Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.876
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 38: 99-121, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32340574

RESUMO

B cells are traditionally known for their ability to produce antibodies in the context of adaptive immune responses. However, over the last decade B cells have been increasingly recognized as modulators of both adaptive and innate immune responses, as well as players in an important role in the pathogenesis of a variety of human diseases. Here, after briefly summarizing our current understanding of B cell biology, we present a systematic review of the literature from both animal models and human studies that highlight the important role that B lymphocytes play in cardiac and vascular disease. While many aspects of B cell biology in the vasculature and, to an even greater extent, in the heart remain unclear, B cells are emerging as key regulators of cardiovascular adaptation to injury.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Suscetibilidade a Doenças , Imunidade Adaptativa , Animais , Doenças Cardiovasculares/diagnóstico , Citocinas/metabolismo , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo
2.
Genes Dev ; 34(5-6): 341-359, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32029454

RESUMO

Poly-adenosine diphosphate-ribose polymerases (PARPs) promote ADP-ribosylation, a highly conserved, fundamental posttranslational modification (PTM). PARP catalytic domains transfer the ADP-ribose moiety from NAD+ to amino acid residues of target proteins, leading to mono- or poly-ADP-ribosylation (MARylation or PARylation). This PTM regulates various key biological and pathological processes. In this review, we focus on the roles of the PARP family members in inflammation and host-pathogen interactions. Here we give an overview the current understanding of the mechanisms by which PARPs promote or suppress proinflammatory activation of macrophages, and various roles PARPs play in virus infections. We also demonstrate how innovative technologies, such as proteomics and systems biology, help to advance this research field and describe unanswered questions.


Assuntos
ADP-Ribosilação/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Inflamação , Poli(ADP-Ribose) Polimerases/metabolismo , Humanos , Macrófagos/patologia , Proteômica , Pesquisa/tendências , Biologia de Sistemas , Viroses/fisiopatologia
3.
Circulation ; 149(12): e986-e995, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38375663

RESUMO

Representation of women in interventional vascular fields (interventional cardiology, interventional radiology, and vascular surgery) lags behind that in other specialties. With women representing half of all medical school graduates, encouraging parity of women in these fields needs to start in medical school. Barriers to pursuing careers in vascular intervention include insufficient exposure during core clerkships, early mentorship, visibility of women in the field, length of training, lifestyle considerations, work culture and environment, and concerns about radiation exposure. This scientific statement highlights potential solutions for both the real and perceived barriers that women may face in pursuing careers in vascular intervention, including streamlining of training (as both interventional radiology and vascular surgery have done with a resultant increase in percentage of women trainees), standardization of institutional promotion of women in leadership, and professional and industry partnerships for the retention and advancement of women.


Assuntos
American Heart Association , Procedimentos Cirúrgicos Vasculares , Estados Unidos , Humanos , Feminino
4.
Circulation ; 149(24): e1313-e1410, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38743805

RESUMO

AIM: The "2024 ACC/AHA/AACVPR/APMA/ABC/SCAI/SVM/SVN/SVS/SIR/VESS Guideline for the Management of Lower Extremity Peripheral Artery Disease" provides recommendations to guide clinicians in the treatment of patients with lower extremity peripheral artery disease across its multiple clinical presentation subsets (ie, asymptomatic, chronic symptomatic, chronic limb-threatening ischemia, and acute limb ischemia). METHODS: A comprehensive literature search was conducted from October 2020 to June 2022, encompassing studies, reviews, and other evidence conducted on human subjects that was published in English from PubMed, EMBASE, the Cochrane Library, CINHL Complete, and other selected databases relevant to this guideline. Additional relevant studies, published through May 2023 during the peer review process, were also considered by the writing committee and added to the evidence tables where appropriate. STRUCTURE: Recommendations from the "2016 AHA/ACC Guideline on the Management of Patients With Lower Extremity Peripheral Artery Disease" have been updated with new evidence to guide clinicians. In addition, new recommendations addressing comprehensive care for patients with peripheral artery disease have been developed.


Assuntos
American Heart Association , Extremidade Inferior , Doença Arterial Periférica , Humanos , Doença Arterial Periférica/terapia , Doença Arterial Periférica/diagnóstico , Extremidade Inferior/irrigação sanguínea , Estados Unidos , Cardiologia/normas
5.
J Virol ; : e0084824, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051773

RESUMO

Varicella zoster virus (VZV) reactivates from ganglionic sensory neurons to produce herpes zoster (shingles) in a unilateral dermatomal distribution, typically in the thoracic region. Reactivation not only heightens the risk of stroke and other neurological complications but also increases susceptibility to co-infections with various viral and bacterial pathogens at sites distant from the original infection. The mechanism by which VZV results in complications remote from the initial foci remains unclear. Small extracellular vesicles (sEVs) are membranous signaling structures that can deliver proteins and nucleic acids to modify the function of distal cells and tissues during normal physiological conditions. Although viruses have been documented to exploit the sEV machinery to propagate infection, the role of non-infectious sEVs released from VZV-infected neurons in viral spread and disease has not been studied. Using multi-omic approaches, we characterized the content of sEVs released from VZV-infected human sensory neurons (VZV sEVs). One viral protein was detected (immediate-early 62), as well as numerous immunosuppressive and vascular disease-associated host proteins and miRNAs that were absent in sEVs from uninfected neurons. Notably, VZV sEVs are non-infectious yet transcriptionally altered primary human cells, suppressing the antiviral type 1 interferon response and promoting neuroinvasion of a secondary pathogen in vivo. These results challenge our understanding of VZV infection, proposing that the virus may contribute to distant pathologies through non-infectious sEVs beyond the primary infection site. Furthermore, this study provides a previously undescribed immune-evasion mechanism induced by VZV that highlights the significance of non-infectious sEVs in early VZV pathogenesis. IMPORTANCE: Varicella zoster virus (VZV) is a ubiquitous human virus that predominantly spreads by direct cell-cell contact and requires efficient and immediate host immune evasion strategies to spread. The mechanisms of immune evasion prior to virion entry have not been fully elucidated and represent a critical gap in our complete understanding of VZV pathogenesis. This study describes a previously unreported antiviral evasion strategy employed by VZV through the exploitation of the infected host cell's small extracellular vesicle (sEV) machinery. These findings suggest that non-infectious VZV sEVs could travel throughout the body, affecting cells remote from the site of infection and challenging the current understanding of VZV clinical disease, which has focused on local effects and direct infection. The significance of these sEVs in early VZV pathogenesis highlights the importance of further investigating their role in viral spread and secondary disease development to reduce systemic complications following VZV infections.

6.
Stem Cells ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39049437

RESUMO

Vascular organoids (VOs), derived from induced pluripotent stem cells (iPSCs), hold promise as in vitro disease models and drug screening platforms. However, their ability to faithfully recapitulate human vascular disease and cellular composition remains unclear. In this study, we demonstrate that VOs derived from iPSCs of donors with diabetes (DB-VOs) exhibit impaired vascular function compared to non-diabetic VOs (ND-VOs). DB-VOs display elevated levels of reactive oxygen species (ROS), heightened mitochondrial content and activity, increased proinflammatory cytokines, and reduced blood perfusion recovery in vivo. Through comprehensive single-cell RNA sequencing, we uncover molecular and functional differences, as well as signaling networks, between vascular cell types and clusters within DB-VOs. Our analysis identifies major vascular cell types (endothelial cells [ECs], pericytes, and vascular smooth muscle cells) within VOs, highlighting the dichotomy between ECs and mural cells. We also demonstrate the potential need for additional inductions using organ-specific differentiation factors to promote organ-specific identity in VOs. Furthermore, we observe basal heterogeneity within VOs and significant differences between DB-VOs and ND-VOs. Notably, we identify a subpopulation of ECs specific to DB-VOs, showing overrepresentation in the ROS pathway and underrepresentation in the angiogenesis hallmark, indicating signs of aberrant angiogenesis in diabetes. Our findings underscore the potential of VOs for modeling diabetic vasculopathy, emphasize the importance of investigating cellular heterogeneity within VOs for disease modeling and drug discovery, and provide evidence of GAP43 (neuromodulin) expression in ECs, particularly in DB-VOs, with implications for vascular development and disease.

7.
FASEB J ; 38(10): e23679, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38780117

RESUMO

Retinal vascular diseases (RVDs), in particular diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity, are leading contributors to blindness. The pathogenesis of RVD involves vessel dilatation, leakage, and occlusion; however, the specific underlying mechanisms remain unclear. Recent findings have indicated that pericytes (PCs), as critical members of the vascular mural cells, significantly contribute to the progression of RVDs, including detachment from microvessels, alteration of contractile and secretory properties, and excessive production of the extracellular matrix. Moreover, PCs are believed to have mesenchymal stem properties and, therefore, might contribute to regenerative therapy. Here, we review novel ideas concerning PC characteristics and functions in RVDs and discuss potential therapeutic strategies based on PCs, including the targeting of pathological signals and cell-based regenerative treatments.


Assuntos
Pericitos , Pericitos/metabolismo , Humanos , Animais , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Doenças Retinianas/terapia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/terapia , Retinopatia Diabética/patologia
8.
Proc Natl Acad Sci U S A ; 119(14): e2121133119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35363568

RESUMO

Chaperone-mediated autophagy (CMA) contributes to regulation of energy homeostasis by timely degradation of enzymes involved in glucose and lipid metabolism. Here, we report reduced CMA activity in vascular smooth muscle cells and macrophages in murine and human arteries in response to atherosclerotic challenges. We show that in vivo genetic blockage of CMA worsens atherosclerotic pathology through both systemic and cell-autonomous changes in vascular smooth muscle cells and macrophages, the two main cell types involved in atherogenesis. CMA deficiency promotes dedifferentiation of vascular smooth muscle cells and a proinflammatory state in macrophages. Conversely, a genetic mouse model with up-regulated CMA shows lower vulnerability to proatherosclerotic challenges. We propose that CMA could be an attractive therapeutic target against cardiovascular diseases.


Assuntos
Aterosclerose , Autofagia Mediada por Chaperonas , Animais , Aterosclerose/genética , Aterosclerose/patologia , Autofagia Mediada por Chaperonas/genética , Modelos Animais de Doenças , Lisossomos/metabolismo , Camundongos
9.
Genesis ; 62(1): e23539, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37501352

RESUMO

Classical collagen type IV comprising of a heterotrimer of two collagen IV alpha 1 chains and one collagen IV alpha 2 chain is the principal type of collagen synthesized by endothelial cells (EC) and is a major constituent of vascular basement membranes. In mouse and man, mutations in genes that encode collagen IV alpha 1 and alpha 2 result in vascular dysfunction. In addition, mutations in genes that encode the Ephrin receptor B4 (EPHB4) and the p120 Ras GTPase-activating protein (RASA1) that cause increased activation of the Ras mitogen-activated protein kinase (MAPK) signaling pathway in EC result in vascular dysfunction as a consequence of impaired export of collagen IV. To understand the pathogenesis of collagen IV-related vascular diseases and phenotypes it is necessary to identify at which times collagen IV is actively synthesized by EC. For this purpose, we used CRISPR/Cas9 targeting in mice to include immediately after the terminal Col4a1 codon a sequence that specifies a P2A peptide followed by enhanced green fluorescent protein (eGFP). Analysis of eGFP expression in Col4a1-P2A-eGFP mice revealed active embryonic EC synthesis of collagen IV alpha 1 through mid to late gestation followed by a sharp decline before birth. These results provide a contextual framework for understanding the basis for the varied vascular abnormalities resulting from perturbation of EC expression and export of functional collagen IV.


Assuntos
Colágeno Tipo IV , Células Endoteliais , Humanos , Feminino , Gravidez , Células Endoteliais/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Proteínas de Fluorescência Verde , Desenvolvimento Embrionário , Proteína p120 Ativadora de GTPase/genética , Proteína p120 Ativadora de GTPase/metabolismo
10.
Am J Respir Cell Mol Biol ; 71(1): 1-9, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38547373

RESUMO

In recent years, metabolomics, the systematic study of small-molecule metabolites in biological samples, has yielded fresh insights into the molecular determinants of pulmonary diseases and critical illness. The purpose of this article is to orient the reader to this emerging field by discussing the fundamental tenets underlying metabolomics research, the tools and techniques that serve as foundational methodologies, and the various statistical approaches to analysis of metabolomics datasets. We present several examples of metabolomics applied to pulmonary and critical care medicine to illustrate the potential of this avenue of research to deepen our understanding of pathophysiology. We conclude by reviewing recent advances in the field and future research directions that stand to further the goal of personalizing medicine to improve patient care.


Assuntos
Cuidados Críticos , Metabolômica , Humanos , Metabolômica/métodos , Pneumopatias/metabolismo , Pneumologia/métodos , Medicina de Precisão/métodos
11.
Am J Physiol Cell Physiol ; 326(4): C1237-C1247, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38581667

RESUMO

Diabetes alters the function of ion channels responsible for regulating arterial smooth muscle membrane potential, resulting in vasoconstriction. Our prior research demonstrated an elevation of TMEM16A in diabetic arteries. Here, we explored the mechanisms involved in Transmembrane protein 16A (TMEM16A) gene expression. Our data indicate that a Snail-mediated repressor complex regulates arterial TMEM16A gene transcription. Snail expression was reduced in diabetic arteries while TMEM16A expression was upregulated. The TMEM16A promoter contained three canonical E-box sites. Electrophoretic mobility and super shift assays revealed that the -154 nt E-box was the binding site of the Snail repressor complex and binding of the repressor complex decreased in diabetic arteries. High glucose induced a biphasic contractile response in pressurized nondiabetic mouse hindlimb arteries incubated ex vivo. Hindlimb arteries incubated in high glucose also showed decreased phospho-protein kinase D1 and TMEM16A expression. In hindlimb arteries from nondiabetic mice, administration of a bolus dose of glucose activated protein kinase D1 signaling to induce Snail degradation. In both in vivo and ex vivo conditions, Snail expression exhibited an inverse relationship with the expression of protein kinase D1 and TMEM16A. In diabetic mouse arteries, phospho-protein kinase D1 increased while Akt2 and pGSK3ß levels declined. These results indicate that in nondiabetic mice, high glucose triggers a transient deactivation of the Snail repressor complex to increase arterial TMEM16A expression independently of insulin signaling. Conversely, insulin resistance activates GSK3ß signaling and enhances arterial TMEM16A channel expression. These data have uncovered the Snail-mediated regulation of arterial TMEM16A expression and its dysfunction during diabetes.NEW & NOTEWORTHY The calcium-activated chloride channel, TMEM16A, is upregulated in the diabetic vasculature to cause increased vasoconstriction. In this paper, we have uncovered that the TMEM16A gene expression is controlled by a Snail-mediated repressor complex that uncouples with both insulin-dependent and -independent pathways to allow for upregulated arterial protein expression thereby causing vasoconstriction. The paper highlights the effect of short- and long-term glucose-induced dysfunction of an ion channel expression as a causative factor in diabetic vascular disease.


Assuntos
Diabetes Mellitus , Insulinas , Animais , Camundongos , Anoctamina-1/metabolismo , Artérias/metabolismo , Diabetes Mellitus/metabolismo , Músculo Liso Vascular/metabolismo , Receptor de Insulina/metabolismo
12.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L638-L645, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38375595

RESUMO

Pulmonary hypertension (PH) is a condition in which remodeling of the pulmonary vasculature leads to hypertrophy of the muscular vascular wall and extension of muscle into nonmuscular arteries. These pathological changes are predominantly due to the abnormal proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), enhanced cellular functions that have been linked to increases in the cell membrane protein aquaporin 1 (AQP1). However, the mechanisms underlying the increased AQP1 abundance have not been fully elucidated. Here we present data that establishes a novel interaction between AQP1 and the proteolytic enzyme caspase-3. In silico analysis of the AQP1 protein reveals two caspase-3 cleavage sites on its C-terminal tail, proximal to known ubiquitin sites. Using biotin proximity ligase techniques, we establish that AQP1 and caspase-3 interact in both human embryonic kidney (HEK) 293A cells and rat PASMCs. Furthermore, we demonstrate that AQP1 levels increase and decrease with enhanced caspase-3 activity and inhibition, respectively. Ultimately, further work characterizing this interaction could provide the foundation for novel PH therapeutics.NEW & NOTEWORTHY Pulmonary arterial smooth muscle cells (PASMCs) are integral to pulmonary vascular remodeling, a characteristic of pulmonary arterial hypertension (PAH). PASMCs isolated from robust animal models of disease demonstrate enhanced proliferation and migration, pathological functions associated with increased abundance of the membrane protein aquaporin 1 (AQP1). We present evidence of a novel interaction between the proteolytic enzyme caspase-3 and AQP1, which may control AQP1 abundance. These data suggest a potential new target for novel PAH therapies.


Assuntos
Aquaporina 1 , Caspase 3 , Músculo Liso Vascular , Miócitos de Músculo Liso , Artéria Pulmonar , Animais , Humanos , Masculino , Ratos , Aquaporina 1/metabolismo , Aquaporina 1/genética , Caspase 3/metabolismo , Proliferação de Células , Células HEK293 , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Ratos Sprague-Dawley
13.
Br J Haematol ; 204(5): 1595-1597, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38616616

RESUMO

The discovery of driver mutations in myeloproliferative neoplasms has significantly contributed to the management of patients with essential thrombocythaemia (ET). High-quality evidence has started to pave the way for targeted therapy. The review by Ferrer-Marín et al. further advances this discussion, highlighting how molecular profiling, including non-driver gene mutations, is set to revolutionize personalized treatment approaches for ET patients. Commentary on: Ferrer-Marín et al. Essential thrombocythemia: a contemporary approach with new drugs on the horizon. Br J Haematol 2024;204:1605-1616.


Assuntos
Trombocitemia Essencial , Trombocitemia Essencial/genética , Humanos , Mutação , Gerenciamento Clínico , Janus Quinase 2/genética
14.
Biochem Biophys Res Commun ; 735: 150451, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39094233

RESUMO

Cerebral small vascular disease (CSVD) has a high incidence worldwide, but its pathological mechanisms remain poorly understood due to the lack of proper animal models. The current animal models of CSVD have several limitations such as high mortality rates and large-sized lesions, and thus it is urgent to develop new animal models of CSVD. Ultrasound can activate protoporphyrin to produce reactive oxygen species in a liquid environment. Here we delivered protoporphyrin into cerebral small vessels of rat brain through polystyrene microspheres with a diameter of 15 µm, and then performed transcranial ultrasound stimulation (TUS) on the model rats. We found that TUS did not affect the large vessels or cause large infarctions in the brain of model rats. The mortality rates were also comparable between the sham and model rats. Strikingly, TUS induced several CSVD-like phenotypes such as cerebral microinfarction, white matter injuries and impaired integrity of endothelial cells in the model rats. Additionally, these effects could be alleviated by antioxidant treatment with N-acetylcysteine (NAC). As control experiments, TUS did not lead to cerebral microinfarction in the rat brain when injected with the polystyrene microspheres not conjugated with protoporphyrin. In sum, we generated a rat model of CSVD that may be useful for the mechanistic study and drug development for CSVD.

15.
Mod Pathol ; 37(1): 100351, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37820763

RESUMO

Portosinusoidal vascular disorder (PSVD) is a recently proposed histopathologic entity that encompasses a spectrum of often subtle hepatic microvascular lesions and related microarchitectural abnormalities. Clinical manifestations may arise years after histologic diagnosis and include extrahepatic portal vein thrombosis and portal hypertension. While the histopathologic features of PSVD have been associated with numerous clinical conditions, most notably prothrombotic/vasculopathic disorders, PSVD has not yet been described in sickle cell disease. This gap is striking given the central role of microvascular dysfunction in sickle cell disease and well-described patterns of hepatic injury and dysfunction in this population. This case series is the first to explore the prevalence and pathogenesis of PSVD in sickle cell disease. Forty-one diagnostically adequate liver biopsies from patients with sickle cell disease were identified across the archives of 5 tertiary medical centers. All biopsies exhibited at least 1 histopathologic feature associated with PSVD (mean 3.8 features/case). Overall, 90.2% of patients met the criteria for a diagnosis of PSVD based on the presence of specific histopathologic and/or clinical findings. Immunohistochemical stains for von Willebrand factor, CD34, and glutamine synthetase were performed on 36 cases (87.8%). Aberrant (centrilobular sinusoidal) CD34 and von Willebrand factor staining was present in 97.2% and 86.1% of cases, respectively. Glutamine synthetase reactivity was at least mildly decreased in zone 3 hepatocytes in 52.8% of cases. We posit that chronic erythrocyte sickling results in dysfunction and remodeling of the portal microvasculature, culminating in regression of zone 3 hepatocytes. The presence of PSVD may explain, at least in part, the hepatic dysfunction observed in this patient population. These patients may also benefit from extended clinical surveillance for portal hypertension and other complications. While subtle and prone to overdiagnosis, the features of PSVD should be carefully considered when interpreting liver biopsies from patients with sickle cell disease.


Assuntos
Anemia Falciforme , Hipertensão Portal , Humanos , Glutamato-Amônia Ligase , Fator de von Willebrand , Anemia Falciforme/complicações , Hipertensão Portal/etiologia
16.
J Transl Med ; 22(1): 562, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867291

RESUMO

BACKGROUND: Intravitreal injections of angiogenesis inhibitors have proved efficacious in the majority of patients with ocular angiogenesis. However, one-fourth of all treated patients fail to derive benefits from intravitreal injections. tRNA-derived small RNA (tsRNA) emerges as a crucial class of non-coding RNA molecules, orchestrating key roles in the progression of human diseases by modulating multiple targets. Through our prior sequencing analyses and bioinformatics predictions, tRNA-Cys-5-0007 has shown as a potential regulator of ocular angiogenesis. This study endeavors to elucidate the precise role of tRNA-Cys-5-0007 in the context of ocular angiogenesis. METHODS: Quantitative reverse transcription PCR (qRT-PCR) assays were employed to detect tRNA-Cys-5-0007expression. EdU assays, sprouting assays, transwell assays, and Matrigel assays were conducted to elucidate the involvement of tRNA-Cys-5-0007 in endothelial angiogenic effects. STZ-induced diabetic model, OIR model, and laser-induced CNV model were utilized to replicate the pivotal features of ocular vascular diseases and evaluate the influence of tRNA-Cys-5-0007 on ocular angiogenesis and inflammatory responses. Bioinformatics analysis, luciferase activity assays, RNA pull-down assays, and in vitro studies were employed to elucidate the anti-angiogenic mechanism of tRNA-Cys-5-0007. Exosomal formulation was employed to enhance the synergistic anti-angiogenic and anti-inflammatory efficacy of tRNA-Cys-5-0007. RESULTS: tRNA-Cys-5-0007 expression was down-regulated under angiogenic conditions. Conversely, tRNA-Cys-5-0007 overexpression exhibited anti-angiogenic effects in retinal endothelial cells, as evidenced by reduced proliferation, sprouting, migration, and tube formation abilities. In diabetic, laser-induced CNV, and OIR models, tRNA-Cys-5-0007 overexpression led to decreased ocular vessel leakage, inhibited angiogenesis, and reduced ocular inflammation. Mechanistically, these effects were attributed to the targeting of vascular endothelial growth factor A (VEGFA) and TGF-ß1 by tRNA-Cys-5-0007. The utilization of an exosomal formulation further potentiated the synergistic anti-angiogenic and anti-inflammatory efficacy of tRNA-Cys-5-0007. CONCLUSIONS: Concurrent targeting of tRNA-Cys-5-0007 for anti-angiogenic and anti-inflammatory therapy holds promise for enhancing the effectiveness of current anti-angiogenic therapy.


Assuntos
Inibidores da Angiogênese , Anti-Inflamatórios , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Humanos , RNA de Transferência/metabolismo , RNA de Transferência/genética , Camundongos Endogâmicos C57BL , Proliferação de Células/efeitos dos fármacos , Neovascularização de Coroide/patologia , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Masculino , Oftalmopatias/tratamento farmacológico , Oftalmopatias/patologia , Oftalmopatias/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Neovascularização Patológica , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/patologia , Retinopatia Diabética/metabolismo , Camundongos , Células Endoteliais da Veia Umbilical Humana/metabolismo
17.
J Pediatr ; 271: 114034, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38552948

RESUMO

OBJECTIVE: To determine the prevalence of exercise-induced pulmonary hypertension (PH) among long-survivors of congenital diaphragmatic hernia repair. STUDY DESIGN: This is a single-center, retrospective cohort study of CDH survivors who underwent exercise stress echocardiography (ESE) at Boston Children's Hospital from January 2006 to June 2020. PH severity was assessed by echocardiogram at baseline and after exercise. Patients were categorized by right ventricular systolic pressure (RVSP) after exercise: Group 1 - no or mild PH; and Group 2 - moderate or severe PH (RVSP ≥ 60 mmHg or ≥ ½ systemic blood pressure). RESULTS: Eighty-four patients with CDH underwent 173 ESE with median age 8.1 (4.8 - 19.1) years at first ESE. Sixty-four patients were classified as Group 1, 11 as Group 2, and 9 had indeterminate RVSP with ESE. Moderate to severe PH after exercise was found in 8 (10%) patients with no or mild PH at rest. Exercise-induced PH was associated with larger CDH defect size, patch repair, use of ECMO, supplemental oxygen at discharge, and higher WHO functional class. Higher VE/VCO2 slope, lower peak oxygen saturation, and lower percent predicted FEV1, and FEV1/FVC ratio were associated with Group 2 classification. ESE changed management in 9/11 Group 2 patients. PH was confirmed in all 5 Group 2 patients undergoing cardiac catheterization after ESE. CONCLUSIONS: Among long-term CDH survivors, 10% had moderate-severe exercise-induced PH on ESE, indicating ongoing pulmonary vascular abnormalities. Further studies are needed to optimally define PH screening and treatment for patients with repaired CDH.


Assuntos
Hérnias Diafragmáticas Congênitas , Hipertensão Pulmonar , Sobreviventes , Humanos , Hérnias Diafragmáticas Congênitas/complicações , Hérnias Diafragmáticas Congênitas/cirurgia , Hipertensão Pulmonar/etiologia , Estudos Retrospectivos , Feminino , Masculino , Adolescente , Criança , Adulto Jovem , Pré-Escolar , Teste de Esforço , Exercício Físico/fisiologia , Ecocardiografia , Prevalência
18.
Cardiovasc Diabetol ; 23(1): 241, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978117

RESUMO

BACKGROUND: Cardiovascular disease remains the primary cause of morbidity and mortality despite advancements in the treatment of patients with type 2 diabetes. Effective diabetes management extends beyond blood glucose control and includes cardiovascular prevention and treatment. However, the conventional healthcare model often emphasizes single-disease-specific management, leading to fragmented care. We aim to establish an affordable Cardio-Metabolic Clinic (CMC) that can provide comprehensive assessment and specialized care with a focus on cardiovascular protection. METHODS: The ProtecT-2-D study is a prospective, randomized control trial at the Cardiovascular Research Unit, Odense University Hospital Svendborg, Denmark. In this study, 1500 participants with type 2 diabetes and cardiovascular disease will be randomly assigned in a 2:1 ratio to receive either the intervention: treatment in the CMC, or the control: standard of care. The Cardio-Metabolic Clinic applies a decision-making algorithm coded with the latest guidelines to evaluate lifestyle factors and manage medical treatment. Health examinations are conducted at baseline and after three years, and clinical events will be assessed through registry and journal audits after five and ten years. The primary outcome is the time to the first occurrence of a composite of cardiovascular deaths, non-fatal acute myocardial infarctions, non-fatal stroke, or hospitalization due to heart failure at a time frame of five years. DISCUSSION: The Cardio-Metabolic Clinic represents a pioneering approach to diabetes management that aims to improve patient outcomes by reducing the cardiovascular disease burden. This study could transform diabetes care and offer a multidisciplinary, cost-effective, and specialized treatment. We need to establish the efficacy and feasibility of a CMC to integrate comparable clinics into broader healthcare systems, and potentially enhance cardiovascular health in patients with type 2 diabetes. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov NCT06203860.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/mortalidade , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/terapia , Estudos Prospectivos , Dinamarca/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/epidemiologia , Fatores de Tempo , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/efeitos adversos , Prestação Integrada de Cuidados de Saúde , Fatores de Risco de Doenças Cardíacas , Hospitais Universitários , Instituições de Assistência Ambulatorial , Custos de Cuidados de Saúde , Medição de Risco , Masculino , Comportamento de Redução do Risco , Análise Custo-Benefício , Biomarcadores/sangue
19.
J Vasc Surg ; 79(3): 679-684.e1, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37984757

RESUMO

OBJECTIVE: Patients with intermittent claudication (IC) from peripheral arterial disease (PAD) have significant improvement with supervised exercise therapy (SET). However, many patients have progressive disease that will ultimately require revascularization. We sought to determine whether the anatomic patterns of PAD were associated with response to SET. METHODS: We prospectively enrolled patients with IC at the West Haven, Connecticut Veterans Health Administration between June 2019 and June 2022. Patients were classified based on the level of their arterial disease with >50% obstruction. SET failure was defined as progressive symptoms or development of critical limb-threatening ischemia (CLTI) requiring revascularization. RESULTS: Thirty-eight patients with PAD were included. Thirteen patients (34.2%) had significant common femoral artery (CFA) disease, and 25 (65.8%) had non-CFA disease. Over a median follow-up of 1407 days, 11 patients (84.6%) with CFA disease failed SET as compared with three patients (12.0%) with non-CFA disease (P < .001). Patients with CFA disease were more likely to develop CLTI (46.2% vs 4.0%; P = .001) and have persistent symptoms (38.5% vs 8.0%; P = .02). Patients with CFA disease had significantly lower post-SET ankle-brachial index (0.58 ± 0.14 vs 0.77 ± 0.19; P = .03). In multivariate analysis, the only variable associated with SET failure was CFA disease location (odds ratio, 68.75; 95% confidence interval, 5.05-936.44; P = .001). CONCLUSIONS: Patients with IC from high-grade CFA atherosclerosis are overwhelmingly likely to fail SET, potentially identifying a subset of patients who benefit from upfront revascularization.


Assuntos
Aterosclerose , Doença Arterial Periférica , Humanos , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/terapia , Claudicação Intermitente/diagnóstico , Claudicação Intermitente/terapia , Procedimentos Cirúrgicos Vasculares , Terapia por Exercício/efeitos adversos , Resultado do Tratamento , Isquemia , Fatores de Risco
20.
Respir Res ; 25(1): 121, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468264

RESUMO

BACKGROUND: Cardiac dysfunction from pulmonary vascular disease causes characteristic findings on cardiopulmonary exercise testing (CPET). We tested the accuracy of CPET for detecting inadequate stroke volume (SV) augmentation during exercise, a pivotal manifestation of cardiac limitation in patients with pulmonary vascular disease. METHODS: We reviewed patients with suspected pulmonary vascular disease in whom CPET and right heart catheterization (RHC) measurements were taken at rest and at anaerobic threshold (AT). We correlated CPET-determined O2·pulseAT/O2·pulserest with RHC-determined SVAT/SVrest. We evaluated the sensitivity and specificity of O2·pulseAT/O2·pulserest to detect SVAT/SVrest below the lower limit of normal (LLN). For comparison, we performed similar analyses comparing echocardiographically-measured peak tricuspid regurgitant velocity (TRVpeak) with SVAT/SVrest. RESULTS: From July 2018 through February 2023, 83 simultaneous RHC and CPET were performed. Thirty-six studies measured O2·pulse and SV at rest and at AT. O2·pulseAT/O2·pulserest correlated highly with SVAT/SVrest (r = 0.72, 95% CI 0.52, 0.85; p < 0.0001), whereas TRVpeak did not (r = -0.09, 95% CI -0.47, 0.33; p = 0.69). The AUROC to detect SVAT/SVrest below the LLN was significantly higher for O2·pulseAT/O2·pulserest (0.92, SE 0.04; p = 0.0002) than for TRVpeak (0.69, SE 0.10; p = 0.12). O2·pulseAT/O2·pulserest of less than 2.6 was 92.6% sensitive (95% CI 76.6%, 98.7%) and 66.7% specific (95% CI 35.2%, 87.9%) for deficient SVAT/SVrest. CONCLUSIONS: CPET detected deficient SV augmentation more accurately than echocardiography. CPET-determined O2·pulseAT/O2·pulserest may have a prominent role for noninvasive screening of patients at risk for pulmonary vascular disease, such as patients with persistent dyspnea after pulmonary embolism.


Assuntos
Cardiopatias , Hipertensão Pulmonar , Humanos , Teste de Esforço , Pulmão , Circulação Pulmonar , Tolerância ao Exercício , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa