensional diffusion-weighted spin-echo echo-planar imaging (DWI), three-dimensional T2*-weighted multi-echo gradient echo (3D-GRE), three-dimensional T2 -weighted fast spin-echo imaging (T2w), and two-dimensional T2*-weighted gradient echo echo-planar blood-oxygenation-level-dependent imaging with brief periods of CO2 inhalation (BOLD-CVR). Harmonized parameters for each of these core sequences were developed for four 3 Tesla MRI scanner models in widespread use at academic medical centers. MarkVCID project sites are trained and certified for their instantiation of the consortium MRI protocols. Sites are required to perform image quality checks every 2 months using the Alzheimer's Disease Neuroimaging Initiative phantom. Instrumental validation for MarkVCID MRI-based biomarkers is operationally defined as inter-rater reliability, test-retest repeatability, and inter-scanner reproducibility. Assessments of these instrumental properties are performed on individuals representing a range of cerebral small vessel disease from mild to severe. Inter-rater reliability is determined by distribution of an independent dataset of MRI scans to each analysis site. Test-retest repeatability is determined by repeat MRI scans performed on individual participants on a single MRI scanner after a short (1- to 14-day) interval. Inter-scanner reproducibility is determined by repeat MRI scans performed on individuals performed across four MRI scanner models. OCTA protocol and instrumental validation The MarkVCID OCTA protocol uses a commercially available, Food and Drug Administration-approved OCTA apparatus. Imaging is performed on one dilated and one undilated eye to assess the need for dilation. Scans are performed in quadruplicate. MarkVCID project sites participating in OCTA validation are trained and certified by this biomarker's lead investigator. Inter-rater reliability for OCTA is assessed by distribution of OCTA datasets to each analysis site. Test-retest repeatability is assessed by repeat OCTA imaging on individuals on the same day as their baseline OCTA and a different-day repeat session after a short (1- to 14-day) interval. Methods were developed to allow the OCTA data to be de-identified by the sites before transmission to the central data management system. The MarkVCID neuroimaging protocols, like the other MarkVCID procedures, are designed to allow translation to multicenter trials and as a template for outside groups to generate directly comparable neuroimaging data. The MarkVCID neuroimaging protocols are available to the biomedical community and intended to be shared. In addition to the instrumental validation procedures described here, each of the neuroimaging MarkVCID kits will undergo biological validation to determine its ability to measure important aspects of VCID such as cognitive function. The analytic methods for the neuroimaging-based kits and the results of these validation studies will be published separately. The results will ultimately determine the neuroimaging kits' potential usefulness for multicenter interventional trials in small vessel disease-related VCID.


Assuntos
Biomarcadores , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Neuroimagem/normas , Idoso , Angiografia , Encéfalo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Tomografia de Coerência Óptica
7.
Alzheimers Dement ; 17(4): 704-715, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480172

RESUMO

The concept of vascular contributions to cognitive impairment and dementia (VCID) derives from more than two decades of research indicating that (1) most older individuals with cognitive impairment have post mortem evidence of multiple contributing pathologies and (2) along with the preeminent role of Alzheimer's disease (AD) pathology, cerebrovascular disease accounts for a substantial proportion of this contribution. Contributing cerebrovascular processes include both overt strokes caused by etiologies such as large vessel occlusion, cardioembolism, and embolic infarcts of unknown source, and frequently asymptomatic brain injuries caused by diseases of the small cerebral vessels. Cerebral small vessel diseases such as arteriolosclerosis and cerebral amyloid angiopathy, when present at moderate or greater pathologic severity, are independently associated with worse cognitive performance and greater likelihood of dementia, particularly in combination with AD and other neurodegenerative pathologies. Based on this evidence, the US National Alzheimer's Project Act explicitly authorized accelerated research in vascular and mixed dementia along with frontotemporal and Lewy body dementia and AD itself. Biomarker development has been consistently identified as a key step toward translating scientific advances in VCID into effective prevention and treatment strategies. Validated biomarkers can serve a range of purposes in trials of candidate interventions, including (1) identifying individuals at increased VCID risk, (2) diagnosing the presence of cerebral small vessel disease or specific small vessel pathologies, (3) stratifying study participants according to their prognosis for VCID progression or treatment response, (4) demonstrating an intervention's target engagement or pharmacodynamic mechanism of action, and (5) monitoring disease progression during treatment. Effective biomarkers allow academic and industry investigators to advance promising interventions at early stages of development and discard interventions with low success likelihood. The MarkVCID consortium was formed in 2016 with the goal of developing and validating fluid- and imaging-based biomarkers for the cerebral small vessel diseases associated with VCID. MarkVCID consists of seven project sites and a central coordinating center, working with the National Institute of Neurologic Diseases and Stroke and National Institute on Aging under cooperative agreements. Through an internal selection process, MarkVCID has identified a panel of 11 candidate biomarker "kits" (consisting of the biomarker measure and the clinical and cognitive data used to validate it) and established a range of harmonized procedures and protocols for participant enrollment, clinical and cognitive evaluation, collection and handling of fluid samples, acquisition of neuroimaging studies, and biomarker validation. The overarching goal of these protocols is to generate rigorous validating data that could be used by investigators throughout the research community in selecting and applying biomarkers to multi-site VCID trials. Key features of MarkVCID participant enrollment, clinical/cognitive testing, and fluid biomarker procedures are summarized here, with full details in the following text, tables, and supplemental material, and a description of the MarkVCID imaging biomarker procedures in a companion paper, "MarkVCID Cerebral small vessel consortium: II. Neuroimaging protocols." The procedures described here address a range of challenges in MarkVCID's design, notably: (1) acquiring all data under informed consent and enrollment procedures that allow unlimited sharing and open-ended analyses without compromising participant privacy rights; (2) acquiring the data in a sufficiently wide range of study participants to allow assessment of candidate biomarkers across the various patient groups who might ultimately be targeted in VCID clinical trials; (3) defining a common dataset of clinical and cognitive elements that contains all the key outcome markers and covariates for VCID studies and is realistically obtainable during a practical study visit; (4) instituting best fluid-handling practices for minimizing avoidable sources of variability; and (5) establishing rigorous procedures for testing the reliability of candidate fluid-based biomarkers across replicates, assay runs, sites, and time intervals (collectively defined as the biomarker's instrumental validity). Participant Enrollment Project sites enroll diverse study cohorts using site-specific inclusion and exclusion criteria so as to provide generalizable validation data across a range of cognitive statuses, risk factor profiles, small vessel disease severities, and racial/ethnic characteristics representative of the diverse patient groups that might be enrolled in a future VCID trial. MarkVCID project sites include both prospectively enrolling centers and centers providing extant data and samples from preexisting community- and population-based studies. With approval of local institutional review boards, all sites incorporate MarkVCID consensus language into their study documents and informed consent agreements. The consensus language asks prospectively enrolled participants to consent to unrestricted access to their data and samples for research analysis within and outside MarkVCID. The data are transferred and stored as a de-identified dataset as defined by the Health Insurance Portability and Accountability Act Privacy Rule. Similar human subject protection and informed consent language serve as the basis for MarkVCID Research Agreements that act as contracts and data/biospecimen sharing agreements across the consortium. Clinical and Cognitive Data Clinical and cognitive data are collected across prospectively enrolling project sites using common MarkVCID instruments. The clinical data elements are modified from study protocols already in use such as the Alzheimer's Disease Center program Uniform Data Set Version 3 (UDS3), with additional focus on VCID-related items such as prior stroke and cardiovascular disease, vascular risk factors, focal neurologic findings, and blood testing for vascular risk markers and kidney function including hemoglobin A1c, cholesterol subtypes, triglycerides, and creatinine. Cognitive assessments and rating instruments include the Clinical Dementia Rating Scale, Geriatric Depression Scale, and most of the UDS3 neuropsychological battery. The cognitive testing requires ≈60 to 90 minutes. Study staff at the prospectively recruiting sites undergo formalized training in all measures and review of their first three UDS3 administrations by the coordinating center. Collection and Handling of Fluid Samples Fluid sample types collected for MarkVCID biomarker kits are serum, ethylenediaminetetraacetic acid-plasma, platelet-poor plasma, and cerebrospinal fluid (CSF) with additional collection of packed cells to allow future DNA extraction and analyses. MarkVCID fluid guidelines to minimize variability include fasting morning fluid collections, rapid processing, standardized handling and storage, and avoidance of CSF contact with polystyrene. Instrumental Validation for Fluid-Based Biomarkers Instrumental validation of MarkVCID fluid-based biomarkers is operationally defined as determination of intra-plate and inter-plate repeatability, inter-site reproducibility, and test-retest repeatability. MarkVCID study participants both with and without advanced small vessel disease are selected for these determinations to assess instrumental validity across the full biomarker assay range. Intra- and inter-plate repeatability is determined by repeat assays of single split fluid samples performed at individual sites. Inter-site reproducibility is determined by assays of split samples distributed to multiple sites. Test-retest repeatability is determined by assay of three samples acquired from the same individual, collected at least 5 days apart over a 30-day period and assayed on a single plate. The MarkVCID protocols are designed to allow direct translation of the biomarker validation results to multicenter trials. They also provide a template for outside groups to perform analyses using identical methods and therefore allow direct comparison of results across studies and centers. All MarkVCID protocols are available to the biomedical community and intended to be shared. In addition to the instrumental validation procedures described here, each of the MarkVCID kits will undergo biological validation to determine whether the candidate biomarker measures important aspects of VCID such as cognitive function. Analytic methods and results of these validation studies for the 11 MarkVCID biomarker kits will be published separately. The results of this rigorous validation process will ultimately determine each kit's potential usefulness for multicenter interventional trials aimed at preventing or treating small vessel disease related VCID.


Assuntos
Biomarcadores , Doenças de Pequenos Vasos Cerebrais/diagnóstico , Disfunção Cognitiva/diagnóstico , Seleção de Pacientes , Projetos de Pesquisa , Idoso , Demência/etiologia , Progressão da Doença , Feminino , Humanos , Disseminação de Informação , Masculino , Testes Neuropsicológicos , Acidente Vascular Cerebral/etiologia
8.
J Transl Med ; 18(1): 277, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641073

RESUMO

BACKGROUND: Brain aging is a major risk factor in the progression of cognitive diseases including Alzheimer's disease (AD) and vascular dementia. We investigated a mouse model of brain aging up to 24 months old (mo). METHODS: A high field (11.7T) MRI protocol was developed to characterize specific features of brain aging including the presence of cerebral microbleeds (CMBs), morphology of grey and white matter, and tissue diffusion properties. Mice were selected from age categories of either young (3 mo), middle-aged (18 mo), or old (24 mo) and fed normal chow over the duration of the study. Mice were imaged in vivo with multimodal MRI, including conventional T2-weighted (T2W) and T2*-weighted (T2*W) imaging, followed by ex vivo diffusion-weighted imaging (DWI) and T2*W MR-microscopy to enhance the detection of microstructural features. RESULTS: Structural changes observed in the mouse brain with aging included reduced cortical grey matter volume and enlargement of the brain ventricles. A remarkable age-related change in the brains was the development of CMBs found starting at 18 mo and increasing in total volume at 24 mo, primarily in the thalamus. CMBs presence was confirmed with high resolution ex vivo MRI and histology. DWI detected further brain tissue changes in the aged mice including reduced fractional anisotropy, increased radial diffusion, increased mean diffusion, and changes in the white matter fibers visualized by color-coded tractography, including around a large cortical CMB. CONCLUSIONS: The mouse is a valuable model of age-related vascular contributions to cognitive impairment and dementia (VCID). In composite, these methods and results reveal brain aging in older mice as a multifactorial process including CMBs and tissue diffusion alterations that can be well characterized by high field MRI.


Assuntos
Encéfalo , Hemorragia Cerebral , Animais , Encéfalo/diagnóstico por imagem , Hemorragia Cerebral/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Substância Cinzenta , Imageamento por Ressonância Magnética , Camundongos
9.
Alzheimers Dement ; 16(12): 1714-1733, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33030307

RESUMO

Vascular contributions to cognitive impairment and dementia (VCID) are characterized by the aging neurovascular unit being confronted with and failing to cope with biological insults due to systemic and cerebral vascular disease, proteinopathy including Alzheimer's biology, metabolic disease, or immune response, resulting in cognitive decline. This report summarizes the discussion and recommendations from a working group convened by the National Heart, Lung, and Blood Institute and the National Institute of Neurological Disorders and Stroke to evaluate the state of the field in VCID research, identify research priorities, and foster collaborations. As discussed in this report, advances in understanding the biological mechanisms of VCID across the wide spectrum of pathologies, chronic systemic comorbidities, and other risk factors may lead to potential prevention and new treatment strategies to decrease the burden of dementia. Better understanding of the social determinants of health that affect risks for both vascular disease and VCID could provide insight into strategies to reduce racial and ethnic disparities in VCID.


Assuntos
Encéfalo/fisiopatologia , Transtornos Cerebrovasculares/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Demência Vascular/fisiopatologia , Educação , Envelhecimento/fisiologia , Biomarcadores , Humanos , National Heart, Lung, and Blood Institute (U.S.) , National Institute of Neurological Disorders and Stroke (USA) , Estados Unidos
10.
Am J Physiol Heart Circ Physiol ; 316(5): H1124-H1140, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30848677

RESUMO

There has been an increasing appreciation of the role of vascular contributions to cognitive impairment and dementia (VCID) associated with old age. Strong preclinical and translational evidence links age-related dysfunction and structural alterations of the cerebral arteries, arterioles, and capillaries to the pathogenesis of many types of dementia in the elderly, including Alzheimer's disease. The low-pressure, low-velocity, and large-volume venous circulation of the brain also plays critical roles in the maintenance of homeostasis in the central nervous system. Despite its physiological importance, the role of age-related alterations of the brain venous circulation in the pathogenesis of vascular cognitive impairment and dementia is much less understood. This overview discusses the role of cerebral veins in the pathogenesis of VCID. Pathophysiological consequences of age-related dysregulation of the cerebral venous circulation are explored, including blood-brain barrier disruption, neuroinflammation, exacerbation of neurodegeneration, development of cerebral microhemorrhages of venous origin, altered production of cerebrospinal fluid, impaired function of the glymphatics system, dysregulation of cerebral blood flow, and ischemic neuronal dysfunction and damage. Understanding the age-related functional and phenotypic alterations of the cerebral venous circulation is critical for developing new preventive, diagnostic, and therapeutic approaches to preserve brain health in older individuals.


Assuntos
Veias Cerebrais/fisiopatologia , Circulação Cerebrovascular , Cognição , Envelhecimento Cognitivo/psicologia , Disfunção Cognitiva/fisiopatologia , Demência Vascular/fisiopatologia , Fatores Etários , Animais , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/psicologia , Demência Vascular/líquido cefalorraquidiano , Demência Vascular/etiologia , Demência Vascular/psicologia , Humanos , Fatores de Risco
11.
J Neuroinflammation ; 16(1): 284, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888650

RESUMO

BACKGROUND: Vascular contributions to cognitive impairment and dementia (VCID) are the second leading cause of dementia behind only Alzheimer's disease (AD); however, VCID is commonly found as a co-morbidity with sporadic AD. We have previously established a mouse model of VCID by inducing hyperhomocysteinemia in both wild-type and amyloid depositing mice. While we have shown the time course of neuropathological events in the wild-type mice with hyperhomocysteinemia, the effect of amyloid deposition on this time course remains unknown; therefore, in this study, we determined the time course of neuropathological changes in our mouse model of hyperhomocysteinemia-induced VCID in amyloid depositing mice. METHODS: APP/PS1 mice were placed on either a diet deficient in folate and vitamins B6 and B12 and enriched in methionine to induce hyperhomocysteinemia or a control diet for 2, 6, 10, 14, or 18 weeks. Immunohistochemistry and gene expression analysis were used to determine neuroinflammatory changes. Microhemorrhages and amyloid deposition were analyzed using histology and, finally, behavior was assessed using the 2-day radial arm water maze. RESULTS: Neuroinflammation, specifically a pro-inflammatory phenotype, was the first pathological change to occur. Specifically, we see a significant increase in gene expression of tumor necrosis factor alpha, interleukin 1 beta, interleukin 6, and interleukin 12a by 6 weeks. This was followed by cognitive deficits starting at 10 weeks. Finally, there is a significant increase in the number of microhemorrhages at 14 weeks on diet as well as redistribution of amyloid from the parenchyma to the vasculature. CONCLUSIONS: The time course of these pathologies points to neuroinflammation as the initial, key player in homocysteine-induced VCID co-morbid with amyloid deposition and provides a possible therapeutic target and time points.


Assuntos
Encéfalo/patologia , Transtornos Cerebrovasculares/patologia , Inflamação/patologia , Placa Amiloide/patologia , Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Transtornos Cerebrovasculares/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Feminino , Humanos , Hiper-Homocisteinemia/complicações , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores de Tempo , Transcriptoma
12.
Biochim Biophys Acta ; 1862(5): 975-82, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26704178

RESUMO

BACKGROUND: Vascular contributions to cognitive impairment and dementia (VCID) is a complex form of dementia, combining aspects of vascular disease and other forms of dementia, such as Alzheimer's disease. VCID encompasses a wide spectrum of cerebrovascular-driven cognitive impairment, from mild cognitive impairment to fully developed dementia. This disease state is further complicated by metabolic disorders, such as type 2 diabetes and hypertension, and lifestyle factors, like obesity and high fat diets. SCOPE OF REVIEW: This manuscript is meant to both define VCID and review the in vitro and in vivo models of the disease state. This includes in vitro models of the neurovascular unit, models of chronic cerebral hypoperfusion, animals with NOTCH3 mutations as a model of small vessel disease, large animals with cerebral amyloid angiopathy (CAA), and animal models of mixed dementia. MAJOR CONCLUSIONS: Synthetic microvessels are a promising technique to study the neurovascular unit and canines, despite the cost, are an excellent model to study CAA. While there are several good models of individual aspects of VCID, the heterogeneity of the disease states prevents them from being a model of all aspects of the disease. Therefore, VCID needs to be further defined into disease states that exist within this umbrella term. This includes specific guidelines for stroke counts and stroke locations and further categorization of overlapping cerebrovascular and AD pathologies that contribute to dementia. This will allow for better models and a more thorough understanding of how vascular disease contributes to dementia. GENERAL SIGNIFICANCE: VCID is the second most common form of dementia and is expected to increase in coming years. The heterogeneity of VCID makes it difficult to study, but without better definitions and models, VCID presents a major public health problem for our aging population. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia, edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.


Assuntos
Doença de Alzheimer/patologia , Angiopatia Amiloide Cerebral/patologia , Demência Vascular/patologia , Doença de Alzheimer/fisiopatologia , Animais , Velocidade do Fluxo Sanguíneo , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Técnicas de Cultura de Células/métodos , Angiopatia Amiloide Cerebral/fisiopatologia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Demência Vascular/fisiopatologia , Modelos Animais de Doenças , Humanos , Acoplamento Neurovascular
13.
Cell Mol Neurobiol ; 36(2): 281-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27095366

RESUMO

The World Health Organization reports that 47.5 million people are affected by dementia worldwide. With aging populations and 7.7 million new cases each year, the burden of illness due to dementia approaches crisis proportions. Despite significant advances in our understanding of the biology of Alzheimer's disease (AD), the leading dementia diagnosis, the actual causes of dementia in affected individuals are unknown except for rare fully penetrant genetic forms. Evidence from epidemiology and pathology studies indicates that damage to the vascular system is associated with an increased risk of many types of dementia. Both Alzheimer's pathology and cerebrovascular disease increase with age. How AD affects small blood vessel function and how vascular dysfunction contributes to the molecular pathology of Alzheimer's are areas of intense research. The science of vascular contributions to cognitive impairment and dementia (VCID) integrates diverse aspects of biology and incorporates the roles of multiple cell types that support the function of neural tissue. Because of the proven ability to prevent and treat cardiovascular disease and hypertension with population benefits for heart and stroke outcomes, it is proposed that understanding and targeting the biological mechanisms of VCID can have a similarly positive impact on public health.


Assuntos
Disfunção Cognitiva/patologia , Demência Vascular/patologia , Pesquisa , Animais , Efeitos Psicossociais da Doença , Demência Vascular/diagnóstico , Humanos , Modelos Biológicos
14.
J Alzheimers Dis ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39121129

RESUMO

Background: Exposure to lead (Pb) is a major public health problem that could occur through contaminated soil, air, food, or water, either during the course of everyday life, or while working in hazardous occupations. Although Pb has long been known as a neurodevelopmental toxicant in children, a recent and growing body of epidemiological research indicates that cumulative, low-level Pb exposure likely drives age-related neurologic dysfunction in adults. Environmental Pb exposure in adulthood has been linked to risk of late-onset Alzheimer's disease (AD) and dementia. Objective: Although the biological mechanism underlying this link is unknown, it has been proposed that Pb exposure may increase the risk of AD via altering the expression of AD-related genes and, possibly, by activating the molecular pathways underlying AD-related pathology. Methods: We investigated Pb exposure using a line of genetically modified mice with AD-causing knock-in mutations in the amyloid precursor protein and presenilin 1 (APPΔNL/ΔNL x PS1P264L/P264L) that had been crossed with Leprdb/db mice to impart vulnerability to vascular pathology. Results: Our data show that although Pb exposure in adult mice impairs cognitive function, this effect is not related to either an increase in amyloid pathology or to changes in the expression of common AD-related genes. Pb exposure also caused a significant increase in blood pressure, a well known effect of Pb. Interestingly, although the increase in blood pressure was unrelated to genotype, only mice that carried AD-related mutations developed cognitive dysfunction, in spite of showing no significant change in cerebrovascular pathology. Conclusions: These results raise the possibility that the increased risk of dementia associated with Pb exposure in adults may be tied to its subsequent interaction with either pre-existing or developing AD-related neuropathology.

15.
Neuroimage Clin ; 38: 103373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36933348

RESUMO

BACKGROUND: Alzheimer's disease (AD) and vascular contributions to cognitive impairment and dementia (VCID) pathologies coexist in patients with cognitive impairment. Abnormal amyloid beta (Aß) deposition is the hallmark pathologic biomarker for AD. Neuroinflammation may be a pathophysiological mechanism in both AD and VCID. In this study, we aimed to understand the role of neuroinflammation and Aß deposition in white matter hyperintensities (WMH) progression and cognitive decline over a decade in patients with mixed AD and VCID pathologies. METHODS: Twenty-four elderly participants (median [interquartile range] age 78 [64.8, 83] years old, 14 female) were recruited from the Knight Alzheimer Disease Research Center. 11C-PK11195 standard uptake value ratio (SUVR) and 11C-PiB mean cortical binding potential (MCBP) were used to evaluate neuroinflammation and Aß deposition in-vivo, respectively. Fluid-attenuated inversion recovery MR images were acquired to obtain baseline WMH volume and its progression over 11.5 years. Composite cognitive scores (global, processing speed and memory) were computed at baseline and follow-up over 7.5 years. Multiple linear regression models evaluated the association between PET biomarkers (11C-PK11195 SUVR and 11C-PiB MCBP) and baseline WMH volume and cognitive function. Moreover, linear mixed-effects models evaluated whether PET biomarkers predicted greater WMH progression or cognitive decline over a decade. RESULTS: Fifteen participants (62.5%) had mixed AD (positive PiB) and VCID (at least one vascular risk factor) pathologies. Elevated 11C-PK11195 SUVR, but not 11C-PiB MCBP, was associated with greater baseline WMH volume and predicted greater WMH progression. Elevated 11C-PiB MCBP was associated with baseline memory and global cognition. Elevated 11C-PK11195 SUVR and elevated 11C-PiB MCBP independently predicted greater global cognition and processing speed declines. No association was found between 11C-PK11195 SUVR and 11C-PiB MCBP. CONCLUSIONS: Neuroinflammation and Aß deposition may represent two distinct pathophysiological pathways, and both independently contributed to the progression of cognitive impairment in mixed AD and VCID pathologies. Neuroinflammation, but not Aß deposition, contributed to WMH volume and progression.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Demência Vascular , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Demência Vascular/diagnóstico por imagem , Doenças Neuroinflamatórias , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Biomarcadores , Tomografia por Emissão de Pósitrons
16.
Biol Sex Differ ; 14(1): 31, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208759

RESUMO

BACKGROUND: Damage to the cerebral vasculature can lead to vascular contributions to cognitive impairment and dementia (VCID). A reduction in blood flow to the brain leads to neuropathology, including neuroinflammation and white matter lesions that are a hallmark of VCID. Mid-life metabolic disease (obesity, prediabetes, or diabetes) is a risk factor for VCID which may be sex-dependent (female bias). METHODS: We compared the effects of mid-life metabolic disease between males and females in a chronic cerebral hypoperfusion mouse model of VCID. C57BL/6J mice were fed a control or high fat (HF) diet starting at ~ 8.5 months of age. Three months after diet initiation, sham or unilateral carotid artery occlusion surgery (VCID model) was performed. Three months later, mice underwent behavior testing and brains were collected to assess pathology. RESULTS: We have previously shown that in this VCID model, HF diet causes greater metabolic impairment and a wider array of cognitive deficits in females compared to males. Here, we report on sex differences in the underlying neuropathology, specifically white matter changes and neuroinflammation in several areas of the brain. White matter was negatively impacted by VCID in males and HF diet in females, with greater metabolic impairment correlating with less myelin markers in females only. High fat diet led to an increase in microglia activation in males but not in females. Further, HF diet led to a decrease in proinflammatory cytokines and pro-resolving mediator mRNA expression in females but not males. CONCLUSIONS: The current study adds to our understanding of sex differences in underlying neuropathology of VCID in the presence of a common risk factor (obesity/prediabetes). This information is crucial for the development of effective, sex-specific therapeutic interventions for VCID.


Reduced blood flow to the brain resulting from damaged blood vessels can lead to vascular dementia. Neuroinflammation and white matter damage are characteristics of vascular dementia. Middle-age is a time when obesity and prediabetes can increase risk for vascular dementia. This increase in risk is greater for women. A high fat diet causes obesity and prediabetes in mice. We compared the effects of diet-induced obesity in middle-age between males and females in a mouse model of vascular dementia. We have previously shown that a high fat diet causes greater obesity and prediabetes and a wider array of learning and memory problems in females compared to males. Here, we report on sex differences in the damage to the brain. White matter was negatively impacted by vascular dementia in males and high fat diet in females, with more severe prediabetes correlating with less white matter markers in females only. High fat diet led to an increase in activation of microglia (immune cells in the brain) in males but not in females. High fat diet also led to a decrease in pro-inflammatory and pro-resolving mediators expression in females but not males. The current study adds to our understanding of sex differences in underlying damage to the brain caused by vascular dementia in the presence of common risk factors (obesity and prediabetes). This information is needed for the development of effective, sex-specific treatments for vascular dementia.


Assuntos
Disfunção Cognitiva , Demência Vascular , Estado Pré-Diabético , Feminino , Camundongos , Masculino , Animais , Dieta Hiperlipídica , Doenças Neuroinflamatórias , Caracteres Sexuais , Estado Pré-Diabético/complicações , Camundongos Endogâmicos C57BL , Demência Vascular/complicações , Demência Vascular/patologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Obesidade
17.
Alzheimers Dement (N Y) ; 9(3): e12412, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37766832

RESUMO

Alzheimer's disease and related dementias (ADRD) remain a major health-care challenge with few licensed medications. Repurposing existing drugs may afford prevention and treatment. Phosphodiesterase-5 (PDE5) is widely expressed in vascular myocytes, neurons, and glia. Potent, selective, Food and Drug Administration-approved PDE5 inhibitors are already in clinical use (sildenafil, vardenafil, tadalafil) as vasodilators in erectile dysfunction and pulmonary arterial hypertension. Animal data indicate cognitive benefits of PDE5 inhibitors. In humans, real-world patient data suggest that sildenafil and vardenafil are associated with reduced dementia risk. While a recent clinical trial of acute tadalafil on cerebral blood flow was neutral, there may be chronic actions of PDE5 inhibition on cerebrovascular or synaptic function. We provide a perspective on the potential utility of PDE5 inhibitors for ADRD. We conclude that further prospective clinical trials with PDE5 inhibitors are warranted. The choice of drug will depend on brain penetration, tolerability in older people, half-life, and off-target effects. HIGHLIGHTS: Potent phosphodiesterase-5 (PDE5) inhibitors are in clinical use as vasodilators.In animals PDE5 inhibitors enhance synaptic function and cognitive ability.In humans the PDE5 inhibitor sildenafil is associated with reduced risk of Alzheimer's disease.Licensed PDE5 inhibitors have potential for repurposing in dementia.Prospective clinical trials of PDE5 inhibitors are warranted.

18.
Mol Neurodegener ; 18(1): 86, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974180

RESUMO

This narrative review focuses on the role of cholesteryl ester transfer protein (CETP) and peripheral lipoproteins in the vascular contributions to cognitive impairment and dementia (VCID). Humans have a peripheral lipoprotein profile where low-density lipoproteins (LDL) represent the dominant lipoprotein fraction and high-density lipoproteins (HDL) represent a minor lipoprotein fraction. Elevated LDL-cholesterol (LDL-C) levels are well-established to cause cardiovascular disease and several LDL-C-lowering therapies are clinically available to manage this vascular risk factor. The efficacy of LDL-C-lowering therapies to reduce risk of all-cause dementia and AD is now important to address as recent studies demonstrate a role for LDL in Alzheimer's Disease (AD) as well as in all-cause dementia. The LDL:HDL ratio in humans is set mainly by CETP activity, which exchanges cholesteryl esters for triglycerides across lipoprotein fractions to raise LDL and lower HDL as CETP activity increases. Genetic and pharmacological studies support the hypothesis that CETP inhibition reduces cardiovascular risk by lowering LDL, which, by extension, may also lower VCID. Unlike humans, wild-type mice do not express catalytically active CETP and have HDL as their major lipoprotein fraction. As HDL has potent beneficial effects on endothelial cells, the naturally high HDL levels in mice protect them from vascular disorders, likely including VCID. Genetic restoration of CETP expression in mice to generate a more human-like lipid profile may increase the relevance of murine models for VCID studies. The therapeutic potential of existing and emerging LDL-lowering therapies for VCID will be discussed. Figure Legend. Cholesteryl Ester Transfer Protein in Alzheimer's Disease. CETP is mainly produced by the liver, and exchanges cholesteryl esters for triglycerides across lipoprotein fractions to raise circulating LDL and lower HDL as CETP activity increases. Low CETP activity is associated with better cardiovascular health, due to decreased LDL and increased HDL, which may also improve brain health. Although most peripheral lipoproteins cannot enter the brain parenchyma due to the BBB, it is increasingly appreciated that direct access to the vascular endothelium may enable peripheral lipoproteins to have indirect effects on brain health. Thus, lipoproteins may affect the cerebrovasculature from both sides of the BBB. Recent studies show an association between elevated plasma LDL, a well-known cardiovascular risk factor, and a higher risk of AD, and considerable evidence suggests that high HDL levels are associated with reduced CAA and lower neuroinflammation. Considering the potential detrimental role of LDL in AD and the importance of HDL's beneficial effects on endothelial cells, high CETP activity may lead to compromised BBB integrity, increased CAA deposits and greater neuroinflammation. Abbreviations: CETP - cholesteryl transfer ester protein; LDL - low-density lipoproteins; HDL - high-density lipoproteins; BBB - blood-brain barrier; CAA - cerebral amyloid angiopathy, SMC - smooth muscle cells, PVM - perivascular macrophages, RBC - red blood cells.


Assuntos
Doença de Alzheimer , Proteínas de Transferência de Ésteres de Colesterol , Humanos , Camundongos , Animais , Ésteres do Colesterol/metabolismo , LDL-Colesterol , Células Endoteliais/metabolismo , Doenças Neuroinflamatórias , Lipoproteínas/metabolismo , Lipoproteínas HDL/metabolismo , Triglicerídeos
19.
J Cereb Blood Flow Metab ; 43(11): 1857-1872, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37309740

RESUMO

Vascular cognitive impairment (VCI) represents the second most common cause of dementia after Alzheimer's disease, and pathological changes in cerebral vascular structure and function are pivotal causes of VCI. Cognitive impairment caused by arterial ischemia has been extensively studied the whole time; the influence of cerebral venous congestion on cognitive impairment draws doctors' attention in recent clinical practice, but the underlying neuropathophysiological alterations are not completely understood. This study elucidated the specific pathogenetic role of cerebral venous congestion in cognitive-behavioral deterioration and possible electrophysiological mechanisms. Using cerebral venous congestion rat models, we found these rats exhibited decreased long-term potentiation (LTP) in the hippocampal dentate gyrus and impaired spatial learning and memory. Based on untargeted metabolomics, N-acetyl-L-cysteine (NAC) deficiency was detected in cerebral venous congestion rats; supplementation with NAC appeared to ameliorate synaptic deficits, rescue impaired LTP, and mitigate cognitive impairment. In a cohort of cerebral venous congestion patients, NAC levels were decreased; NAC concentration was negatively correlated with subjective cognitive decline (SCD) score but positively correlated with mini-mental state examination (MMSE) score. These findings provide a new perspective on cognitive impairment and support further exploration of NAC as a therapeutic target for the prevention and treatment of VCI.


Assuntos
Disfunção Cognitiva , Demência Vascular , Hiperemia , Humanos , Ratos , Animais , Demência Vascular/patologia , Encéfalo/patologia , Cognição
20.
Neurobiol Aging ; 129: 168-177, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37336171

RESUMO

Stroke is a major cause of death and disability worldwide and is also a leading cause of vascular dementia and Alzheimer's disease, with older women experiencing accelerated decline. Our previous studies show that intravenous (iv) injections of miR-20a-3p, a small noncoding RNA (miRNA) delivered after stroke improves acute stroke outcomes in middle-aged male and female rats. The present study tested whether mir-20a-3p treatment would also ameliorate stroke-induced cognitive decline in the chronic phase. Acyclic middle-aged females and age-matched male Sprague Dawley rats were subjected to middle cerebral artery occlusion using endothelin-1 or sham surgery, and treated iv with miR-20a-3p mimics or scrambled oligos at 4 hours, 24 hours, and 70 days post-stroke. Stroke resulted in a significant sensory motor deficit, while miR-20a-3p treatment reduced these deficits in both sexes. Cognitive impairment was assessed periodically for 3 months after stroke using contextual fear conditioning and the novel object recognition task. Overall, the tests of associative and episodic memory were affected by focal ischemia only in female rats, and miR-20a-3p ameliorated the rate of decline.


Assuntos
Isquemia Encefálica , Disfunção Cognitiva , MicroRNAs , Acidente Vascular Cerebral , Ratos , Feminino , Masculino , Animais , Ratos Sprague-Dawley , Caracteres Sexuais , MicroRNAs/genética , Infarto da Artéria Cerebral Média/complicações , Disfunção Cognitiva/genética , Isquemia Encefálica/complicações , Isquemia Encefálica/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa