Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 480
Filtrar
1.
New Phytol ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267263

RESUMO

Resolving the position of roots in the whole-plant hierarchy of drought-induced xylem embolism resistance is fundamental for predicting when species become isolated from soil water resources. Published research generally suggests that roots are the most vulnerable organ of the plant vascular system, although estimates vary significantly. However, our knowledge of root embolism excludes the fine roots (< 2 mm diameter) that form the bulk of total absorptive surface area of the root network for water and nutrient uptake. We measured fine root and stem xylem vulnerability in 10 vascular plant species from the major land plant clades (five angiosperms, three conifers, a fern and lycophyte), using standardised in situ methods (Optical Methods and MicroCT). Mean fine root embolism resistance across the network matched or exceeded stems in all study species. In six of these species (one fern, one lycophyte, three conifers and one angiosperm), fine roots were significantly more embolism resistant than stems. No clear relationship was found between root xylem conduit diameter and vulnerability. These results provide insight into the resistance of the plant hydraulic pathway at the site of water and nutrient uptake, and challenge the long-standing assumption that fine roots are more vulnerable than stems.

2.
New Phytol ; 242(2): 444-452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396304

RESUMO

Stomatal closure under high VPDL (leaf to air vapour pressure deficit) is a primary means by which plants prevent large excursions in transpiration rate and leaf water potential (Ψleaf) that could lead to tissue damage. Yet, the drivers of this response remain controversial. Changes in Ψleaf appear to drive stomatal VPDL response, but many argue that dynamic changes in soil-to-leaf hydraulic conductance (Ks-l) make an important contribution to this response pathway, even in well-hydrated soils. Here, we examined whether the regulation of whole plant stomatal conductance (gc) in response to typical changes in daytime VPDL is influenced by dynamic changes in Ks-l. We use well-watered plants of two species with contrasting ecological and physiological features: the herbaceous Arabidopsis thaliana (ecotype Columbia-0) and the dry forest conifer Callitris rhomboidea. The dynamics of Ks-l and gc were continuously monitored by combining concurrent in situ measurements of Ψleaf using an open optical dendrometer and whole plant transpiration using a balance. Large changes in VPDL were imposed to induce stomatal closure and observe the impact on Ks-l. In both species, gc was observed to decline substantially as VPDL increased, while Ks-l remained stable. Our finding suggests that stomatal regulation of transpiration is not contingent on a decrease in Ks-l. Static Ks-l provides a much simpler explanation for transpiration control in hydrated plants and enables simplified modelling and new methods for monitoring plant water use in the field.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Solo , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Água/metabolismo , Transpiração Vegetal/fisiologia
3.
New Phytol ; 242(2): 453-465, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38413216

RESUMO

The water status of the living tissue in leaves is critical in determining plant function and global exchange of water and CO2. Despite significant advances in the past two decades, persistent questions remain about the tissue-specific origins of leaf hydraulic properties and their dependence on water status. We use a fluorescent nanoparticle reporter that provides water potential in the mesophyll apoplast adjacent to the epidermis of intact leaves to complement existing methods based on the Scholander Pressure Chamber (SPC). Working in tomato leaves, this approach provides access to the hydraulic conductance of the whole leaf, xylem, and outside-xylem tissues. These measurements show that, as stem water potential decreases, the water potential in the mesophyll apoplast can drop below that assessed with the SPC and can fall significantly below the turgor loss point of the leaf. We find that this drop in potential, dominated by the large loss (10-fold) of hydraulic conductance of the outside-xylem tissue, is not however strong enough to significantly limit transpiration. These observations highlight the need to reassess models of water transfer through the outside-xylem tissues, the potential importance of this tissue in regulating transpiration, and the power of new approaches for probing leaf hydraulics.


Assuntos
Solanum lycopersicum , Folhas de Planta/fisiologia , Água/fisiologia , Xilema/fisiologia , Transpiração Vegetal
4.
New Phytol ; 243(1): 98-110, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38725410

RESUMO

Some plants exhibit dynamic hydraulic regulation, in which the strictness of hydraulic regulation (i.e. iso/anisohydry) changes in response to environmental conditions. However, the environmental controls over iso/anisohydry and the implications of flexible hydraulic regulation for plant productivity remain unknown. In Juniperus osteosperma, a drought-resistant dryland conifer, we collected a 5-month growing season time series of in situ, high temporal-resolution plant water potential ( Ψ ) and stand gross primary productivity (GPP). We quantified the stringency of hydraulic regulation associated with environmental covariates and evaluated how predawn water potential contributes to empirically predicting carbon uptake. Juniperus osteosperma showed less stringent hydraulic regulation (more anisohydric) after monsoon precipitation pulses, when soil moisture and atmospheric demand were high, and corresponded with GPP pulses. Predawn water potential matched the timing of GPP fluxes and improved estimates of GPP more strongly than soil and/or atmospheric moisture, notably resolving GPP underestimation before vegetation green-up. Flexible hydraulic regulation appears to allow J. osteosperma to prolong soil water extraction and, therefore, the period of high carbon uptake following monsoon precipitation pulses. Water potential and its dynamic regulation may account for why process-based and empirical models commonly underestimate the magnitude and temporal variability of dryland GPP.


Assuntos
Ciclo do Carbono , Carbono , Ecossistema , Juniperus , Água , Juniperus/fisiologia , Água/metabolismo , Carbono/metabolismo , Solo/química , Chuva , Estações do Ano , Secas
5.
New Phytol ; 242(3): 935-946, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38482720

RESUMO

Turgor loss point (TLP) is an important proxy for plant drought tolerance, species habitat suitability, and drought-induced plant mortality risk. Thus, TLP serves as a critical tool for evaluating climate change impacts on plants, making it imperative to develop high-throughput and in situ methods to measure TLP. We developed hyperspectral pressure-volume curves (PV curves) to estimate TLP using leaf spectral reflectance. We used partial least square regression models to estimate water potential (Ψ) and relative water content (RWC) for two species, Frangula caroliniana and Magnolia grandiflora. RWC and Ψ's model for each species had R2 ≥ 0.7 and %RMSE = 7-10. We constructed PV curves with model estimates and compared the accuracy of directly measured and spectra-predicted TLP. Our findings indicate that leaf spectral measurements are an alternative method for estimating TLP. F. caroliniana TLP's values were -1.62 ± 0.15 (means ± SD) and -1.62 ± 0.34 MPa for observed and reflectance predicted, respectively (P > 0.05), while M. grandiflora were -1.78 ± 0.34 and -1.66 ± 0.41 MPa (P > 0.05). The estimation of TLP through leaf reflectance-based PV curves opens a broad range of possibilities for future research aimed at understanding and monitoring plant water relations on a large scale with spectral ecophysiology.


Assuntos
Folhas de Planta , Água , Folhas de Planta/fisiologia , Água/fisiologia , Ecossistema , Secas
6.
Plant Cell Environ ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119783

RESUMO

Understanding xylem embolism formation is challenging due to dynamic changes and multiphase interactions in conduits. Here, we hypothesise that embolism spread involves gas diffusion in xylem, and is affected by time. We measured hydraulic conductivity (Kh) in flow-centrifuge experiments over 1 h at a given pressure and temperature for stem samples of three angiosperm species. Temporal changes in Kh at 5, 22, and 35°C, and at various pressures were compared to modelled gas concentration changes in a recently embolised vessel in the centre of a centrifuge sample. Temporal changes in Kh were logarithmic and species-specific. Maximum relative increases of Kh between 6% and 40% happened at 22°C for low centrifugal speed (<3250 RPM), while maximum decreases between 41% and 61% occurred at higher speeds. These reductions in Kh were experimentally shown to be associated with a temporal increase of embolism at the centre of centrifuge samples, which was likely associated with gas concentration increases in recently embolized vessels. Although embolism is mostly pressure-driven, our experimental and modelled data indicate that time, conduit characteristics, and temperature are involved due to their potential role in gas diffusion. Gas diffusion, however, does not seem to cover the entire process of embolism spread.

7.
Plant Cell Environ ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254168

RESUMO

The driving forces of transpiration are not only atmospheric evaporation but also root zone water supply and stomatal regulation among species. However, the biophysiological drivers of transpiration remain incompletely understood in heterogeneous karst habitats. This study investigated the commonly coexisting tree species Mallotus philippensis and Celtis biondii in two typical karst habitats: rock-dominated (RD) habitat and control soil-dominated (SD) habitat. Over 2 years, soil moisture, transpiration, root distribution, and leaf water potential were measured. The results showed that soil moisture in the RD habitat was significantly lower than in the SD habitat. Transpiration patterns also differed between habitats, with species-specific distinctions driven by biophysiological traits. M. philippensis showed small hydroscape areas and its root system mainly distributed in the soil zone in both habitats. The isohydric behaviour and lower root density in the RD habitat drove M. philippensis to reduce transpiration in response to soil water deficiency. Conversely, C. biondii had large hydroscape areas and roots capable of penetrating bedrock. It transpired higher relying on ample accessible water through anisohydric behaviour and having a more robust root system both in soil and bedrock zones in the RD habitat. Our study highlights the critical role of root water accessibility and leaf iso/anisohydric tendencies in driving transpiration.

8.
Plant Cell Environ ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119823

RESUMO

Drought is one of the main factors contributing to tree mortality worldwide and drought events are set to become more frequent and intense in the face of a changing climate. Quantifying water stress of forests is crucial in predicting and understanding their vulnerability to drought-induced mortality. Here, we explore the use of high-resolution spectroscopy in predicting water stress indicators of two native Australian tree species, Callitris rhomboidea and Eucalyptus viminalis. Specific spectral features and indices derived from leaf-level spectroscopy were assessed as potential proxies to predict leaf water potential (Ψleaf), equivalent water thickness (EWT) and fuel moisture content (FMC) in a dedicated laboratory experiment. New spectral indices were identified that enabled very high confidence linear prediction of Ψleaf for both species (R2 > 0.85) with predictive capacity increasing when accounting for a breakpoint in the relationships using segmented regression (E. viminalis, R2 > 0.89; C. rhomboidea, R2 > 0.87). EWT and FMC were also linearly predicted to a high accuracy (E. viminalis, R2 > 0.90; C. rhomboidea, R2 > 0.80). This study highlights the potential of spectroscopy as a tool for predicting measures of plant water noninvasively, enabling broader applications for monitoring and managing plant water stress.

9.
Plant Cell Environ ; 47(4): 1255-1268, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38178610

RESUMO

Rising temperatures and increases in drought negatively impact the efficiency and sustainability of both agricultural and forest ecosystems. Although hydraulic limitations on photosynthesis have been extensively studied, a solid understanding of the links between whole plant hydraulics and photosynthetic processes at the cellular level under changing environmental conditions is still missing, hampering our predictive power for plant mortality. Here, we examined plant hydraulic traits and CO2 assimilation rate under progressive water limitation by implementing Photosystem II (PSII) dynamics with a whole plant process model (TREES). The photosynthetic responses to plant water status were parameterized based on measurements of chlorophyll a fluorescence, gas exchange and water potential for Brassica rapa (R500) grown in a greenhouse under fully watered to lethal drought conditions. The updated model significantly improved predictions of photosynthesis, stomatal conductance and leaf water potential. TREES with PSII knowledge predicted a larger hydraulic safety margin and a decrease in percent loss of conductivity. TREES predicted a slower decrease in leaf water potential, which agreed with measurements. Our results highlight the pressing need for incorporating PSII drought photochemistry into current process models to capture cross-scale plant water dynamics from cell to whole plant level.


Assuntos
Clorofila , Água , Água/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Secas , Clorofila A , Fotoquímica , Ecossistema , Fotossíntese/fisiologia , Folhas de Planta/metabolismo
10.
Plant Cell Environ ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867619

RESUMO

Modern plant physiological theory stipulates that the resistance to water movement from plants to the atmosphere is overwhelmingly dominated by stomata. This conception necessitates a corollary assumption-that the air spaces in leaves must be nearly saturated with water vapour; that is, with a relative humidity that does not decline materially below unity. As this idea became progressively engrained in scientific discourse and textbooks over the last century, observations inconsistent with this corollary assumption were occasionally reported. Yet, evidence of unsaturation gained little traction, with acceptance of the prevailing framework motivated by three considerations: (1) leaf water potentials measured by either thermocouple psychrometry or the Scholander pressure chamber are largely consistent with the framework; (2) being able to assume near saturation of intercellular air spaces was transformational to leaf gas exchange analysis; and (3) there has been no obvious mechanism to explain a variable, liquid-phase resistance in the leaf mesophyll. Here, we review the evidence that refutes the assumption of universal, near saturation of air spaces in leaves. Refining the prevailing paradigm with respect to this assumption provides opportunities for identifying and developing mechanisms for increased plant productivity in the face of increasing evaporative demand imposed by global climate change.

11.
Plant Cell Environ ; 2024 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-39400379

RESUMO

In ecophysiology leaves are frequently stored for hours after sampling before measuring their leaf water potential (Ψleaf). Here, we address a previously unidentified source of error, that metabolic heat generation can cause continuous water loss from leaves stored in impermeable bags, leading to a Ψleaf drop over time. We tested Ψleaf drop rates under various conditions: two bag materials, two species, initial Ψleaf above or below the turgor loss point (Ψtlp), and storage at 25°C versus 4°C. We partitioned leaf water loss due to condensation on the inner bag surface or permeation through the bag. We found that Ψleaf dropped by up to 0.39 MPa per hour, with 41%-89% of the water leaving the leaf condensed on the inner bag surface. Plastic bags showed higher Ψleaf drop rates than aluminium bags, and leaves above Ψtlp experienced greater drops. Storing leaves at 4°C reduced the Ψleaf drop rate by 60% compared to 25°C. Leaves were 0.2-0.3°C warmer than the bags, likely due to metabolic heating. Our energy balance model suggests that water loss is lower when storing leaves at cooler temperatures, using leaves with low stomatal conductance, deflated bags, and leaves with low Ψleaf.

12.
Plant Cell Environ ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110071

RESUMO

In root research, hydroponic plant cultivation is commonly used and soil experiments are rare. We investigated the response of 12-day-old barley roots, cultivated in soil-filled rhizotrons, to different soil water potentials (SWP) comparing a modern cultivar (cv. Scarlett) with a wild accession ICB181243 from Pakistan. Water potentials were quantified in soils with different relative water contents. Root anatomy was studied using histochemistry and microscopy. Suberin and lignin amounts were quantified by analytical chemistry. Transcriptomic changes were observed by RNA-sequencing. Compared with control with decreasing SWP, total root length decreased, the onset of endodermal suberization occurred much closer towards the root tips, amounts of suberin and lignin increased, and corresponding biosynthesis genes were upregulated in response to decreasing SWP. We conclude that decreasing water potentials enhanced root suberization and lignification, like osmotic stress experiments in hydroponic cultivation. However, in soil endodermal cell suberization was initiated very close towards the root tip, and root length as well as suberin amounts were about twofold higher compared with hydroponic cultivation.

13.
J Exp Bot ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058302

RESUMO

The four carbon non-proteinogenic amino acid γ-aminobutyric acid (GABA) accumulates to high levels in plants in response to various abiotic and biotic stress stimuli, and plays a role in C:N balance, signaling and as a transport regulator. Expression in Xenopus oocytes and voltage-clamping allowed characterizing Arabidopsis GAT2 (At5g41800) as low affinity GABA transporter with a K0.5GABA~8 mM. L-alanine and butylamine represented additional substrates. GABA-induced currents were strongly dependent on the membrane potential, reaching highest affinity and highest transport rates at strongly negative membrane potentials. Mutation of Ser17, previously reported to be phosphorylated in planta, did not result in altered affinity. In short term stress experiment, AtGAT2 mRNA levels were upregulated at low water potential and under osmotic stress (polyethylene glycol, mannitol). Furthermore, AtGAT2 promoter activity was detected in vascular tissues, in maturating pollen, and the phloem unloading region of young seeds. Even though this suggested a role of AtGAT2 in long distance transport and loading of sink organs, under the conditions tested neither AtGAT2 overexpressing plants nor atgat2 or atgat1 T-DNA insertion lines, or atgat1 atgat2 double knockout mutants differed from wild type plants in growth on GABA, in amino acid levels or resistance to salt and osmotic stress.

14.
Glob Chang Biol ; 30(8): e17439, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092538

RESUMO

Heatwaves and soil droughts are increasing in frequency and intensity, leading many tree species to exceed their thermal thresholds, and driving wide-scale forest mortality. Therefore, investigating heat tolerance and canopy temperature regulation mechanisms is essential to understanding and predicting tree vulnerability to hot droughts. We measured the diurnal and seasonal variation in leaf water potential (Ψ), gas exchange (photosynthesis Anet and stomatal conductance gs), canopy temperature (Tcan), and heat tolerance (leaf critical temperature Tcrit and thermal safety margins TSM, i.e., the difference between maximum Tcan and Tcrit) in three oak species in forests along a latitudinal gradient (Quercus petraea in Switzerland, Quercus ilex in France, and Quercus coccifera in Spain) throughout the growing season. Gas exchange and Ψ of all species were strongly reduced by increased air temperature (Tair) and soil drying, resulting in stomatal closure and inhibition of photosynthesis in Q. ilex and Q. coccifera when Tair surpassed 30°C and soil moisture dropped below 14%. Across all seasons, Tcan was mainly above Tair but increased strongly (up to 10°C > Tair) when Anet was null or negative. Although trees endured extreme Tair (up to 42°C), positive TSM were maintained during the growing season due to high Tcrit in all species (average Tcrit of 54.7°C) and possibly stomatal decoupling (i.e., Anet ≤0 while gs >0). Indeed, Q. ilex and Q. coccifera trees maintained low but positive gs (despite null Anet), decreasing Ψ passed embolism thresholds. This may have prevented Tcan from rising above Tcrit during extreme heat. Overall, our work highlighted that the mechanisms behind heat tolerance and leaf temperature regulation in oak trees include a combination of high evaporative cooling, large heat tolerance limits, and stomatal decoupling. These processes must be considered to accurately predict plant damages, survival, and mortality during extreme heatwaves.


Assuntos
Estômatos de Plantas , Quercus , Termotolerância , Quercus/fisiologia , Estômatos de Plantas/fisiologia , Espanha , Suíça , França , Folhas de Planta/fisiologia , Fotossíntese , Temperatura , Estações do Ano , Água , Temperatura Alta , Secas
15.
Proteome Sci ; 22(1): 1, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195472

RESUMO

BACKGROUND: Tepary bean (Phaseolus acutifolius A. Gray) is one of the five species domesticated from the genus Phaseolus with genetic resistance to biotic and abiotic stress. To understand the mechanisms underlying drought responses in seed storage proteins germinated on water and polyethylene glycol (PEG-6000) at -0.49 MPa, we used a proteomics approach to identify potential molecular target proteins associated with the low water potential stress response. METHODS: Storage proteins from cotyledons of Tepary bean seeds germinated at 24, 48 and 72 h on water and PEG-6000 at -0.49 MPa were analyzed by one-dimensional electrophoresis (DE) with 2-DE analysis and shotgun mass spectrometry. Using computational database searching and bioinformatics analyses, we performed Gene Ontology (GO) and protein interactome (functional protein association network) String analyses. RESULTS: Comparative analysis showed that the effect of PEG-6000 on root growth was parallel to that on germination. Based on the SDS‒PAGE protein banding patterns and 2-DE analysis, ten differentially abundant seed storage proteins showed changes in storage proteins, principally in the phaseolin and lectin fractions. We found many proteins that are recognized as drought stress-responsive proteins, and several of them are predicted to be intrinsically related to abiotic stress. The shotgun analysis searched against UniProt's legume database, and Gene Ontology (GO) analysis indicated that most of the seed proteins were cytosolic, with catalytic activity and associated with carbohydrate metabolism. The protein‒protein interaction networks from functional enrichment analysis showed that phytohemagglutinin interacts with proteins associated with the degradation of storage proteins in the cotyledons of common bean during germination. CONCLUSION: These findings suggest that Tepary bean seed proteins provide valuable information with the potential to be used in genetic improvement and are part of the drought stress response, making our approach a potentially useful strategy for discovering novel drought-responsive proteins in other plant models.

16.
Ann Bot ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39086357

RESUMO

BACKGROUND AND AIMS: Leaf elongation is vital for Poaceae species' productivity, influenced by atmospheric CO2 concentration ([CO2]) and climate-induced water availability changes. Although [CO2] mitigates the effects of drought on reducing transpiration per unit leaf area, it also increases total leaf area and water use. These complex interactions associated with leaf growth pose challenges in anticipating climate change effects. This study aims to assess [CO2] effects on leaf growth response to drought in perennial ryegrass (Lolium perenne), tall fescue (Festuca arundinacea) and wheat (Triticum aestivum). METHODS: Plants were cultivated in growth chambers with [CO2] at 200 or 800 ppm. At leaf six to seven unfolding, half of the plants were subjected to severe drought treatment. Leaf elongation rate (LER) was measured daily, whereas plant transpiration was continuously recorded gravimetrically. Additionally, water-soluble carbohydrate (WSC) content along with water and osmotic potentials in the leaf growing zone were measured at drought onset, mid-drought and leaf growth cessation. KEY RESULTS: Elevated [CO2] mitigated drought impacts on LER and delayed growth cessation across species. A positive correlation between LER and soil relative water content (SRWC) was observed. At the same SRWC, perennial grasses exhibited a higher LER with elevated [CO2], likely due to enhanced stomatal regulation. Despite stomatal closure and WSC accumulation, CO2 did not influence nighttime water potential or osmotic potential. The marked increase in leaf area across species resulted in similar (wheat and tall fescue) or higher (ryegrass) total water use by the experiment's end, under both watered and unwatered conditions. CONCLUSIONS: In conclusion, elevated [CO2] mitigates the adverse effects of drought on leaf elongation in three Poaceae species, due to its impact on plant transpiration. Overall, these findings provide valuable insights into CO2 and drought interactions that may help anticipate plant responses to climate change.

17.
Ann Bot ; 133(7): 969-982, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38366557

RESUMO

BACKGROUND AND AIMS: Plant water status is important for fruit development, because many fleshy fruits contain large amounts of water. However, there is no information on vascular flows of Persea americana 'Hass' avocado. The aims of this research were to explore the impact of drought stress on the water relationships of the 'Hass' avocado plant and its fruit growth. METHODS: Well-watered and water-stressed 'Hass' avocado plants were compared. Over 4 weeks, water flows through the shoot and fruit pedicel were monitored using external sap flow gauges. Fruit diameter was monitored using linear transducers, and stomatal conductance (gs), photosynthesis (A) and leaf and stem water potentials (Ñ°leaf and Ñ°stem) were measured to assess the response of the plants to water supply. KEY RESULTS: In well-watered conditions, the average water inflow to the shoot was 72 g day-1. Fruit water inflow was 2.72 g day-1, but there was water loss of 0.37 g day-1 caused by the outflow (loss back into the tree) through the vascular tissues and 1.06 g day-1 from the fruit skin. Overall, fruit volume increased by 1.4 cm3 day-1. In contrast, water flow into fruit of water-stressed plants decreased to 1.88 g day-1, with the outflow increasing to 0.61 g day-1. As a result, increases in fruit volume were reduced to 0.4 cm3 day-1. The values of A, gs and sap flow to shoots were also reduced during drought conditions. Changes in the hourly time-courses of pedicel sap flow, fruit volume and stem water potential during drought suggest that the stomatal response prevented larger increases in outflow from the fruit. Following re-watering, a substantial recovery in growth rate was observed. CONCLUSIONS: In summary, a reduction in growth of avocado fruit was observed with induced water deficit, but the isohydric stomatal behaviour of the leaves helped to minimize negative changes in water balance. Also, there was substantial recovery after re-watering, hence the short-term water stress did not decrease avocado fruit size. Negative impacts might appear if the drought treatment were prolonged.


Assuntos
Secas , Frutas , Persea , Fotossíntese , Estômatos de Plantas , Água , Persea/fisiologia , Persea/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Frutas/fisiologia , Frutas/crescimento & desenvolvimento , Água/fisiologia , Água/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Transpiração Vegetal/fisiologia , Caules de Planta/fisiologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/anatomia & histologia , Brotos de Planta/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Estresse Fisiológico/fisiologia , Desidratação
18.
Am J Bot ; : e16423, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39394737

RESUMO

PREMISE: Vascular epiphytes of tropical montane cloud forests are vulnerable to climate change, particularly as cloud bases elevate and reduce atmospheric inputs to the system. However, studies have generally focused on epiphytes in contiguous forests, with little research being done on epiphytes on isolated pasture trees. We investigated water relations of pasture-tree epiphytes at three sites located below and above the elevation of the average cloud base in Monteverde, Costa Rica. METHODS: We measured sap velocity and four microclimate variables in both the dry and wet season of 2018. We also measured functional traits, including pressure volume (PV) curves, predawn/midday water potential, and various lab-based water relations traits. We used linear mixed models to assess the correlation between microclimate and sap velocity in both seasons and ANOVA to assess the variation in PV curve and water potential variables. RESULTS: The turgor loss point generally increased from the wettest to driest site. However, this trend was driven primarily by the increasing prevalence of leaf succulence at drier sites. Microclimatic variables correlated strongly with sap velocity in the wet season, but low soil moisture availability caused this correlation to break down during the dry season. CONCLUSIONS: Our results emphasize the vulnerability of cloud forest epiphytes to rising cloud bases. This vulnerability may be more severe in pasture trees that lack the potential buffer of surrounding forest, but additional research that directly compares the canopy microclimate conditions between forest and pasture trees is needed to confirm this possibility.

19.
Am J Bot ; : e16412, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39328075

RESUMO

PREMISE: Seed germination involves risk; post-germination conditions might not allow survival and reproduction. Variable, stressful environments favor seeds with germination that avoids risk (e.g., germination in conditions predicting success), spreads risk (e.g., dormancy), or escapes risk (e.g., rapid germination). Germination studies often investigate trait correlations with climate features linked to variation in post-germination reproductive success. Rarely are long-term records of population reproductive success available. METHODS: Supported by demographic and climate monitoring, we analyzed germination in the California winter-annual Clarkia xantiana subsp. xantiana. Sowing seeds of 10 populations across controlled levels of water potential and temperature, we estimated temperature-specific base water potential for 20% germination, germination time weighted by water potential above base (hydrotime), and a dormancy index (frequency of viable, ungerminated seeds). Mixed-effects models analyzed responses to (1) temperature, (2) discrete variation in reproductive success (presence or absence of years with zero seed production by a population), and (3) climate covariates, mean winter precipitation and coefficient of variation (CV) of spring precipitation. For six populations, records enabled analysis with a continuous metric of variable reproduction, the CV of per-capita reproductive success. RESULTS: Populations with more variable reproductive success had higher base water potential and dormancy. Higher base water potential and faster germination occurred at warmer experimental temperatures and in seeds of populations with wetter winters. CONCLUSIONS: Geographic variation in seed germination in this species suggests local adaptation to demographic risk and rainfall. High base water potential and dormancy may concentrate germination in years likely to allow reproduction, while spreading risk among years.

20.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074748

RESUMO

Leaf water potential is a critical indicator of plant water status, integrating soil moisture status, plant physiology, and environmental conditions. There are few tools for measuring plant water status (water potential) in situ, presenting a critical barrier for developing appropriate phenotyping (measurement) methods for crop development and modeling efforts aimed at understanding water transport in plants. Here, we present the development of an in situ, minimally disruptive hydrogel nanoreporter (AquaDust) for measuring leaf water potential. The gel matrix responds to changes in water potential in its local environment by swelling; the distance between covalently linked dyes changes with the reconfiguration of the polymer, leading to changes in the emission spectrum via Förster Resonance Energy Transfer (FRET). Upon infiltration into leaves, the nanoparticles localize within the apoplastic space in the mesophyll; they do not enter the cytoplasm or the xylem. We characterize the physical basis for AquaDust's response and demonstrate its function in intact maize (Zea mays L.) leaves as a reporter of leaf water potential. We use AquaDust to measure gradients of water potential along intact, actively transpiring leaves as a function of water status; the localized nature of the reporters allows us to define a hydraulic model that distinguishes resistances inside and outside the xylem. We also present field measurements with AquaDust through a full diurnal cycle to confirm the robustness of the technique and of our model. We conclude that AquaDust offers potential opportunities for high-throughput field measurements and spatially resolved studies of water relations within plant tissues.


Assuntos
Hidrogéis/química , Modelos Biológicos , Nanoestruturas/química , Folhas de Planta/metabolismo , Água/metabolismo , Xilema/metabolismo , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa