RESUMO
OBJECTIVES: To describe late transplant-associated thrombotic microangiopathy (TA-TMA) as chronic endothelial complication in bone marrow (BM) after allogeneic hematopoietic stem cell transplantation (HSCT). METHODS: BM specimens along with conventional diagnostic parameters were assessed in 14 single-institutional patients with late TA-TMA (more than 100 days after HCST), including 11 late with history of early TA-TMA, 10 with early TA-TMA (within 100 days), and 12 non TA-TMA patients. Three non-HSCT patients served as control. The time points of BM biopsy were +1086, +798, +396, and +363 days after HSCT, respectively. RESULTS: Late TA-TMA patients showed an increase of CD34+ and von Willebrand Factor (VWF)+ microvascular endothelial cells with atypical VWF+ conglomerates forming thickened VWF+ plaque sinus in the BM compared to patients without late TA-TMA and non-HSCT. Severe chronic (p = .002), steroid-refractory GVHD (p = .007) and reactivation of HHV6 (p = .002), EBV (p = .003), and adenovirus (p = .005) were pronounced in late TA-TMA. Overall and relapse-free survival were shorter in late TA-TMA than in patients without late TA-TMA (5-year OS and RFS: 78.6% vs. 90.2%, 71.4% vs. 86.4%, respectively). CONCLUSION: Chronic allo-immune microangiopathy in BM associated with chronic, steroid-refractory GVHD and/or viral infections are key findings of late, high-risk TA-TMA, which deserves clinical attention.
Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Microangiopatias Trombóticas , Viroses , Humanos , Medula Óssea/patologia , Células Endoteliais/patologia , Fator de von Willebrand , Microangiopatias Trombóticas/diagnóstico , Microangiopatias Trombóticas/etiologia , Microangiopatias Trombóticas/terapia , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Viroses/complicações , Biópsia , EsteroidesRESUMO
BACKGROUND: von Willebrand factor (vWF) plays a crucial role in physiological hemostasis through platelet and subendothelial collagen adhesion. However, its role in shear-induced platelet activation and functional alteration under non-physiological conditions common to blood-contacting medical devices (BCMDs) is not well investigated. METHODS: Fresh healthy human blood was treated with an anti-vWF antibody to block vWF-GPIbα interaction. Untreated blood was used as a control. They were exposed to three levels of non-physiological shear stress (NPSS) (75, 125, and 175 Pa) through a shearing device with an exposure time of 0.5 s to mimic typical shear conditions in BCMDs. Flow cytometric assays were used to measure the expression levels of PAC-1 and P-Selectin and platelet aggregates for platelet activation and the expression levels of GPIbα, GPIIb/IIIa, and GPVI for receptor shedding. Collagen/ristocetin-induced platelet aggregation capacity was characterized by aggregometry. RESULTS: The levels of platelet activation and aggregates increased with increasing NPSS in the untreated blood. More receptors were lost with increasing NPSS, resulting in a decreased capacity of collagen/ristocetin-induced platelet aggregation. In contrast, the increase in platelet activation and aggregates after exposure to NPSS, even at the highest level of NPSS, was significantly lower in treated blood. Nevertheless, there was no notable difference in receptor shedding, especially for GPIIb/IIIa and GPVI, between the two blood groups at the same level of NPSS. The block of vWF exacerbated the decreased capacity of collagen/ristocetin-induced platelet aggregation. CONCLUSIONS: High NPSS activates platelets mainly by enhancing the vWF-GPIbα interaction. Platelet activation and receptor shedding induced by high NPSS likely occur through different pathways.
Assuntos
Ristocetina , Fator de von Willebrand , Humanos , Fator de von Willebrand/metabolismo , Ristocetina/metabolismo , Ativação Plaquetária , Plaquetas/metabolismo , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Colágeno/metabolismo , Estresse MecânicoRESUMO
BACKGROUND: Extracorporeal membrane oxygenation (ECMO) is applied in patients with respiratory or cardiopulmonary failure, but bleeding is a frequent complication contributing to the high mortality rates in this patient collective. A major factor predisposing patients to bleeding events is an acquired von Willebrand syndrome (aVWS). So far, specific treatment options for this phenomenon are lacking. In hereditary von Willebrand disease (VWD), treatment with recombinant or plasma-derived von Willebrand factor (rVWF or pVWF) is common practice. Closure time measured by the Platelet Function Analyser-200 (PFA-200) is an established assay to detect defects in primary hemostasis and the method is useful to monitor the effect of hemostatic therapy. The aim of this study was to assess the effect of recombinant (rVWF) vs. plasma-derived von Willebrand factor (pVWF) on closure times measured by PFA in blood obtained from ECMO patients with aVWS. METHODS: Blood was sampled from thirteen patients receiving extracorporeal membrane oxygenation and three patients with hereditary VWD. Diagnosis of aVWS was made by conventional coagulation parameters and by multimeric structure analysis. PFA analysis of blood spiked with rVWF or pVWF was performed. RESULTS: Thirteen patients receiving ECMO were recruited. Ten patients survived and three patients suffered major bleeding complications. PFA closure times in ECMO patients with aVWS spiked with rVWF were significantly shorter at all concentrations than with pVWF (e.g., rVWF vs. pVWF: 1 U/ml: 150.4 ± 21.7 s vs. 263.8 ± 11.7 s; 4 U/ml: 97.8 ± 9.8 s vs. 195.8 ± 15.4 s, p<0.001). PFA closure times were also significantly shorter in three patients with hereditary VWD treated with rVWF compared to pVWF (e.g., 1 U/ml rVWF vs. pVWF: 73.7±1.33 s vs. 231.3±43.4 s, p<0.01) CONCLUSION: In summary, this study shows that rVWF compared to pVWF more effectively reduced PFA closures times in blood samples of ECMO patients with aVWS. Higher doses of VWF are needed to normalize PFA closure time in blood samples of patients with ECMO-induced aVWS compared to hereditary VWD. These data support the use of PFA-200 to monitor hemostatic effects in a future clinical trial involving ECMO patients with aVWS.
RESUMO
Sinusoidal obstruction syndrome (SOS) is a serious liver disorder that occurs after liver transplantation, hematopoietic stem cell transplantation, and the administration of anticancer drugs. Since SOS is a life-threatening condition that can progress to liver failure, early detection and prompt treatment are required for the survival of patients with this condition. In this study, female CD1 mice were divided into treatment and control groups after the induction of an SOS model using monocrotaline (MCT, 270 mg/kg body weight intraperitoneally). The mice were analyzed at 0, 12, 24, and 48 h after MCT administration, and blood and liver samples were collected for assays and histopathology tests. SOS was observed in the livers 12 h after MCT injection. In addition, immunohistochemical findings demonstrated CD42b-positive platelet aggregations, positive signals for von Willebrand factor (VWF), and a disintegrin-like metalloproteinase with thrombospondin type 1 motifs 13 (ADAMTS13) in the MCT-exposed liver sinusoid. Although ADAMTS13's plasma concentrations peaked at 12 h, its enzyme activity continuously decreased by 75% at 48 h and, inversely and proportionally, concentrations in the VWF-A2 domain, in which the cleavage site of ADAMTS13 is located, increased after MCT injection. These findings suggest that the plasma concentration and activity of ADAMTS13 could be useful biomarkers for early detection and therapeutic intervention in patients with SOS.
Assuntos
Hepatopatia Veno-Oclusiva , Transplante de Fígado , Humanos , Camundongos , Feminino , Animais , Hepatopatia Veno-Oclusiva/induzido quimicamente , Hepatopatia Veno-Oclusiva/diagnóstico , Fator de von Willebrand/metabolismo , Prognóstico , Transplante de Fígado/efeitos adversos , Proteína ADAMTS13RESUMO
A DNA aptamer to the von Willebrand factor (VWF) A1 domain, TAGX-0004, inhibits the binding of VWF to platelets. Nucleic acid aptamers are single-stranded DNA or RNA molecule forming three-dimensional structures that are capable of specifically binding to proteins and are expected to contribute to alternative medicine. ARC1779, an aptamer targeting the VWF A1 domain, had been evaluated in a phase II clinical trial of patients with acquired thrombotic thrombocytopenic purpura (aTTP); however, its development was terminated. Caplacizumab, an anti-VWF A1 domain nanobody, is now increasingly employed as first-line therapy for the treatment of aTTP in Western countries. However, there have been reports regarding adverse bleeding events and the high cost of the treatment. In this study, the inhibitory effects of TAGX-0004 were compared with those of ARC1779 and caplacizumab on in vitro platelet aggregation and thrombus formation. TAGX-0004 had an excellent high affinity to the VWF A1 domain and superior efficacy, such as its potent inhibitory activity in in vitro platelet aggregation and thrombus formation. Therefore, it can potentially overcome the problems associated with caplacizumab and can be developed as a promising drug not only for aTTP treatment but also for the treatment of the various VWF-mediated thrombotic disorders.
Assuntos
Púrpura Trombocitopênica Trombótica , Trombose , Plaquetas , Humanos , Inibidores da Agregação Plaquetária/uso terapêutico , Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Trombose/tratamento farmacológico , Fator de von Willebrand/uso terapêuticoRESUMO
BACKGROUND: Type 3 von Willebrand disease (VWD) exhibits severe hemorrhagic tendency with complicated pathogenesis. The C-terminal cystine knot (CTCK) domain plays an important role in the dimerization and secretion of von Willebrand factor (VWF). The CTCK domain has four intrachain disulfide bonds including Cys2724-Cys2774, Cys2739-Cys2788, Cys2750-Cys2804 and Cys2754-Cys2806, and the single cysteine mutation in Cys2739-Cys2788, Cys2750-Cys2804 and Cys2754-Cys2806 result in type 3 VWD, demonstrating the crucial role of these three disulfide bonds in VWF biosynthesis, however, the role of the remaining disulfide bond Cys2724-Cys2774 remains unclear. METHOD AND RESULTS: In this study, by the next-generation sequencing we found a missense mutation a c.8171G>A (C2724Y) in the CTCK domain of VWF allele in a patient family with type 3 VWD. In vitro, VWF C2724Y protein was expressed normally in HEK-293T cells but did not form a dimer or secrete into cell culture medium, suggesting that C2724 is critical for the VWF dimerization, and thus for VWF multimerization and secretion. CONCLUSIONS: Our findings provide the first genetic evidence for the important role of Cys2724-Cys2774 in VWF biosynthesis and secretion. Therefore, all of the four intrachain disulfide bonds in CTCK monomer contribute to VWF dimerization and secretion.
RESUMO
Von Willebrand factor (VWF) and coagulation factor VIII (FVIII) circulate as a complex in plasma and have a major role in the hemostatic system. VWF has a dual role in hemostasis. It promotes platelet adhesion by anchoring the platelets to the subendothelial matrix of damaged vessels and it protects FVIII from proteolytic degradation. Moreover, VWF is an acute phase protein that has multiple roles in vascular inflammation and is massively secreted from Weibel-Palade bodies upon endothelial cell activation. Activated FVIII on the other hand, together with coagulation factor IX forms the tenase complex, an essential feature of the propagation phase of coagulation on the surface of activated platelets. VWF deficiency, either quantitative or qualitative, results in von Willebrand disease (VWD), the most common bleeding disorder. The deficiency of FVIII is responsible for Hemophilia A, an X-linked bleeding disorder. Here, we provide an overview on the role of the VWF-FVIII interaction in vascular physiology.
Assuntos
Fenômenos Fisiológicos Cardiovasculares , Fator VIII/metabolismo , Fator de von Willebrand/metabolismo , Fator VIII/química , Hemofilia A/metabolismo , Humanos , Doenças de von Willebrand/metabolismo , Fator de von Willebrand/químicaRESUMO
This study was undertaken to develop a numerical/computational simulation of von Willebrand Factor (vWF) - mediated platelet shear activation and deposition in an idealized stenosis. Blood is treated as a multi-constituent mixture comprised of a linear fluid component and a porous solid component (thrombus). Chemical and biological species involved in coagulation are modeled using a system of coupled convection-reaction-diffusion (CRD) equations. This study considers the cumulative effect of shear stress (history) on platelet activation. The vWF activity is modeled as an enhancement function for the shear stress accumulation and is related to the experimentally-observed unfolding rate of vWF. A series of simulations were performed in an idealized stenosis in which the predicted platelets deposition agreed well with previous experimental observations spatially and temporally, including the reduction of platelet deposition with decreasing expansion angle. Further simulation indicated a direct relationship between vWF-mediated platelet deposition and degree of stenosis. Based on the success with these benchmark simulations, it is hoped that the model presented here may provide additional insight into vWF-mediated thrombosis and prove useful for the development of more hemo-compatible blood-wetted devices in the future.
RESUMO
Hepatic diseases refer to acute and chronic liver disease linked to all kinds of hepatic pathological changes. Viral hepatitis, bacterial infections, endotoxins and other factors initiate the activation and injury of vascular endothelial cells in patients with liver diseases. Von Willebrand factor (vWF) represents a specific marker of endothelial dysfunction and plays a vital role in the occurrence and development of hepatic diseases. This paper reviews the research progress of the relationship between vWF and hepatic diseases.
Assuntos
Endotélio Vascular , Hepatopatias , Fator de von Willebrand , Biomarcadores , Endotoxinas , HumanosRESUMO
As a broad-spectrum anti-microbial peptide, LL-37 plays an important role in the innate immune system. A series of previous reports implicates LL-37 as an activator of various cell surface receptor-mediated functions, including chemotaxis in integrin CD11b/CD18 (Mac-1)-expressing cells. However, evidence is scarce concerning the direct binding of LL-37 to these receptors and investigations on the associated binding kinetics is lacking. Mac-1, a member of the ß2 integrin family, is mainly expressed in myeloid leukocytes. Its critical functions include phagocytosis of complement-opsonized pathogens. Here, we report on interactions of LL-37 and its fragment FK-13 with the ligand-binding domain of Mac-1, the α-chain I domain. LL-37 bound the I-domain with an affinity comparable to the complement fragment C3d, one of the strongest known ligands for Mac-1. In cell adhesion assays both LL-37 and FK-13 supported binding by Mac-1 expressing cells, however, with LL-37-coupled surfaces supporting stronger cell adhesion than FK-13. Likewise, in phagocytosis assays with primary human monocytes both LL-37 and FK-13 enhanced uptake of particles coupled with these ligands but with a tendency towards a stronger uptake by LL-37.
Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Antígenos CD18/metabolismo , Antígeno de Macrófago 1/metabolismo , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Antígenos CD18/química , Antígenos CD18/genética , Adesão Celular/genética , Humanos , Imunidade Inata/genética , Cinética , Leucócitos/metabolismo , Antígeno de Macrófago 1/química , Antígeno de Macrófago 1/genética , Neutrófilos/metabolismo , Fagocitose/genética , Ligação Proteica , CatelicidinasRESUMO
The binding of von Willebrand factor (VWF) to the platelet membrane glycoprotein 1b-IX (GP1b-IX) leads to activation of platelets. GP1b was shown to signal via the FcRγ-ITAM (Fc Receptor γ-Immunoreceptor tyrosine-based activation motif) pathway, activating spleen tyrosine kinase (Syk) and other tyrosine kinases. However, there have been conflicting reports regarding the role of Syk in GP1b signaling. In this study, we sought to resolve these conflicting reports and clarify the role of Syk in VWF-induced platelet activation. The inhibition of Syk with the selective Syk inhibitors, OXSI-2 and PRT-060318, did not inhibit VWF-induced platelet adhesion, agglutination, aggregation, or secretion. In contrast, platelets stimulated with the Glycoprotein VI (GPVI) agonist, collagen-related peptide (CRP), failed to cause any aggregation or secretion in presence of the Syk inhibitors. Furthermore, GP1b-induced platelet signaling was unaffected in the presence of Syk inhibitors, but GPVI-induced signaling was abolished under similar conditions. Thus, we conclude that Syk kinase activity does not play any functional role downstream of GP1b-mediated platelet activation.
Assuntos
Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Transdução de Sinais , Quinase Syk/metabolismo , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Humanos , Fosforilação , Adesividade Plaquetária/genética , Agregação Plaquetária/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Transdução de Sinais/efeitos dos fármacos , Quinase Syk/antagonistas & inibidores , Quinase Syk/genética , Fator de von Willebrand/metabolismoRESUMO
BACKGROUND: Altered levels of von Willebrand factor (vWF) and ADAMTS13 can promote thrombosis and disturb blood flow in kidney microcirculations. We investigated the association of serum vWF:ADAMTS13 ratio in relation to decline in kidney function. STUDY DESIGN: Prospective cohort study. SETTING & PARTICIPANTS: 2,479 individuals (mean age, 65.1±5.9 [SD] years; 43% men) from the population-based Rotterdam Study. PREDICTORS: vWF, ADAMTS13, and vWF:ADAMTS13 ratio. OUTCOMES & MEASUREMENTS: Annual decline in estimated glomerular filtration rate (eGFR), halving of eGFR, and new-onset eGFR<60mL/min/1.73m2 were assessed. RESULTS: During a median follow-up of 11 (range, 7.81-13.57) years, 500 cases of new-onset eGFR<60mL/min/1.73m2 occurred. The population had a mean eGFR decline of 0.96±0.92mL/min/1.73m2 per year. Higher vWF:ADAMTS13 ratio was associated with steeper annual decline in eGFR (difference, -0.06 [95% CI, -0.09 to -0.02] mL/min/1.73m2 per year) and higher risk for new-onset eGFR<60mL/min/1.73m2 (OR, 1.13; 95% CI, 1.01-1.27). Likewise, higher vWF:ADAMTS13 ratio was associated with higher risk for halving of eGFR (OR, 1.40; 95% CI, 1.02-1.93). After adjustment for cardiovascular risk factors and blood group, effect estimates remained the same. LIMITATIONS: No data available for albuminuria. Participants were classified based on a single measurement of vWF and ADAMTS13. CONCLUSIONS: In this population-based study, we showed that higher vWF:ADAMTS13 ratio is associated with decline in kidney function, suggesting a role of elevated prothrombotic factors in the development and progression of kidney disease.
Assuntos
Proteína ADAMTS13/sangue , Proteína ADAMTS13/fisiologia , Rim/fisiopatologia , Fator de von Willebrand/análise , Idoso , Feminino , Taxa de Filtração Glomerular , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de RiscoRESUMO
A 12-year-old boy was hospitalized for hemolytic anemia, thrombocytopenia, acute kidney injury, and generalized seizures. The childhood onset, severely decreased kidney function, absence of prodromal diarrhea, negative test results for Shiga-like toxin-producing Escherichia coli, elevated plasma levels of the terminal complement complex sC5b-9, and ex vivo testing in endothelial cells showing serum-induced complement activation were all consistent with a diagnosis of complement-mediated atypical hemolytic uremic syndrome. Before plasma ADAMTS13 (von Willebrand factor protease) activity results were available, the patient was treated with the anti-C5 monoclonal antibody eculizumab, and treatment was followed by prompt disease remission. However, results of ADAMT13 activity level tests and gene screening revealed a severe deficiency associated with 2 heterozygous mutations in the ADAMTS13 gene, fully consistent with a diagnosis of congenital thrombotic thrombocytopenic purpura. Screening for atypical hemolytic uremic syndrome-associated genes failed to show a mutation and an assay for plasma anti-factor H antibodies gave negative results both before and after eculizumab treatment initiation. The patient's clinical evolution suggests that complement activation plays a role in the pathogenesis of thrombotic thrombocytopenic purpura and provides unexpected new insights into the treatment of this life-threatening disease.
Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Púrpura Trombocitopênica Trombótica/diagnóstico , Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Proteínas ADAM/genética , Proteína ADAMTS13 , Criança , Humanos , Masculino , Púrpura Trombocitopênica Trombótica/genética , Resultado do TratamentoRESUMO
Limbal microvascular endothelial cells (L-MVEC) contribute to formation of the corneal-limbal stem cell niche and to neovascularization of diseased and injuries corneas. Nevertheless, despite these important roles in corneal health and disease, few attempts have been made to isolate L-MVEC with the view to studying their biology in vitro. We therefore explored the feasibility of generating primary cultures of L-MVEC from cadaveric human tissue. We commenced our study by evaluating growth conditions (MesenCult-XF system) that have been previously found to be associated with expression of the endothelial cell surface marker thrombomodulin/CD141, in crude cultures established from collagenase-digests of limbal stroma. The potential presence of L-MVEC in these cultures was examined by flow cytometry using a more specific marker for vascular endothelial cells, CD31/PECAM-1. These studies demonstrated that the presence of CD141 in crude cultures established using the MesenCult-XF system is unrelated to L-MVEC. Thus we subsequently explored the use of magnetic assisted cell sorting (MACS) for CD31 as a tool for generating cultures of L-MVEC, in conjunction with more traditional endothelial cell growth conditions. These conditions consisted of gelatin-coated tissue culture plastic and MCDB-131 medium supplemented with foetal bovine serum (10% v/v), D-glucose (10 mg/mL), epidermal growth factor (10 ng/mL), heparin (50 µg/mL), hydrocortisone (1 µg/mL) and basic fibroblast growth factor (10 ng/mL). Our studies revealed that use of endothelial growth conditions are insufficient to generate significant numbers of L-MVEC in primary cultures established from cadaveric corneal stroma. Nevertheless, through use of positive-MACS selection for CD31 we were able to routinely observe L-MVEC in cultures derived from collagenase-digests of limbal stroma. The presence of L-MVEC in these cultures was confirmed by immunostaining for von Willebrand factor (vWF) and by ingestion of acetylated low-density lipoprotein. Moreover, the vWF(+) cells formed aligned cell-to-cell 'trains' when grown on Geltrex™. The purity of L-MVEC cultures was found to be unrelated to tissue donor age (32-80 years) or duration in eye bank corneal preservation medium prior to use (3-10 days in Optisol) (using multiple regression test). Optimal purity of L-MVEC cultures was achieved through use of two rounds of positive-MACS selection for CD31 (mean ± s.e.m, 65.0 ± 20.8%; p < 0.05). We propose that human L-MVEC cultures generated through these techniques, in conjunction with other cell types, will provide a useful tool for exploring the mechanisms of blood vessel cell growth in vitro.
Assuntos
Células Endoteliais/citologia , Limbo da Córnea/irrigação sanguínea , Microvasos/citologia , Cadáver , Diferenciação Celular , Proliferação de Células , Separação Celular/métodos , Células Cultivadas , Citometria de Fluxo , Humanos , Limbo da Córnea/citologiaRESUMO
A cell line has been developed from the bulbus arteriosus (BA) of the walleye (WE), Sander vitreus (Mitchill), and is termed WEBA. WEBA produced collagen I, and when held at confluency for days or weeks, spontaneously formed capillary-like tubes. WEBA cells bound fluorescently-labeled Ulex europaeus lectin agglutinin I (UEA-1), took up acetylated low density lipoprotein (Ac-LDL), were stained for von Willebrand factor (vWF), and produced nitric oxide (NO). The cytoskeleton consisted at least of α- and ß-tubulin, vimentin, and actin, with the actin organized into circumferential bundles. Immunofluorescence staining revealed at least two tight junction proteins, zonula occludens-1 (ZO-1) and claudin 3. Together these results suggest that WEBA is an endothelial cell line. Relatively high doses of 2,3,7,8-tetrachlorodibenzodioxin (TCDD) induced cytochrome P4501A (CYP1A) protein and 7-ethoxyresorufin o-deethylase (EROD) activity in WEBA. As one of the first fish endothelial and BA cell lines, WEBA should be useful in many disciplines in which the teleost cardiovascular system is a focus.
Assuntos
Células Endoteliais/citologia , Percas , Cultura Primária de Células/métodos , Animais , Linhagem Celular/citologia , Citoesqueleto/metabolismoRESUMO
An excessive von Willebrand factor (VWF) secretion, coupled with a moderate to severe deficiency of ADAMTS13 activity, serves as a linking mechanism between inflammation to thrombosis. The former facilitates platelet adhesion to the vessel wall and the latter is required to cleave VWF multimers. As a result, the ultra-large VWF (UL-VWF) multimers released by Weibel-Palade bodies remain uncleaved. In this study, using a computational model based on first principles, we quantitatively show how the uncleaved UL-VWF multimers interact with the blood cells to initiate microthrombosis. We observed that platelets first adhere to unfolded and stretched uncleaved UL-VWF multimers anchored to the microvessel wall. By the end of this initial adhesion phase, the UL-VWF multimers and platelets make a mesh-like trap in which the red blood cells increasingly accumulate to initiate a gradually growing microthrombosis. Although high-shear rate and blood flow velocity are required to activate platelets and unfold the UL-VWFs, during the initial adhesion phase, the blood velocity drastically drops after thrombosis, and as a result, the wall shear stress is elevated near UL-VWF roots, and the pressure drops up to 6 times of the healthy condition. As the time passes, these trends progressively continue until the microthrombosis fully develops and the effective size of the microthrombosis and these flow quantities remain almost constant. Our findings quantitatively demonstrate the potential role of UL-VWF in coagulopathy.
Assuntos
Transtornos da Coagulação Sanguínea , Fator de von Willebrand , Humanos , Transtornos da Coagulação Sanguínea/sangue , Transtornos da Coagulação Sanguínea/metabolismo , Plaquetas/metabolismo , Simulação por Computador , Modelos Biológicos , Análise Numérica Assistida por Computador , Adesividade Plaquetária , Multimerização Proteica , Estresse Mecânico , Trombose/metabolismo , Fator de von Willebrand/metabolismoRESUMO
Background and Objective: Thrombotic thrombocytopenic purpura (TTP) is a rare but debilitating thrombotic microangiopathy that results from severe deficiency of the enzyme ADAMTS13. The disorder was first described in the early 20th century, but the pathophysiology of the disease has only been elucidated in the past three decades. In this narrative review, we will summarize the milestone moments in the history of TTP research and discovery. Methods: We searched literature using PubMed from 1924 to 2023 using the following free text searches: "thrombotic thrombocytopenic purpura", "Moschcowitz disease", and "thrombotic microangiopathy". We found 6,917 peer-reviewed articles and sorted through these for relevant literature pertinent to the review. A total of 46 articles were included for review and the remainder were excluded. Key Content and Findings: The history of TTP research was reviewed, with a sampling of major events in the evolution of the understanding of the pathophysiology and treatment of the disease discussed here. There remains much to be learned about the nature of the disease in order to develop more specific and less harmful treatments. Conclusions: An overview of the major discoveries that have led to our current understanding of TTP reveals the results of collaboration of multiple groups of physicians and scientists through the past century, with additional breakthroughs likely to occur in the future because of that same collaborative spirit.
RESUMO
BACKGROUND: Myeloproliferative neoplasms (MPNs) are often associated with splanchnic vein thrombosis (SVT). Not all the factors involved in the thrombotic tendency are currently known. OBJECTIVES: This study aims to evaluate a possible association between ADAMTS13, von Willebrand factor (VWF), platelet microvesicles (MV), and factor VIII activity (FVIII:C) with thrombotic events in MPN patients. MATERIALS AND METHODS: In total, 36 consecutive MPN patients with SVT were enrolled. The MPNs were diagnosed based on clinical characteristics and one or more gene mutations among JAK-2, CALR, and MPL. As controls, 50 randomly selected patients with MPN without thrombosis, 50 patients with deep vein thrombosis without MPNs, and 50 healthy blood donors were evaluated. Complete blood count, ADAMTS13, VWF, MV, and FVIII:C in plasma were measured in all the subjects. RESULTS: The JAK-2 mutation was found in 94% of the patients with SVT, but none were triple-negative for genetic mutations (JAK2 V617F, CALR, MPL, and exon 12). Compared to the normal subjects, in all the MPN patients (with or without SVT), the levels of ADAMTS13 were found to be significantly lower (p < 0.001) and the MV concentrations were significantly higher (p < 0.001). Among the MPN patients, the VWF and FVIII:C levels were significantly higher in the patients with SVT than those without thrombosis (p = 0.007 and p = 0.04, respectively). Splenomegaly was present in 78% of MPN patients with SVT and in 30% of those without SVT (p < 0.001). The ADAMTS13/VWF ratio was reduced in all the patients, but not in the healthy blood donors (p < 0.001). CONCLUSIONS: The significant increase in circulating MV, VWF, and FVIII:C in the MPN patients and in the patients with thrombosis supports the role of endothelium damage in promoting thrombotic events. In particular, a significant increase in VWF and FVIII:C levels was found in the MPN patients with SVT.
RESUMO
Hematology is a clinical specialty with strong roots in the laboratory; accordingly, the lab can help solve perplexing clinical problems. This review highlights clinical-pathological conundrums addressed during my 35-year hematology career at McMaster University. Heyde syndrome is the association between aortic stenosis and bleeding gastrointestinal (GI) angiodysplasia where the bleeding is usually cured by aortic valve replacement; the chance reading of a neonatal study showing reversible deficiency of high-molecular-weight (HMW) multimers of von Willebrand factor (vWF) following surgical correction of congenital heart disease provided the key insight that a subtle deficiency of HMW multimers of vWF explains Heyde syndrome. The unusual immunobiology of heparin-induced thrombocytopenia (HIT)-a highly prothrombotic, antibody-mediated, anti-platelet factor 4 (PF4) disorder featuring rapid appearance and then disappearance (seroreversion) of the pathological heparin-dependent platelet-activating antibodies-permitted identification of key clinical features that informed development of a scoring system (4Ts) to aid in HIT diagnosis. Atypical clinical presentations of HIT prompted identification of heparin-independent anti-PF4 antibodies, now recognized as the explanation for vaccine-induced immune thrombotic thrombocytopenia (VITT), as well as VITT-like disorders triggered by adenovirus infection. Another unusual feature of HIT is its strong association with limb ischemia, including limb necrosis secondary to deep-vein/microvascular thrombosis (venous limb gangrene). The remarkable observation that supratherapeutic warfarin anticoagulation predisposes to HIT- and cancer-associated venous limb gangrene provided insight into disturbed procoagulant/anticoagulant balance; these concepts are relevant to microvascular thrombosis in critical illness (symmetrical peripheral gangrene), including a pathophysiological role for proximate "shock liver" (impaired hepatic synthesis of natural anticoagulants).
Assuntos
Fator Plaquetário 4 , Humanos , Fator Plaquetário 4/imunologia , Fator Plaquetário 4/metabolismo , Necrose , Isquemia/etiologia , Isquemia/patologia , Isquemia/metabolismo , Heparina/efeitos adversos , Estenose da Valva Aórtica , Trombocitopenia/etiologia , Trombocitopenia/patologia , Autoanticorpos/imunologiaRESUMO
Each year in the United States, â¼2.7 million persons seek medical attention for traumatic brain injury (TBI), of which â¼85% are characterized as being mild brain injuries. Many different cell types in the brain are affected in these heterogeneous injuries, including neurons, glia, and the brain vasculature. Efforts to identify biomarkers that reflect the injury of these different cell types have been a focus of ongoing investigation. We hypothesized that von Willebrand factor (vWF) is a sensitive biomarker for acute traumatic vascular injury and correlates with symptom severity post-TBI. To address this, blood was collected from professional boxing athletes (n = 17) before and within 30 min after competition. Plasma levels of vWF and neuron-specific enolase were measured using the Meso Scale Discovery, LLC. (MSD) electrochemiluminescence array-based multi-plex format (MSD, Gaithersburg, MD). Additional symptom and outcome data from boxers and patients, such as the Rivermead symptom scores (Rivermead Post Concussion Symptoms Questionnaire [RPQ-3]), were collected. We found that, subsequent to boxing bouts, there was a 1.8-fold increase in vWF levels within 30 min of injury (p < 0.0009). Moreover, fold-change in vWF correlates moderately (r = 0.51; p = 0.03) with the number of head blows. We also found a positive correlation (r = 0.69; p = 0.002) between fold-change in vWF and self-reported post-concussive symptoms, measured by the RPQ-3. The receiver operating curve analysis of vWF plasma levels and RPQ-3 scoring yielded a sensitivity of 94.12% and a specificity of 76.5% with an area under the curve of 83% for boxers after a fight compared to the pre-bout baseline. This study suggests that vWF is a potential blood biomarker measurable in the hyperacute period after blunt mild TBI. This biomarker may prove to be useful in diagnosing and monitoring traumatic vascular injury.