RESUMO
Mucus forms an important protective barrier that minimizes bacterial contact with the colonic epithelium. Intestinal mucus is organized in a complex network with several specific proteins, including the mucin-2 (MUC2) and the abundant IgGFc-binding protein, FCGBP. FCGBP is expressed in all intestinal goblet cells and is secreted into the mucus. It is comprised of repeated von Willebrand D (vWD) domain assemblies, most of which have a GDPH amino acid sequence that can be autocatalytically cleaved, as previously observed in the mucins MUC2 and mucin-5AC. However, the functions of FCGBP in the mucus are not understood. We show that all vWD domains of FCGBP with a GDPH sequence are cleaved and that these cleavages occur early during biosynthesis in the endoplasmic reticulum. All cleaved fragments, however, remain connected via a disulfide bond within each vWD domain. This cleavage generates a C-terminal-reactive Asp-anhydride that could react with other molecules, such as MUC2, but this was not observed. Quantitative analyses by MS showed that FCGBP was mainly soluble in chaotropic solutions, whereas MUC2 was insoluble, and most of the secreted FCGBP was not covalently bound to MUC2. Although FCGBP has been suggested to bind immunoglobulin G, we were unable to reproduce this binding in vitro using purified proteins. In conclusion, while the function of FCGBP is still unknown, our results suggest that it does not contribute to covalent crosslinking in the mucus, nor incorporate immunoglobulin G into mucus, instead the single disulfide bond linking each fragment could mediate controlled dissociation.
Assuntos
Moléculas de Adesão Celular/metabolismo , Mucosa Intestinal/metabolismo , Proteólise , Animais , Células CHO , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Cricetinae , Cricetulus , Dissulfetos/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mucina-2/metabolismo , Domínios Proteicos , Fator de von Willebrand/químicaRESUMO
Like most eukaryotes, the pre-metazoan social amoeba Dictyostelium depends on the SCF (Skp1/cullin-1/F-box protein) family of E3 ubiquitin ligases to regulate its proteome. In Dictyostelium, starvation induces a transition from unicellular feeding to a multicellular slug that responds to external signals to culminate into a fruiting body containing terminally differentiated stalk and spore cells. These transitions are subject to regulation by F-box proteins and O2-dependent posttranslational modifications of Skp1. Here we examine in greater depth the essential role of FbxwD and Vwa1, an intracellular vault protein inter-alpha-trypsin (VIT) and von Willebrand factor-A (vWFA) domain containing protein that was found in the FbxwD interactome by co-immunoprecipitation. Reciprocal co-IPs using gene-tagged strains confirmed the interaction and similar changes in protein levels during multicellular development suggested co-functioning. FbxwD overexpression and proteasome inhibitors did not affect Vwa1 levels suggesting a non-substrate relationship. Forced FbxwD overexpression in slug tip cells where it is normally enriched interfered with terminal cell differentiation by a mechanism that depended on its F-box and RING domains, and on Vwa1 expression itself. Whereas vwa1-disruption alone did not affect development, overexpression of either of its three conserved domains arrested development but the effect depended on Vwa1 expression. Based on structure predictions, we propose that the Vwa1 domains exert their negative effect by artificially activating Vwa1 from an autoinhibited state, which in turn imbalances its synergistic function with FbxwD. Autoinhibition or homodimerization might be relevant to the poorly understood tumor suppressor role of the evolutionarily related VWA5A/BCSC-1 in humans.
RESUMO
VWA8 (Von Willebrand A Domain Containing Protein 8) is a AAA+ ATPase that is localized to the mitochondrial matrix and is widely expressed in highly energetic tissues. Originally found to be higher in abundance in livers of mice fed a high fat diet, deletion of the VWA8 gene in differentiated mouse AML12 hepatocytes unexpectedly produced a phenotype of higher mitochondrial and nonmitochondrial oxidative metabolism, higher ROS (reactive oxygen species) production mainly from NADPH oxidases, and increased HNF4a expression. The purposes of this study were first, to determine whether higher mitochondrial oxidative capacity in VWA8 null hepatocytes is the product of higher capacity in all aspects of the electron transport chain and oxidative phosphorylation, and second, the density of cristae in mitochondria and mitochondrial content was measured to determine if higher mitochondrial oxidative capacity is accompanied by greater cristae area and mitochondrial abundance. Electron transport chain complexes I, II, III, and IV activities all were higher in hepatocytes in which the VWA8 gene had been deleted using CRISPR/Cas9. A comparison of abundance of proteins in electron transport chain complexes I, III and ATP synthase previously determined using an unbiased proteomics approach in hepatocytes in which VWA8 had been deleted showed agreement with the activity assays. Mitochondrial cristae, the site where electron transport chain complexes are located, were quantified using electron microscopy and stereology. Cristae density, per mitochondrial area, was almost two-fold higher in the VWA8 null cells (P < 0.01), and mitochondrial area was two-fold higher in the VWA8 null cells (P < 0.05). The results of this study allow us to conclude that despite sustained, higher ROS production in VWA8 null cells, a global mitochondrial compensatory response was maintained, resulting in overall higher mitochondrial oxidative capacity.