Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 931
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(30): e2202527119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858428

RESUMO

Despite an extensive theoretical and numerical background, the translocation ratchet mechanism, which is fundamental for the transmembrane transport of biomolecules, has never been experimentally reproduced at the nanoscale. Only the Sec61 and bacterial type IV pilus pores were experimentally shown to exhibit a translocation ratchet mechanism. Here we designed a synthetic translocation ratchet and quantified its efficiency as a nanopump. We measured the translocation frequency of DNA molecules through nanoporous membranes and showed that polycations at the trans side accelerated the translocation in a ratchet-like fashion. We investigated the ratchet efficiency according to geometrical and kinetic parameters and observed the ratchet to be only dependent on the size of the DNA molecule with a power law [Formula: see text]. A threshold length of 3 kbp was observed, below which the ratchet did not operate. We interpreted this threshold in a DNA looping model, which quantitatively explained our results.


Assuntos
DNA , Nanoporos , Transporte Biológico , DNA/metabolismo , Fímbrias Bacterianas/metabolismo , Cinética
2.
Nano Lett ; 24(2): 566-575, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37962055

RESUMO

Optical biosensors based on micro/nanofibers are highly valuable for probing and monitoring liquid environments and bioactivity. Most current optical biosensors, however, are still based on glass, semiconductors, or metallic materials, which might not be fully suitable for biologically relevant environments. Here, we introduce biocompatible and flexible microfibers from lotus silk as microenvironmental monitors that exhibit waveguiding of intrinsic fluorescence as well as of coupled light. These features make single-filament monitors excellent building blocks for a variety of sensing functions, including pH probing and detection of bacterial activity. These results pave the way for the development of new and entirely eco-friendly, potentially multiplexed biosensing platforms.


Assuntos
Técnicas Biossensoriais , Nanofibras , Técnicas Biossensoriais/métodos , Seda , Semicondutores , Bactérias
3.
Nano Lett ; 24(4): 1399-1405, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38252893

RESUMO

Polymer waveguide devices have attracted increasing interest in several rapidly developing areas of broadband communications since they are easily adaptable to on-chip integration and promise low propagation losses. As a key member of the waveguide gain medium, lanthanide doped nanoparticles have been intensively studied to improve the downconversion luminescence. However, current research efforts are almost confined to erbium-doped nanoparticles and amplifiers operating at the C-band; boosting the downconversion luminescence of Tm3+ for S-band optical amplification still remains a challenge. Here we report a Tb3+-induced deactivation control to enhance Tm3+ downconversion luminescence in a stoichiometric Yb lattice without suffering from concentration quenching. We also demonstrate their potential application in an S-band waveguide amplifier and record a maximum optical gain of 18 dB at 1464 nm. Our findings provide valuable insights into the fundamental understanding of deactivation-controlled luminescence enhancement and open up a new avenue toward the development of an S-band polymer waveguide amplifier with high gain.

4.
Nano Lett ; 24(17): 5182-5188, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38630435

RESUMO

Bismuth halide perovskites are widely regarded as nontoxic alternatives to lead halide perovskites for optoelectronics and solar energy harvesting applications. With a tailorable composition and intriguing optical properties, bismuth halide perovskites are also promising candidates for tunable photonic devices. However, robust control of the anion composition in bismuth halide perovskites remains elusive. Here, we established chemical vapor deposition and anion exchange protocols to synthesize bismuth halide perovskite nanoflakes with controlled dimensions and variable compositions. In particular, we demonstrated the gradient bromide distribution by controlling the anion exchange and diffusion processes, which is spatially resolved by time-of-flight secondary ion mass spectrometry. Moreover, the optical waveguiding properties of bismuth halide perovskites can be modulated by flake thicknesses and anion compositions. With a unique gradient anion distribution and controllable optical properties, bismuth halide perovskites provide new possibilities for applications in optoelectronic devices and integrated photonics.

5.
Nano Lett ; 24(8): 2596-2602, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38251930

RESUMO

Sepsis, a life-threatening inflammatory response, demands economical, accurate, and rapid detection of biomarkers during the critical "golden hour" to reduce the patient mortality rate. Here, we demonstrate a cost-effective waveguide-enhanced nanogold-linked immunosorbent assay (WENLISA) based on nanoplasmonic waveguide biosensors for the rapid and sensitive detection of procalcitonin (PCT), a sepsis-related inflammatory biomarker. To enhance the limit of detection (LOD), we employed sandwich assays using immobilized capture antibodies and detection antibodies conjugated to gold nanoparticles to bind the target analyte, leading to a significant evanescent wave redistribution and strong nanoplasmonic absorption near the waveguide surface. Experimentally, we detected PCT for a wide linear response range of 0.1 pg/mL to 1 ng/mL with a record-low LOD of 48.7 fg/mL (3.74 fM) in 8 min. Furthermore, WENLISA has successfully identified PCT levels in the blood plasma of patients with sepsis and healthy individuals, offering a promising technology for early sepsis diagnosis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Sepse , Humanos , Pró-Calcitonina , Imunoadsorventes , Ouro , Sepse/diagnóstico , Biomarcadores , Anticorpos Imobilizados
6.
Nano Lett ; 24(2): 557-565, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38179964

RESUMO

The manipulation of molecular excited state processes through strong coupling has attracted significant interest for its potential to provide precise control of photochemical phenomena. However, the key limiting factor for achieving this control has been the "dark-state problem", in which photoexcitation populates long-lived reservoir states with energies and dynamics similar to those of bare excitons. Here, we use a sensitive ultrafast transient reflection method with momentum and spectral resolution to achieve the selective excitation of organic exciton-polaritons in open photonic cavities. We show that the energy dispersions of these systems allow us to avoid the parasitic effect of the reservoir states. Under phase-matching conditions, we observe the direct population and decay of polaritons on time scales of less than 100 fs and find that momentum scattering processes occur on even faster time scales. We establish that it is possible to overcome the "dark state problem" through the careful design of strongly coupled systems.

7.
Small ; 20(28): e2307661, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38317524

RESUMO

Multidimensional integrated micro/nanostructures are vitally important for the implementation of versatile photonic functionalities, whereas current material structures still suffer undesired surface defects and contaminations in either multistep micro/nanofabrications or extreme synthetic conditions. Herein, the dimension evolution of organic self-assembled structures 2D microrings and 3D microhelixes for multidimensional photonic devices is realized via a protic/aprotic solvent-directed molecular assembly method based on a multiaxial confined-assisted growth mechanism. The 2D microrings with consummate circle boundaries and molecular-smooth surfaces function as high-quality whispering-gallery-mode microcavities for dual-wavelength energy-influence-dependent switchable lasing. Moreover, the 3D microhelixes with smooth surfaces and natural twistable characteristics act as active photon-transport materials and polarization rotators. These results will broaden the horizon of constructing multidimensional microstructures for integrated photonic circuits.

8.
Small ; : e2402485, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804825

RESUMO

Junctions based on electronic ballistic waveguides, such as semiconductor nanowires or nanoribbons with transverse structural variations in the order of a large fraction of their Fermi wavelength, are suggested as highly efficient thermoelectric (TE) devices. Full harnessing of their potential requires a capability to either deterministically induce structural variations that tailor their transmission properties at the Fermi level or alternatively to form waveguides that are disordered (chaotic) but can be structurally modified continuously until favorable TE properties are achieved. Well-established methods to realize either of these routes do not exist. Here, disordered bismuth (Bi) waveguides are reported, which are both formed and structurally tuned by electromigration until their efficiency as TE devices is maximized. In accordance with theory, the conductance of the most efficient TE waveguides is in the sub quantum of conductance regime. The stability of these structures is found to be substantially higher than other actively studied devices such as single molecule junctions.

9.
Small ; : e2400035, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576121

RESUMO

On-chip nanophotonic waveguide sensor is a promising solution for miniaturization and label-free detection of gas mixtures utilizing the absorption fingerprints in the mid-infrared (MIR) region. However, the quantitative detection and analysis of organic gas mixtures is still challenging and less reported due to the overlapping of the absorption spectrum. Here,an Artificial-Intelligence (AI) assisted waveguide "Photonic nose" is presented as an augmented sensing platform for gas mixture analysis in MIR. With the subwavelength grating cladding supported waveguide design and the help of machine learning algorithms, the MIR absorption spectrum of the binary organic gas mixture is distinguished from arbitrary mixing ratio and decomposed to the single-component spectra for concentration prediction. As a result, the classification of 93.57% for 19 mixing ratios is realized. In addition, the gas mixture spectrum decomposition and concentration prediction show an average root-mean-square error of 2.44 vol%. The work proves the potential for broader sensing and analytical capabilities of the MIR waveguide platform for multiple organic gas components toward MIR on-chip spectroscopy.

10.
Nanotechnology ; 35(22)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38387089

RESUMO

Low-cost, small-sized, and easy integrated high-performance photodetectors for photonics are still the bottleneck of photonic integrated circuits applications and have attracted increasing attention. The tunable narrow bandgap of two-dimensional (2D) layered molybdenum ditelluride (MoTe2) from ∼0.83 to ∼1.1 eV makes it one of the ideal candidates for near-infrared (NIR) photodetectors. Herein, we demonstrate an excellent waveguide-integrated NIR photodetector by transferring mechanically exfoliated 2D MoTe2onto a silicon nitride (Si3N4) waveguide. The photoconductive photodetector exhibits excellent responsivity (R), detectivity (D*), and external quantum efficiency at 1550 nm and 50 mV, which are 41.9 A W-1, 16.2 × 1010Jones, and 3360%, respectively. These optoelectronic performances are 10.2 times higher than those of the free-space device, revealing that the photoresponse of photodetectors can be enhanced due to the presence of waveguide. Moreover, the photodetector also exhibits competitive performances over a broad wavelength range from 800 to 1000 nm with a highRof 15.4 A W-1and a largeD* of 59.6 × 109Jones. Overall, these results provide an alternative and prospective strategy for high-performance on-chip broadband NIR photodetectors.

11.
Sensors (Basel) ; 24(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38610499

RESUMO

Occupational exposure to airborne dust is responsible for numerous respiratory and cardiovascular diseases. Because of these hazards, air samples are regularly collected on filters and sent for laboratory analysis to ensure compliance with regulations. Unfortunately, this approach often takes weeks to provide a result, which makes it impossible to identify dust sources or protect workers in real time. To address these challenges, we developed a system that characterizes airborne dust by its spectro-chemical profile. In this device, a micro-cyclone concentrates particles from the air and introduces them into a hollow waveguide where an infrared signature is obtained. An algorithm is then used to quantitate the composition of respirable particles by incorporating the infrared features of the most relevant chemical groups and compensating for Mie scattering. With this approach, the system can successfully differentiate mixtures of inorganic materials associated with construction sites in near-real time. The use of a free-space optic assembly improves the light throughput significantly, which enables detection limits of approximately 10 µg/m3 with a 10 minute sampling time. While respirable crystalline silica was the focus of this work, it is hoped that the flexibility of the platform will enable different aerosols to be detected in other occupational settings.

12.
Sensors (Basel) ; 24(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38931714

RESUMO

Augmented reality (AR) technology has been widely applied across a variety of fields, with head-up displays (HUDs) being one of its prominent uses, offering immersive three-dimensional (3D) experiences and interaction with digital content and the real world. AR-HUDs face challenges such as limited field of view (FOV), small eye-box, bulky form factor, and absence of accommodation cue, often compromising trade-offs between these factors. Recently, optical waveguide based on pupil replication process has attracted increasing attention as an optical element for its compact form factor and exit-pupil expansion. Despite these advantages, current waveguide displays struggle to integrate visual information with real scenes because they do not produce accommodation-capable virtual content. In this paper, we introduce a lensless accommodation-capable holographic system based on a waveguide. Our system aims to expand the eye-box at the optimal viewing distance that provides the maximum FOV. We devised a formalized CGH algorithm based on bold assumption and two constraints and successfully performed numerical observation simulation. In optical experiments, accommodation-capable images with a maximum horizontal FOV of 7.0 degrees were successfully observed within an expanded eye-box of 9.18 mm at an optimal observation distance of 112 mm.

13.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732990

RESUMO

In this paper, a volumetric Rotman lens antenna operating at 28 GHz is proposed. The design formula and procedure were derived for the 3-D Rotman lens antenna. The number of tilted beams is 3 × 3. The six rectangular blocks are assembled using a metallic bolt. The input port consists of a waveguide, and the output port is made of an open-ended waveguide. The input and output waveguides are drilled in a flat conducting plate. The input and output port positions are optimized. Simulated and measured results show that the radiating beam is controlled almost exactly as calculated. Compared with the previous two-stage stacked Rotman lens antenna, the proposed Rotman lens antenna can dramatically decrease the antenna volume by approximately 75%.

14.
Sensors (Basel) ; 24(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38339558

RESUMO

The circular waveguide aperture or open-end radiator, one of the canonical antenna elements, can be filled with a dielectric material for miniaturization. With dielectric filling, the aperture reflection increases and impedance matching is necessary. This paper presents a simple but innovative simulation-based approach to the aperture matching of a dielectric-filled circular waveguide aperture. By properly loading the aperture with two- or three-section dielectric rings, the impedance matching is possible over a wide frequency range starting slightly above the TE11-mode cutoff and continuing upward. The material for the aperture matching is the same as that filling the waveguide. The proposed matching structure is analyzed and optimized using a simulation tool for the dielectric constant εr of the filling material ranging from 1.8 to 10. For εr ≥ 5, the unmatched reflection coefficient ranges from -6.0 dB to -0.9 dB while the matched reflection coefficient is from -20.4 dB to -10.0 dB. The impedance matching has been achieved over more than an octave bandwidth.

15.
Sensors (Basel) ; 24(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732879

RESUMO

Grating (moiré) interferometry is one of the well-known methods for full-field in-plane displacement and strain measurement. There are many design solutions for grating interferometers, including systems with a microinterferometric waveguide head. This article proposes a modification to the conventional waveguide interferometer head, enabling the implementation of a polarization fringe phase shift for automatic fringe pattern analysis. This article presents both the theoretical considerations associated with the proposed solution and its experimental verification, along with the concept of in-plane displacement/strain sensing using the described head.

16.
Sensors (Basel) ; 24(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38544192

RESUMO

Silicon photonic-based refractive index sensors are of great value in the detection of gases, biological and chemical substances. Among them, microring resonators are the most promising due to their compact size and narrow Lorentzian-shaped spectrum. The electric field in a subwavelength grating waveguide (SWG) is essentially confined in the low-refractive index dielectric, favoring enhanced analyte-photon interactions, which represents higher sensitivity. However, it is very challenging to further significantly improve the sensitivity of SWG ring resonator refractive index sensors. Here, a hybrid waveguide blocks double slot subwavelength grating microring resonator (HDSSWG-MRR) refractive index sensor operating in a water refractive index environment is proposed. By designing a new waveguide structure, a sensitivity of up to 1005 nm/RIU has been achieved, which is 182 nm/RIU higher than the currently highest sensitivity silicon photonic micro ring refractive index sensor. Meanwhile, utilizing a unique waveguide structure, a Q of 22,429 was achieved and a low limit of detection of 6.86 × 10-5 RIU was calculated.

17.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38400450

RESUMO

A meta-surface-based arbitrary bandwidth filter realization method for terahertz (THz) future communications is presented. The approach involves integrating a meta-surface-based bandstop filter into an ultra-wideband (UWB) bandpass filter and adjusting the operating frequency range of the meta-surface bandstop filter to realize the design of arbitrary bandwidth filters. It effectively addresses the complexity of designing traditional arbitrary bandwidth filters and the challenges in achieving impedance matching. To underscore its practicality, the paper employs silicon substrate integrated gap waveguide (SSIGW) and this method to craft a THz filter. To begin, design equations for electromagnetic band gap (EBG) structures were developed in accordance with the requirements of through-silicon via (TSV) and applied to the design of the SSIGW. Subsequently, this article employs equivalent transmission line models and equivalent circuits to conduct theoretical analyses for both the UWB passband and the meta-surface stopband portions. The proposed THz filter boasts a center frequency of 0.151 THz, a relative bandwidth of 6.9%, insertion loss below 0.68 dB, and stopbands exceeding 20 GHz in both upper and lower ranges. The in-band group delay is 0.119 ± 0.048 ns. Compared to reported THz filters, the SSIGW filter boasts advantages such as low loss and minimal delay, making it even more suitable for future wireless communication.

18.
Sensors (Basel) ; 24(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38793914

RESUMO

A compact circularly polarized non-resonant slotted waveguide antenna array is proposed with the aim of achieving wide-angle scanning, circular polarization, and low side-lobe levels. The designed antenna demonstrates a scanning range of +11° to +13° in the frequency domain and a beam scanning range of -45° to +45° in the phase domain. This design exhibits significant advantages for low-cost two-dimensional electronic scanning circularly polarized arrays. It employs a compact element that reduces the aperture area by 50% compared to traditional circular polarization cavities. Additionally, the staggered array method is employed to achieve an element spacing of 0.57λ within the azimuth plane. Isolation gaps were introduced into the array to enhance the circular polarization performance of non-resonant arrays. The Taylor synthesis method was employed to reduce the side-lobe levels. A prototype was designed, fabricated, and measured. The results indicate superior radiation efficiency, favorable VSWR levels, and an axis ratio maintenance below 3 dB across the scanning range. The proposed antenna and methodology effectively broaden the beam scanning angle of circularly polarized slotted waveguide array antennas.

19.
Sensors (Basel) ; 24(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931489

RESUMO

In this paper, we study both theoretically and experimentally the sensitivity of bimodal interferometric sensors where interference occurs between two plasmonic modes with different properties propagating in the same physical waveguide. In contrast to the well-known Mach-Zehnder interferometric (MZI) sensor, we show for the first time that the sensitivity of the bimodal sensor is independent of the sensing area length. This is validated by applying the theory to an integrated plasmo-photonic bimodal sensor that comprises an aluminum (Al) plasmonic stripe waveguide co-integrated between two accessible SU-8 photonic waveguides. A series of such bimodal sensors utilizing plasmonic stripes of different lengths were numerically simulated, demonstrating bulk refractive index (RI) sensitivities around 5700 nm/RIU for all sensor variants, confirming the theoretical results. The theoretical and numerical results were also validated experimentally through chip-level RI sensing experiments on three fabricated SU-8/Al bimodal sensors with plasmonic sensing lengths of 50, 75, and 100 µm. The obtained experimental RI sensitivities were found to be very close and equal to 4464, 4386, and 4362 nm/RIU, respectively, confirming that the sensing length has no effect on the bimodal sensor sensitivity. The above outcome alleviates the design and optical loss constraints, paving the way for more compact and powerful sensors that can achieve high sensitivity values at ultra-short sensing lengths.

20.
Sensors (Basel) ; 24(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38400341

RESUMO

Orbit angular momentum (OAM) has been considered a new dimension for improving channel capacity in recent years. In this paper, a millimeter-wave broadband multi-mode waveguide traveling-wave antenna with OAM is proposed by innovatively utilizing the transmitted electromagnetic waves (EMWs) characteristic of substrate-integrated gap waveguides (SIGWs) to introduce phase delay, resulting in coupling to the radiate units with a phase jump. Nine "L"-shaped slot radiate elements are cut in a circular order at a certain angle on the SIGW to generate spin angular momentum (SAM) and OAM. To generate more OAM modes and match the antenna, four "Π"-shaped slot radiate units with a 90° relationship to each other are designed in this circular array. The simulation results show that the antenna operates at 28 GHz, with a -10 dB fractional bandwidth (FBW) = 35.7%, ranging from 25.50 to 35.85 GHz and a VSWR ≤ 1.5 dB from 28.60 to 32.0 GHz and 28.60 to 32.0 GHz. The antenna radiates a linear polarization (LP) mode with a gain of 9.3 dBi at 34.0~37.2 GHz, a l = 2 SAM-OAM (i.e., circular polarization OAM (CP-OAM)) mode with 8.04 dBi at 25.90~28.08 GHz, a l = 1 and l = 2 hybrid OAM mode with 5.7 dBi at 28.08~29.67 GHz, a SAM (i.e., left/right hand circular polarization (L/RHCP) mode with 4.6 dBi at 29.67~30.41 GHz, and a LP mode at 30.41~35.85 GHz. In addition, the waveguide transmits energy with a bandwidth ranging from 26.10 to 38.46 GHz. Within the in-band, only a quasi-TEM mode is transmitted with an energy transmission loss |S21| ≤ 2 dB.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa