Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Virol ; : e0099724, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212930

RESUMO

Negevirus is a recently proposed taxon of arthropod-infecting virus, which is associated with plant viruses of two families (Virgaviridae and Kitaviridae). Nevertheless, the evolutionary history of negevirus-host and its relationship with plant viruses remain poorly understood. Endogenous nege-like viral elements (ENVEs) are ancient nege-like viral sequences integrated into the arthropod genomes, which can serve as the molecular fossil records of previous viral infection. In this study, 292 ENVEs were identified in 150 published arthropod genomes, revealing the evolutionary history of nege-like viruses and two related plant virus families. We discovered three novel and eight strains of nege-like viruses in 11 aphid species. Further analysis indicated that 10 ENVEs were detected in six aphid genomes, and they were divided into four types (ENVE1-ENVE4). Orthologous integration and phylogenetic analyses revealed that nege-like viruses had a history of infection of over 60 My and coexisted with aphid ancestors throughout the Cenozoic Era. Moreover, two nege-like viral proteins (CP and SP24) were highly homologous to those of plant viruses in the families Virgaviridae and Kitaviridae. CP- and SP24-derived ENVEs were widely integrated into numerous arthropod genomes. These results demonstrate that nege-like viruses have a long-term coexistence with arthropod hosts and plant viruses of the two families, Virgaviridae and Kitaviridae, which may have evolved from the nege-like virus ancestor through horizontal virus transfer events. These findings broaden our perspective on the history of viral infection in arthropods and the origins of plant viruses. IMPORTANCE: Although negevirus is phylogenetically related to plant virus, the evolutionary history of negevirus-host and its relationship with plant virus remain largely unknown. In this study, we used endogenous nege-like viral elements (ENVEs) as the molecular fossil records to investigate the history of nege-like viral infection in arthropod hosts and the evolution of two related plant virus families (Virgaviridae and Kitaviridae). Our results showed the infection of nege-like viruses for over 60 My during the arthropod evolution. ENVEs highly homologous to viral sequences in Virgaviridae and Kitaviridae were present in a wide range of arthropod genomes but were absent in plant genomes, indicating that plant viruses in these two families possibly evolved from the nege-like virus ancestor through cross-species horizontal virus transmission. Our findings provide a new perspective on the virus-host coevolution and the origins of plant viruses.

2.
New Phytol ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294885

RESUMO

Endogenous banana streak virus (eBSV) integrants derived from three distinct species, present in Musa balbisiana (B) but not Musa acuminata (A) banana genomes are able to reconstitute functional episomal viruses causing banana streak disease in interspecific triploid AAB banana hybrids but not in the diploid (BB) parent line, which harbours identical eBSV loci. Here, we investigated the regulation of these eBSV. In-depth characterization of siRNAs, transcripts and methylation derived from eBSV using Illumina and bisulfite sequencing were carried out on eBSV-free Musa acuminata AAA plants and BB or AAB banana plants with eBSV. eBSV loci produce low-abundance transcripts covering most of the viral sequence and generate predominantly 24-nt siRNAs. siRNA accumulation is restricted to duplicated and inverted viral sequences present in eBSV. Both siRNA-accumulating and nonaccumulating sequences of eBSV in BB plants are heavily methylated in all three CG, CHG and CHH contexts. Our data suggest that eBSVs are controlled at the epigenetic level in BB diploids. This regulation not only prevents their awakening and systemic infection of the plant but is also probably involved in the inherent resistance of the BB plants to mealybug-transmitted viral infection. These findings are thus of relevance to other plant resources hosting integrated viruses.

3.
BMC Genomics ; 24(1): 636, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875824

RESUMO

BACKGROUND: Insects are an important reservoir of viral biodiversity, but the vast majority of viruses associated with insects have not been discovered. Recent studies have employed high-throughput RNA sequencing, which has led to rapid advances in our understanding of insect viral diversity. However, insect genomes frequently contain transcribed endogenous viral elements (EVEs) with significant homology to exogenous viruses, complicating the use of RNAseq for viral discovery. METHODS: In this study, we used a multi-pronged sequencing approach to study the virome of an important agricultural pest and prolific vector of plant pathogens, the potato aphid Macrosiphum euphorbiae. We first used rRNA-depleted RNAseq to characterize the microbes found in individual insects. We then used PCR screening to measure the frequency of two heritable viruses in a local aphid population. Lastly, we generated a quality draft genome assembly for M. euphorbiae using Illumina-corrected Nanopore sequencing to identify transcriptionally active EVEs in the host genome. RESULTS: We found reads from two insect-specific viruses (a Flavivirus and an Ambidensovirus) in our RNAseq data, as well as a parasitoid virus (Bracovirus), a plant pathogenic virus (Tombusvirus), and two phages (Acinetobacter and APSE). However, our genome assembly showed that part of the 'virome' of this insect can be attributed to EVEs in the host genome. CONCLUSION: Our work shows that EVEs have led to the misidentification of aphid viruses from RNAseq data, and we argue that this is a widespread challenge for the study of viral diversity in insects.


Assuntos
Vírus de Plantas , Viroma , Animais , Insetos/genética , Vírus de Plantas/genética , Genoma de Inseto , Sequenciamento de Nucleotídeos em Larga Escala
4.
J Virol ; 96(22): e0093322, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36300941

RESUMO

The genomes of eukaryotes preserve a vast diversity of ancient viruses in the form of endogenous viral elements (EVEs). Study of this genomic fossil record provides insights into the diversity, origin, and evolution of viruses across geological timescales. In particular, Mavericks have emerged as one of the oldest groups of endogenous viruses infecting vertebrates (≥419 million years [My]). They have been found in the genomes of fish, amphibians, birds, and nonavian reptiles but had been overlooked in mammals. Thus, their evolutionary history and the causes of their demise in mammals remain puzzling questions. Here, we conducted a detailed evolutionary study of two Maverick integrations found on human chromosomes 7 and 8. We performed a comparative analysis of the integrations and determined their orthology across placental mammals (Eutheria) via the syntenic arrangement of neighboring genes. The integrations were absent at the orthologous sites in the genomes of marsupials and monotremes. These observations allowed us to reconstruct a time-calibrated phylogeny and infer the age of their most recent common ancestor at 127 to 262 My. In addition, we estimate the age of the individual integrations at ~102 My, which represents the oldest nonretroviral EVEs found in the human genome. Our findings suggest that active Mavericks still existed in the ancestors of modern mammals ~172 My ago (Jurassic Period) and potentially to the end of the Early Cretaceous. We hypothesize that Mavericks could have gone extinct in mammals from the evolution of an antiviral defense system or from reduced opportunities for transmission in terrestrial hosts. IMPORTANCE The genomes of vertebrates preserve a large diversity of endogenous viral elements (remnants of ancient viruses that accumulate in host genomes over evolutionary time). Although retroviruses account for the vast majority of these elements, diverse DNA viruses have also been found and novel lineages are being described. Here, we analyzed two elements found in the human genome belonging to an ancient group of DNA viruses called Mavericks. We studied their evolutionary history, finding that the elements are shared between humans and many different species of placental mammals. These observations suggest that the elements inserted at least ~102 million years ago (Mya) in the most recent common ancestor of placentals. We further estimated the age of the viral ancestor at around 127 to 262 My. Our results provide evidence for some of the oldest viral integrations in the human genome and insights into the ancient interactions of viruses with the ancestors of modern-day mammals.


Assuntos
Vírus de DNA , DNA Antigo , Evolução Molecular , Mamíferos , Animais , Feminino , Humanos , Gravidez , Eutérios , Genoma Humano , Mamíferos/genética , Mamíferos/virologia , Marsupiais , Filogenia , Integração Viral , Vírus de DNA/genética
5.
J Invertebr Pathol ; 201: 108024, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37992986

RESUMO

Infectious hypodermal and hematopoietic necrosis virus (IHHNV) is classified as a reportable crustacean disease by the World Organisation for Animal Health (WOAH), which causes poor growth in Penaeus vannamei. According to genome sequence alignment analysis, enzymatic recombinase amplification (ERA) primers and probe were designed based on the ORF1 region of IHHNV, and a real-time ERA assay for IHHNV detection (IHHNV-ERA) was established. The experimental results show that IHHNV-F2/IHHNV-R2 and IHHNV-Probe can effectively amplify the target gene, and the sensitivity is 1.4 × 101 copies/µL within 14.97 ± 0.19 min, while the qPCR using primers 309F/309R could reach the detection limit of 1.4 × 101 copies/µL within 21.76 ± 0.63 min, and the sensitivity results of one-step PCR could be as low as 1.4 copies/µL with expense of time and false positives. The IHHNV-ERA system can effectively amplify the target gene at 42 ℃ within 20 min, and has no cross-reaction with white spot syndrome virus (WSSV), Ecytonucleospora hepatopenaei (EHP), Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease (VpAHPND), and healthy shrimp genomic DNA. Test results of practical samples showed that the detection rate of IHHNV-ERA (18/20) was better than the industrial standard qPCR assay (17/20). Compared with the existing technology, the useful results of this detection assay are: (1) get rid of the dependence on the thermal cycle instrument in the PCR process; (2) the experimental procedure is simple, time-consuming and fast; (3) the detection sensitivity is high. This study provides an ERA based detection assay for IHHNV, which can be used not only for the rapid detection of IHHNV infection, but also for the field screening of pathogens. This assay can also be applied to clinical inspection, customs detection, enterprise quality inspection and other fields, and has obvious practical application value.


Assuntos
Densovirinae , Penaeidae , Animais , Densovirinae/genética , Recombinases , Reação em Cadeia da Polimerase/métodos , Primers do DNA
6.
Genomics ; 114(2): 110317, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35189284

RESUMO

Ticks are a large group of blood-feeding arthropods that transmit multiple human and animal pathogens and are hence of importance to public health. The tick Haemaphysalis longicornis is associated with the transmission of multiple human pathogens in Asia, and recently found invading to the United States. Here, we report the sequencing, assembly and annotation of the 3.16 gigabase genome of this species, which is larger than the previous assembled one. The present Haemaphysalis longicornis genome was characterized by 6519 scaffolds, 24,189 protein-coding genes and a high proportion of simple sequence repeats (54.72%). By genomic assembly and comparative genomic analysis, we characterized the key genes that play essential roles in iron metabolism, detoxification, and freeze tolerance of H. longicornis. Furthermore, a total of 79 endogenous viral elements were identified within the genome, which might have had a considerable impact on its evolution. Decoding the H. longicornis genome not only provides insight into the genetic underpinnings of specific biological processes but also offers the basis for the subsequent integrated control of ticks and tick-borne diseases.


Assuntos
Ixodidae , Animais , Ásia , Ixodidae/genética , Estados Unidos
7.
BMC Genomics ; 23(1): 565, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933380

RESUMO

BACKGROUND: Shrimp have the ability to accommodate viruses in long term, persistent infections without signs of disease. Endogenous viral elements (EVE) play a role in this process probably via production of negative-sense Piwi-interacting RNA (piRNA)-like fragments. These bind with Piwi proteins to dampen viral replication via the RNA interference (RNAi) pathway. We searched a genome sequence (GenBank record JABERT000000000) of the giant tiger shrimp (Penaeus monodon for the presence of EVE related to a shrimp parvovirus originally named infectious hypodermal and hematopoietic necrosis virus (IHHNV). RESULTS: The shrimp genome sequence contained three piRNA-like gene clusters containing scrambled IHHNV EVE. Two clusters were located distant from one another in pseudochromosome 35 (PC35). Both PC35 clusters contained multiple sequences with high homology (99%) to GenBank records DQ228358 and EU675312 that were both called "non-infectious IHHNV Type A" (IHHNV-A) when originally discovered. However, our results and those from a recent Australian P. monodon genome assembly indicate that the relevant GenBank records for IHHNV-A are sequence-assembly artifacts derived from scrambled and fragmental IHHNV-EVE. Although the EVE in the two PC35 clusters showed high homology only to IHHNV-A, the clusters were separate and distinct with respect to the arrangement (i.e., order and reading direction) and proportional content of the IHHNV-A GenBank records. We conjecture that these 2 clusters may constitute independent allele-like clusters on a pair of homologous chromosomes. The third EVE cluster was found in pseudochromosome 7 (PC7). It contained EVE with high homology (99%) only to GenBank record AF218266 with the potential to protect shrimp against current types of infectious IHHNV. One disadvantage was that some EVE in PC7 can give false positive PCR test results for infectious IHHNV. CONCLUSIONS: Our results suggested the possibility of viral-type specificity in EVE clusters. Specificity is important because whole EVE clusters for one viral type would be transmitted to offspring as collective hereditary units. This would be advantageous if one or more of the EVE within the cluster were protective against the disease caused by the cognate virus. It would also facilitate gene editing for removal of non-protective EVE clusters or for transfer of protective EVE clusters to genetically improve existing shrimp breeding stocks that might lack them.


Assuntos
Densovirinae , Parvovirus , Penaeidae , Animais , Austrália , DNA Viral/genética , Densovirinae/genética , Genoma Viral , Parvovirus/genética , Penaeidae/genética , RNA Interferente Pequeno
8.
RNA ; 26(5): 581-594, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31996404

RESUMO

Endogenous viral elements (EVEs) are found in many eukaryotic genomes. Despite considerable knowledge about genomic elements such as transposons (TEs) and retroviruses, we still lack information about nonretroviral EVEs. Aedes aegypti mosquitoes have a highly repetitive genome that is covered with EVEs. Here, we identified 129 nonretroviral EVEs in the AaegL5 version of the A. aegypti genome. These EVEs were significantly associated with TEs and preferentially located in repeat-rich clusters within intergenic regions. Genome-wide transcriptome analysis showed that most EVEs generated transcripts although only around 1.4% were sense RNAs. The majority of EVE transcription was antisense and correlated with the generation of EVE-derived small RNAs. A single genomic cluster of EVEs located in a 143 kb repetitive region in chromosome 2 contributed with 42% of antisense transcription and 45% of small RNAs derived from viral elements. This region was enriched for TE-EVE hybrids organized in the same coding strand. These generated a single long antisense transcript that correlated with the generation of phased primary PIWI-interacting RNAs (piRNAs). The putative promoter of this region had a conserved binding site for the transcription factor Cubitus interruptus, a key regulator of the flamenco locus in Drosophila melanogaster Here, we have identified a single unidirectional piRNA cluster in the A. aegypti genome that is the major source of EVE transcription fueling the generation of antisense small RNAs in mosquitoes. We propose that this region is a flamenco-like locus in A. aegypti due to its relatedness to the major unidirectional piRNA cluster in Drosophila melanogaster.


Assuntos
Aedes/genética , Genoma de Inseto/genética , RNA Interferente Pequeno/genética , Retroelementos/genética , Animais , Sítios de Ligação/genética , Caderinas/genética , Culicidae/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Homeodomínio/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
9.
Trends Immunol ; 40(11): 998-1010, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31679813

RESUMO

Eukaryotic genomes contain virus-derived sequences called endogenous virus elements (EVEs). The majority of EVEs are related to retroviruses, which integrate into the host genome in order to replicate. Some retroviral EVEs encode a function; for example, some produce proteins that block infection by related viruses. EVEs derived from nonretroviral viruses - also recently found in many eukaryotic genomes - are more enigmatic. Here, we summarize the evidence that EVEs can act as templates to generate Piwi-interacting RNAs (piRNAs), whose canonical function is sequence-specific silencing of transposable elements (TEs) to maintain genomic integrity. We argue that EVEs may thus enable heritable, sequence-specific antiviral immune memory in eukaryotes - analogous to CRISPR-Cas immunity in prokaryotes.


Assuntos
Elementos de DNA Transponíveis/genética , Retrovirus Endógenos/genética , Células Germinativas/fisiologia , Imunidade/genética , RNA Interferente Pequeno/genética , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Drosophila melanogaster , Epigênese Genética , Eucariotos , Transferência Genética Horizontal , Humanos
10.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292974

RESUMO

The Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that affects the world's popula-tion with chikungunya disease. Adaptation of the viral life cycle to their host cells' environment is a key step for establishing their infection and pathogenesis. Recently, the accumulating evidence advocates a principal role of extracellular vesicles (EVs), including exosomes, in both the infection and pathogenesis of infectious diseases. However, the participation of exosomes in CHIKV infec-tion and transmission is not well clarified. Here, we demonstrated that the CHIKV RNA and pro-teins were captured in exosomes, which were released by viral-infected epithelial cells. A viral genomic element in the isolated exosomes was infectious to naïve mammalian epithelial cells. The assay of particle size distribution and transmission electron microscopy (TEM) revealed CHIKV-derived exosomes with a size range from 50 to 250 nm. Treatments with RNase A, Triton X-100, and immunoglobulin G antibodies from CHIKV-positive patient plasma indicated that in-fectious viral elements are encompassed inside the exosomes. Interestingly, our viral plaque for-mation also exhibited that infectious viral elements might be securely transmitted to neighboring cells by a secreted exosomal pathway. Taken together, our recent findings emphasize the evidence for a complementary means of CHIKV infection and suggest the role of exosome-mediated CHIKV transmission.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Exossomos , Animais , Humanos , Vírus Chikungunya/genética , Exossomos/patologia , Ribonuclease Pancreático/metabolismo , Octoxinol , Células Epiteliais/patologia , RNA/metabolismo , Imunoglobulina G/metabolismo , Mamíferos/genética
11.
Annu Rev Entomol ; 66: 61-79, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33417818

RESUMO

As an overarching immune mechanism, RNA interference (RNAi) displays pathogen specificity and memory via different pathways. The small interfering RNA (siRNA) pathway is the primary antiviral defense mechanism against RNA viruses of insects and plays a lesser role in defense against DNA viruses. Reflecting the pivotal role of the siRNA pathway in virus selection, different virus families have independently evolved unique strategies to counter this host response, including protein-mediated, decoy RNA-based, and microRNA-based strategies. In this review, we outline the interplay between insect viruses and the different pathways of the RNAi antiviral response; describe practical application of these interactions for improved expression systems and for pest and disease management; and highlight research avenues for advancement of the field.


Assuntos
Interações Hospedeiro-Patógeno , Vírus de Insetos/fisiologia , Insetos/virologia , Interferência de RNA , Animais , Insetos/genética , Insetos/imunologia
12.
J Gen Virol ; 102(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34726592

RESUMO

The main edible and cultivated banana varieties are intra- and interspecific hybrids of the two main Musa species, Musa acuminata and Musa balbisiana, having diploid genomes denoted A and B, respectively. The B genome naturally hosts sequences of banana streak virus (BSV) named endogenous BSV (eBSV). Upon stress, eBSVs are identified as the origin of BSV infection for at least three BSV species, causing banana streak disease. For each of the three species, BSV and eBSV share >99.9 % sequence identity, complicating PCR-based diagnosis of viral infection in the B genome-containing bananas. Here, we designed a quantitative PCR-based method to only quantify episomal BSV particles produced, overcoming the limitation of eBSV also being detected by qPCR by using it as a 'calibrator'. However, our results revealed unexpected variation of eBSV amplification in calibrator plants composed of a clonal population of 53 replicating virus-free banana hybrids with the same AAB genotype. Our in-depth molecular analyses suggest that this calibrator variation is due to the variable abundance of non-encapsidated extrachromosomal viral DNA, likely produced via the transcription of eBSVs, followed by occasional reverse transcription. We also present evidence that accumulation of viral transcripts in AAB plants is downregulated both at post-transcriptional and transcriptional levels by an RNA interference mechanism that keeps the plants free of virus infection. Finally, we recommend that such eBSV amplification variation be taken into account to establish a quantitative viral diagnostic for banana plants with the B genome.


Assuntos
Badnavirus/isolamento & purificação , DNA Viral/genética , Endófitos/isolamento & purificação , Musa/virologia , Doenças das Plantas/virologia , Badnavirus/classificação , Badnavirus/genética , Endófitos/classificação , Endófitos/genética , Genoma Viral , Filogenia , Reação em Cadeia da Polimerase
13.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32024779

RESUMO

For insects known as parasitoid wasps, successful development as a parasite results in the death of the host insect. As a result of this lethal interaction, wasps and their hosts have coevolved strategies to gain an advantage in this evolutionary arms race. Although normally considered to be strict pathogens, some viruses have established persistent infections within parasitoid wasp lineages and are beneficial to wasps during parasitism. Heritable associations between viruses and parasitoid wasps have evolved independently multiple times, but most of these systems remain largely understudied with respect to viral origin, transmission and replication strategies of the virus, and interactions between the virus and host insects. Here, we report a detailed characterization of Diachasmimorpha longicaudata entomopoxvirus (DlEPV), a poxvirus found within the venom gland of Diachasmimorpha longicaudata wasps. Our results show that DlEPV exhibits similar but distinct transmission and replication dynamics compared to those of other parasitoid viral elements, including vertical transmission of the virus within wasps, as well as virus replication in both female wasps and fruit fly hosts. Functional assays demonstrate that DlEPV is highly virulent within fly hosts, and wasps without DlEPV have severely reduced parasitism success compared to those with a typical viral load. Taken together, the data presented in this study illustrate a novel case of beneficial virus evolution, in which a virus of unique origin has undergone convergent evolution with other viral elements associated with parasitoid wasps to provide an analogous function throughout parasitism.IMPORTANCE Viruses are generally considered to be disease-causing agents, but several instances of beneficial viral elements have been identified in insects called parasitoid wasps. These virus-derived entities are passed on through wasp generations and enhance the success of the wasps' parasitic life cycle. Many parasitoid-virus partnerships studied to date exhibit common features among independent cases of this phenomenon, including a mother-to-offspring route of virus transmission, a restricted time and location for virus replication, and a positive effect of virus activity on wasp survival. Our characterization of Diachasmimorpha longicaudata entomopoxvirus (DlEPV), a poxvirus found in Diachasmimorpha longicaudata parasitoid wasps, represents a novel example of beneficial virus evolution. Here, we show that DlEPV exhibits functional similarities to known parasitoid viral elements that support its comparable role during parasitism. Our results also demonstrate unique differences that suggest DlEPV is more autonomous than other long-term viral associations described in parasitoid wasps.


Assuntos
Interações entre Hospedeiro e Microrganismos/fisiologia , Poxviridae/fisiologia , Simbiose , Vespas/virologia , Animais , Evolução Biológica , Entomopoxvirinae/genética , Entomopoxvirinae/fisiologia , Regulação Viral da Expressão Gênica , Genes Virais , Genoma Viral , Poxviridae/genética , Interferência de RNA , Fenômenos Fisiológicos Virais , Replicação Viral , Vírus , Venenos de Vespas
14.
Mol Ecol ; 30(7): 1594-1611, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33432714

RESUMO

Horizontal gene transfer from viruses to eukaryotic cells is a pervasive phenomenon. Somatic viral integrations are linked to persistent viral infection whereas integrations into germline cells are maintained in host genomes by vertical transmission and may be co-opted for host functions. In the arboviral vector Aedes aegypti, an endogenous viral element from a nonretroviral RNA virus (nrEVE) was shown to produce PIWI-interacting RNAs (piRNAs) to limit infection with a cognate virus. Thus, nrEVEs may constitute a heritable, sequence-specific mechanism for antiviral immunity, analogous to piRNA-mediated silencing of transposable elements. Here, we combine population genomics and evolutionary approaches to analyse the genomic architecture of nrEVEs in A. aegypti. We conducted a genome-wide screen for adaptive nrEVEs and searched for novel population-specific nrEVEs in the genomes of 80 individual wild-caught mosquitoes from five geographical populations. We show a dynamic landscape of nrEVEs in mosquito genomes and identified five novel nrEVEs derived from two currently circulating viruses, providing evidence of the environmental-dependent modification of a piRNA cluster. Overall, our results show that virus endogenization events are complex with only a few nrEVEs contributing to adaptive evolution in A. aegypti.


Assuntos
Aedes , Aedes/genética , Animais , Genômica , Metagenômica , Mosquitos Vetores/genética , RNA Interferente Pequeno/genética
15.
Virol J ; 18(1): 185, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503524

RESUMO

Endogenous viral elements (EVEs) have been for the most part described in animals and to a less extent in plants. The endogenization was proposed to contribute toward evolution of living organisms via horizontal gene transfer of novel genetic material and resultant genetic diversity. During the last two decades, several full-length and fragmented EVEs of pararetroviral and non-retroviral nature have been identified in different plant genomes, both monocots and eudicots. Prior to this work, no EVEs have been reported in alfalfa (Medicago sativa L.), the most cultivated forage legume in the world. In this study, taking advantage of the most recent developments in the field of alfalfa research, we have assessed alfalfa genome on the presence of viral-related sequences. Our analysis revealed segmented EVEs resembling two dsDNA reverse-transcribing virus species: Soybean chlorotic mottle virus (family Caulimoviridae, genus Soymovirus) and Figwort mosaic virus (family Caulimoviridae, genus Caulimovirus). The EVEs appear to be stable constituents of the host genome and in that capacity could potentially acquire functional roles in alfalfa's development and response to environmental stresses.


Assuntos
Caulimoviridae/genética , Caulimovirus/genética , Medicago sativa , Genoma de Planta , Medicago sativa/genética , Medicago sativa/virologia
16.
J Mol Evol ; 88(1): 41-56, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31599342

RESUMO

Viruses have been infecting their host cells since the dawn of life, and this extremely long-term coevolution gave rise to some surprising consequences for the entire tree of life. It is hypothesised that viruses might have contributed to the formation of the first cellular life form, or that even the eukaryotic cell nucleus originates from an infection by a coated virus. The continuous struggle between viruses and their hosts to maintain at least a constant fitness level led to the development of an unceasing arms race, where weapons are often shuttled between the participants. In this literature review we try to give a short insight into some general consequences or traits of virus-host coevolution, and after this we zoom in to the viral clades of adenoviruses, herpesviruses, nucleo-cytoplasmic large DNA viruses, polyomaviruses and, finally, circoviruses.


Assuntos
Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Vírus/genética , Adaptação Fisiológica/genética , Animais , Evolução Biológica , Vírus de DNA/genética , Vírus de DNA/patogenicidade , Evolução Molecular , Humanos , Vírus/patogenicidade
17.
J Virol ; 91(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28539440

RESUMO

Endogenous viral elements derived from nonretroviral RNA viruses have been described in various animal genomes. Whether they have a biological function, such as host immune protection against related viruses, is a field of intense study. Here, we investigated the repertoire of endogenous flaviviral elements (EFVEs) in Aedes mosquitoes, the vectors of arboviruses such as dengue and chikungunya viruses. Previous studies identified three EFVEs from Aedes albopictus cell lines and one from Aedes aegypti cell lines. However, an in-depth characterization of EFVEs in wild-type mosquito populations and individual mosquitoes in vivo has not been performed. We detected the full-length DNA sequence of the previously described EFVEs and their respective transcripts in several A. albopictus and A. aegypti populations from geographically distinct areas. However, EFVE-derived proteins were not detected by mass spectrometry. Using deep sequencing, we detected the production of PIWI-interacting RNA-like small RNAs, in an antisense orientation, targeting the EFVEs and their flanking regions in vivo The EFVEs were integrated in repetitive regions of the mosquito genomes, and their flanking sequences varied among mosquito populations. We bioinformatically predicted several new EFVEs from a Vietnamese A. albopictus population and observed variation in the occurrence of those elements among mosquitoes. Phylogenetic analysis of an A. aegypti EFVE suggested that it integrated prior to the global expansion of the species and subsequently diverged among and within populations. The findings of this study together reveal the substantial structural and nucleotide diversity of flaviviral integrations in Aedes genomes. Unraveling this diversity will help to elucidate the potential biological function of these EFVEs.IMPORTANCE Endogenous viral elements (EVEs) are whole or partial viral sequences integrated in host genomes. Interestingly, some EVEs have important functions for host fitness and antiviral defense. Because mosquitoes also have EVEs in their genomes, characterizing these EVEs is a prerequisite for their potential use to manipulate the mosquito antiviral response. In the study described here, we focused on EVEs related to the Flavivirus genus, to which dengue and Zika viruses belong, in individual Aedes mosquitoes from geographically distinct areas. We show the existence in vivo of flaviviral EVEs previously identified in mosquito cell lines, and we detected new ones. We show that EVEs have evolved differently in each mosquito population. They produce transcripts and small RNAs but not proteins, suggesting a function at the RNA level. Our study uncovers the diverse repertoire of flaviviral EVEs in Aedes mosquito populations and contributes to an understanding of their role in the host antiviral system.


Assuntos
Aedes/genética , Aedes/virologia , DNA Viral/análise , Flavivirus/genética , Genoma de Inseto , RNA Viral/análise , Animais , Biologia Computacional , DNA Viral/genética , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Espectrometria de Massas , RNA Viral/genética , Recombinação Genética , Proteínas Virais/análise , Integração Viral
18.
BMC Genomics ; 18(1): 512, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28676109

RESUMO

BACKGROUND: Arthropod-borne viruses (arboviruses) transmitted by mosquito vectors cause many important emerging or resurging infectious diseases in humans including dengue, chikungunya and Zika. Understanding the co-evolutionary processes among viruses and vectors is essential for the development of novel transmission-blocking strategies. Episomal viral DNA fragments are produced from arboviral RNA upon infection of mosquito cells and adults. Additionally, sequences from insect-specific viruses and arboviruses have been found integrated into mosquito genomes. RESULTS: We used a bioinformatic approach to analyse the presence, abundance, distribution, and transcriptional activity of integrations from 425 non-retroviral viruses, including 133 arboviruses, across the presently available 22 mosquito genome sequences. Large differences in abundance and types of viral integrations were observed in mosquito species from the same region. Viral integrations are unexpectedly abundant in the arboviral vector species Aedes aegypti and Ae. albopictus, in which they are approximately ~10-fold more abundant than in other mosquito species analysed. Additionally, viral integrations are enriched in piRNA clusters of both the Ae. aegypti and Ae. albopictus genomes and, accordingly, they express piRNAs, but not siRNAs. CONCLUSIONS: Differences in the number of viral integrations in the genomes of mosquito species from the same geographic area support the conclusion that integrations of viral sequences is not dependent on viral exposure, but that lineage-specific interactions exist. Viral integrations are abundant in Ae. aegypti and Ae. albopictus, and represent a thus far underappreciated component of their genomes. Additionally, the genome locations of viral integrations and their production of piRNAs indicate a functional link between viral integrations and the piRNA pathway. These results greatly expand the breadth and complexity of small RNA-mediated regulation and suggest a role for viral integrations in antiviral defense in these two mosquito species.


Assuntos
Aedes/genética , Arbovírus/metabolismo , RNA Interferente Pequeno , Integração Viral , Aedes/metabolismo , Aedes/virologia , Animais , Arbovírus/genética , Culicidae/genética , Culicidae/metabolismo , Culicidae/virologia , DNA Viral , Genoma de Inseto , Genômica , Filogenia
19.
J Gen Virol ; 98(11): 2731-2737, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29039731

RESUMO

Zika virus (ZIKV) is a mosquito-borne flavivirus and has historically been reported to cause mild symptomatic diseases during human infections. More recently, the explosion of microcephaly among infants born to ZIKV-infected women has made ZIKV a global public health concern. While ZIKV causes acute human diseases, infections of vector mosquitoes are basically non-pathogenic, allowing persistent infections and conferring lifelong ability to transmit the virus. Recent studies have revealed that DNA forms of arboviral RNA genomes play a significant role in viral persistence in mosquitoes. We have initiated experiments to determine whether ZIKV generates viral DNA (vDNA) forms following infection in mosquitoes. Here we show that vDNAs are generated following ZIKV infection both in mosquito cell cultures and in its primary vector Aedes aegypti. vDNA formation is more extensive in RNA interference (RNAi)-deficient Aedes albopictus-derived C6/36 cells compared to RNAi-proficient mosquito cells. In addition, vDNAs are generated via multiple template-switching events.


Assuntos
Aedes/virologia , DNA Viral/análise , Replicação Viral , Zika virus/crescimento & desenvolvimento , Zika virus/genética , Animais , Linhagem Celular , RNA Viral/análise
20.
RNA ; 21(10): 1691-703, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26283688

RESUMO

Endogenous bornavirus-like nucleoprotein elements (EBLNs) are sequences within vertebrate genomes derived from reverse transcription and integration of ancient bornaviral nucleoprotein mRNA via the host retrotransposon machinery. While species with EBLNs appear relatively resistant to bornaviral disease, the nature of this association is unclear. We hypothesized that EBLNs could give rise to antiviral interfering RNA in the form of PIWI-interacting RNAs (piRNAs), a class of small RNA known to silence transposons but not exogenous viruses. We found that in both rodents and primates, which acquired their EBLNs independently some 25-40 million years ago, EBLNs are present within piRNA-generating regions of the genome far more often than expected by chance alone (ℙ = 8 × 10(-3)-6 × 10(-8)). Three of the seven human EBLNs fall within annotated piRNA clusters and two marmoset EBLNs give rise to bona fide piRNAs. In both rats and mice, at least two of the five EBLNs give rise to abundant piRNAs in the male gonad. While no EBLNs are syntenic between rodent and primate, some of the piRNA clusters containing EBLNs are; thus we deduce that EBLNs were integrated into existing piRNA clusters. All true piRNAs derived from EBLNs are antisense relative to the proposed ancient bornaviral nucleoprotein mRNA. These observations are consistent with a role for EBLN-derived piRNA-like RNAs in interfering with ancient bornaviral infection. They raise the hypothesis that retrotransposon-dependent virus-to-host gene flow could engender RNA-mediated, sequence-specific antiviral immune memory in metazoans analogous to the CRISPR/Cas system in prokaryotes.


Assuntos
Memória Imunológica/fisiologia , Pseudogenes , RNA Interferente Pequeno/fisiologia , Animais , Mamíferos , Primatas , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa