Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38339505

RESUMO

This paper describes an automated method and device to conduct the Chair Stand Tests of the Fullerton Functional Test Battery. The Fullerton Functional Test is a suite of physical tests designed to assess the physical fitness of older adults. The Chair Stand Tests, which include the Five Times Sit-to-Stand Test (5xSST) and the 30 Second Sit-to-Stand Test (30CST), are the standard for measuring lower-body strength in older adults. However, these tests are performed manually, which can be labor-intensive and prone to error. We developed a sensor-integrated chair that automatically captures the dynamic weight and distribution on the chair. The collected time series weight-sensor data is automatically uploaded for immediate determination of the sit-to-stand timing and counts, as well as providing a record for future comparison of lower-body strength progression. The automatic test administration can provide significant labor savings for medical personnel and deliver much more accurate data. Data from 10 patients showed good agreement between the manually collected and sensor-collected 30CST data (M = 0.5, SD = 1.58, 95% CI = 1.13). Additional data processing will be able to yield measurements of fatigue and balance and evaluate the mechanisms of failed standing attempts.


Assuntos
Aptidão Física , Humanos , Idoso
2.
Sensors (Basel) ; 23(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37960609

RESUMO

Dynamic characteristics play a crucial role in evaluating the performance of weight sensors and are essential for achieving fast and accurate weight measurements. This study focuses on a weight sensor based on optical coherence displacement. Using finite element analysis, the sensor was numerically simulated. Frequency domain and time domain dynamic response characteristics were explored through harmonic response analysis and transient dynamic analysis. The superior dynamic performance and reduced conditioning time of the non-contact optical coherence-based displacement weight sensor were confirmed via a negative step response experiment that compared the proposed sensing method to strain sensing. Moreover, dynamic performance metrics for the optical coherence displacement-type weight sensor were determined. Ultimately, the sensor's dynamic performance was enhanced using the pole-zero placement method, decreasing the overshoot to 4.72% and reducing the response time to 0.0132 s. These enhancements broaden the sensor's operational bandwidth and amplify its dynamic response capabilities.

3.
Sensors (Basel) ; 23(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679707

RESUMO

A flexible weight sensor based on optical fibre macrobending loss, using 1550 nm wavelength light and small fibre bending path lengths is presented. An applied load depresses an impactor layer of cylindrical protrusions into a soft mat covered with optical fibre, causing the optical loss of the fibre to increase. An experimental study of two fibre types, two impactor materials, two impactor designs and a range of protrusion bend radii from 3 mm to 10 mm is shown. For weights greater than 2 kg, a linear response in optical loss (dB) is observed for an applied weight load in kg. The proportionality constant between loss and load, and thus the total amount of optical loss for up to 10 kg of weight load, can be tuned by changing the sensor physical parameters, shown here in ranges from 0.5 dB up to 25 dB.


Assuntos
Fibras Ópticas
4.
Sensors (Basel) ; 23(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37960556

RESUMO

Stockouts constitute a major challenge in the retail industry. Stockouts are caused by errors related to manual stockkeeping and by the misplacement of items on shelves. Such errors account for up to 4% of lost sales. Real-time inventory management systems for misplaced items or missing stock detection in retail stores are limited. Accordingly, a conductive polymer-based interactive shelving system for real-time inventory management is developed. The system comprises an 80 × 48 sensor array fabricated by screen-printing a piezoresistive carbon-based conductive polymer layer onto gold interdigitated electrodes deposited on a flexible substrate. Each sensing pixel has dimensions of 5 mm × 5 mm and a sensing area of 4 mm × 4 mm. The sensor mat can detect the shape and weight features of stockkeeping units (SKUs), which can then be analyzed by a TensorFlow model for SKU identification. The developed system is characterized for functional resistance range, uniformity, repeatability, and durability. The accuracy of SKU identification achieved using shape features only and the accuracy of SKU identification achieved using both shape and weight features is 95% and 99.2%, respectively. The key novelty of the work is the development of a deep learning-embedded interactive smart shelving system for retail inventory management by using the shape and weight features of SKU. Also, the developed system helps to detect the SKU if they are stacked one over the other. Furthermore, multiple sensor mats implemented on various shelves in a retail store can be modularized and integrated for monitoring under the control of a single PC. Accordingly, the proposed retail inventory tracking system can facilitate the development of automated "humanless" shops.

5.
Sensors (Basel) ; 18(12)2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30513652

RESUMO

The present work proposes a robust method of analyzing sets of data series shifted in time in respect to each other utilizing the process of dynamic calibration by comparison. Usually the Pearson's correlation analysis coefficient is applied for this purpose. However, in some cases the method does not bring satisfactory results, as it can be seen in the results of the research conducted for the purpose of this paper. The Dynamic Time Warping method may be the solution to this problem, as it appears to be more efficient while comparing the shapes of calibration characteristics done with the use of the Pearson's method. The presented method may also be applied to eliminate dynamic outliers collected in the process of recurrence examination or the analysis of strain gauge weight sensors hysteresis. This fact also makes the method a good tool for eliminating improper data series which might appear in the calibration process due to, e.g., malfunctioning devices installed in the calibration stand. The article presents an example of using the proposed method in eliminating improper dynamic characteristics obtained in a simulated calibration stand. Moreover, a comparative analysis performed on the simulation data is also presented in the article, as well as the result of the laboratory experiment.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35055631

RESUMO

This paper presents a few meal-monitoring systems for elder residents (especially patients) in LTCFs by using electronic weight and temperature sensors. These monitoring systems enable to convey the information of the amount of meal taken by the patients in real-time via wireless communication networks onto the mobile phones of their nurses in charge or families. Thereby, the nurses can easily spot the most patients who need immediate assistance, while the families can have relief in seeing the crucial information for the well-being of their parents at least three times a day. Meanwhile, the patients tend to suffer burns of their tongues because they can hardly recognize the temperature of hot meals served. This situation can be avoided by utilizing the meal temperature-monitoring system, which displays an alarm to the patients when the meal temperature is above the reference. These meal-monitoring systems can be easily implemented by utilizing low-cost sensor chips and Arduino NANO boards so that elder-care hospitals and nursing homes can afford to exploit them with no additional cost. Hence, we believe that the proposed monitoring systems would be a potential solution to provide a great help and relief for the professional nurses working in elder-care hospitals and nursing homes.


Assuntos
Assistência de Longa Duração , Casas de Saúde , Idoso , Humanos , Refeições , Instituições de Cuidados Especializados de Enfermagem , Temperatura
7.
ACS Appl Mater Interfaces ; 13(39): 46526-46536, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34546725

RESUMO

Mechanical energy is one of the freely available green energy sources that could be harvested to meet the small-scale energy demand. Piezoelectric nanogenerators can be used to harvest the biomechanical energy that is available in everyday human life and power various portable electronics. Herein, a ferroelectric material, i.e., lithium tantalate (LiTaO3), was synthesized and used to fabricate a flexible piezoelectric nanogenerator (FPNG). Generally, ferroelectric materials display a strong electrostatic dipole moment and high piezoelectric coefficient, thus resulting in enhanced electrical performance. First, LiTaO3 nanoparticles were synthesized and loaded into poly(vinylidene difluoride) (PVDF) to form a piezoelectric film and then, the piezoelectric composite film was sandwiched between two aluminum electrodes to fabricate an FPNG. The effect of the electrical performance of FPNG as a function of the concentration of LiTaO3 loaded into PVDF was systematically investigated and optimized. The 2.5 wt % FPNG exhibited open-circuit voltage, short-circuit current, and power density values of ∼18 V, ∼1.2 µA, and ∼25 mW/m2, respectively. Furthermore, the FPNG revealed good electrical stability and mechanical durability. Finally, the FPNG was employed as a weight sensor to harvest various biomechanical energies and operate low-power- electronics.

8.
Artigo em Chinês | WPRIM | ID: wpr-590914

RESUMO

Objective To improve the stability and practicability of field liquid transfusion control system.Methods SPCE062A 's high accurate AD was used to acquire the dropping speed,and a new method for weight sensor 's self proofread was applied.Results The infrared photoelectric sensor was removed,so the monitoring part could work with any appropriate sensor.Conclusion The system cost is decreased and its stability and availability are enhanced.[Chinese Medical Equipment Journal,2008,29(2):66-67]

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa