Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(13)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645965

RESUMO

TaCKX, Triticum aestivum (cytokinin oxidase/dehydrogenase) family genes influence the development of wheat plants by the specific regulation of cytokinin content in different organs. However, their detailed role is not known. The TaCKX1, highly and specifically expressed in developing spikes and in seedling roots, was silenced by RNAi-mediated gene silencing via Agrobacterium tumefaciens and the effect of silencing was investigated in 7 DAP (days after pollination) spikes of T1 and T2 generations. Various levels of TaCKX1 silencing in both generations influence different models of co-expression with other TaCKX genes and parameters of yield-related traits. Only a high level of silencing in T2 resulted in strong down-regulation of TaCKX11 (3), up-regulation of TaCKX2.1, 2.2, 5, and 9 (10), and a high yielding phenotype. This phenotype is characterized by a higher spike number, grain number, and grain yield, but lower thousand grain weight (TGW). The content of most of cytokinin forms in 7 DAP spikes of silenced T2 lines increased from 23% to 76% compared to the non-silenced control. The CKs cross talk with other phytohormones. Each of the tested yield-related traits is regulated by various up- or down-regulated TaCKX genes and phytohormones. The coordinated effect of TaCKX1 silencing on the expression of other TaCKX genes, phytohormone levels in 7 DAP spikes, and yield-related traits in silenced T2 lines is presented.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Citocininas/genética , Regulação para Baixo/genética , Grão Comestível/genética , Oxirredutases/genética , Fenótipo , Reguladores de Crescimento de Plantas/genética , Folhas de Planta/genética , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plântula/genética
2.
Front Plant Sci ; 14: 1226190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692423

RESUMO

Phenotyping is used in plant breeding to identify genotypes with desirable characteristics, such as drought tolerance, disease resistance, and high-yield potentials. It may also be used to evaluate the effect of environmental circumstances, such as drought, heat, and salt, on plant growth and development. Wheat spike density measure is one of the most important agronomic factors relating to wheat phenotyping. Nonetheless, due to the diversity of wheat field environments, fast and accurate identification for counting wheat spikes remains one of the challenges. This study proposes a meticulously curated and annotated dataset, named as SPIKE-segm, taken from the publicly accessible SPIKE dataset, and an optimal instance segmentation approach named as WheatSpikeNet for segmenting and counting wheat spikes from field imagery. The proposed method is based on the well-known Cascade Mask RCNN architecture with model enhancements and hyperparameter tuning to provide state-of-the-art detection and segmentation performance. A comprehensive ablation analysis incorporating many architectural components of the model was performed to determine the most efficient version. In addition, the model's hyperparameters were fine-tuned by conducting several empirical tests. ResNet50 with Deformable Convolution Network (DCN) as the backbone architecture for feature extraction, Generic RoI Extractor (GRoIE) for RoI pooling, and Side Aware Boundary Localization (SABL) for wheat spike localization comprises the final instance segmentation model. With bbox and mask mean average precision (mAP) scores of 0.9303 and 0.9416, respectively, on the test set, the proposed model achieved superior performance on the challenging SPIKE datasets. Furthermore, in comparison with other existing state-of-the-art methods, the proposed model achieved up to a 0.41% improvement of mAP in spike detection and a significant improvement of 3.46% of mAP in the segmentation tasks that will lead us to an appropriate yield estimation from wheat plants.

3.
Front Plant Sci ; 13: 821717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310650

RESUMO

The number of wheat spikes per unit area is one of the most important agronomic traits associated with wheat yield. However, quick and accurate detection for the counting of wheat spikes faces persistent challenges due to the complexity of wheat field conditions. This work has trained a RetinaNet (SpikeRetinaNet) based on several optimizations to detect and count wheat spikes efficiently. This RetinaNet consists of several improvements. First, a weighted bidirectional feature pyramid network (BiFPN) was introduced into the feature pyramid network (FPN) of RetinaNet, which could fuse multiscale features to recognize wheat spikes in different varieties and complicated environments. Then, to detect objects more efficiently, focal loss and attention modules were added. Finally, soft non-maximum suppression (Soft-NMS) was used to solve the occlusion problem. Based on these improvements, the new network detector was created and tested on the Global Wheat Head Detection (GWHD) dataset supplemented with wheat-wheatgrass spike detection (WSD) images. The WSD images were supplemented with new varieties of wheat, which makes the mixed dataset richer in species. The method of this study achieved 0.9262 for mAP50, which improved by 5.59, 49.06, 2.79, 1.35, and 7.26% compared to the state-of-the-art RetinaNet, single-shot multiBox detector (SSD), You Only Look Once version3 (Yolov3), You Only Look Once version4 (Yolov4), and faster region-based convolutional neural network (Faster-RCNN), respectively. In addition, the counting accuracy reached 0.9288, which was improved from other methods as well. Our implementation code and partial validation data are available at https://github.com/wujians122/The-Wheat-Spikes-Detecting-and-Counting.

4.
Plant Methods ; 16: 40, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32206080

RESUMO

BACKGROUND: High throughput non-destructive phenotyping is emerging as a significant approach for phenotyping germplasm and breeding populations for the identification of superior donors, elite lines, and QTLs. Detection and counting of spikes, the grain bearing organs of wheat, is critical for phenomics of a large set of germplasm and breeding lines in controlled and field conditions. It is also required for precision agriculture where the application of nitrogen, water, and other inputs at this critical stage is necessary. Further, counting of spikes is an important measure to determine yield. Digital image analysis and machine learning techniques play an essential role in non-destructive plant phenotyping analysis. RESULTS: In this study, an approach based on computer vision, particularly object detection, to recognize and count the number of spikes of the wheat plant from the digital images is proposed. For spike identification, a novel deep-learning network, SpikeSegNet, has been developed by combining two proposed feature networks: Local Patch extraction Network (LPNet) and Global Mask refinement Network (GMRNet). In LPNet, the contextual and spatial features are learned at the local patch level. The output of LPNet is a segmented mask image, which is further refined at the global level using GMRNet. Visual (RGB) images of 200 wheat plants were captured using LemnaTec imaging system installed at Nanaji Deshmukh Plant Phenomics Centre, ICAR-IARI, New Delhi. The precision, accuracy, and robustness (F1 score) of the proposed approach for spike segmentation are found to be 99.93%, 99.91%, and 99.91%, respectively. For counting the number of spikes, "analyse particles"-function of imageJ was applied on the output image of the proposed SpikeSegNet model. For spike counting, the average precision, accuracy, and robustness are 99%, 95%, and 97%, respectively. SpikeSegNet approach is tested for robustness with illuminated image dataset, and no significant difference is observed in the segmentation performance. CONCLUSION: In this study, a new approach called as SpikeSegNet has been proposed based on combined digital image analysis and deep learning techniques. A dedicated deep learning approach has been developed to identify and count spikes in the wheat plants. The performance of the approach demonstrates that SpikeSegNet is an effective and robust approach for spike detection and counting. As detection and counting of wheat spikes are closely related to the crop yield, and the proposed approach is also non-destructive, it is a significant step forward in the area of non-destructive and high-throughput phenotyping of wheat.

5.
Plant Methods ; 15: 150, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31857821

RESUMO

BACKGROUND: Grain yield of wheat is greatly associated with the population of wheat spikes, i.e., s p i k e n u m b e r m - 2 . To obtain this index in a reliable and efficient way, it is necessary to count wheat spikes accurately and automatically. Currently computer vision technologies have shown great potential to automate this task effectively in a low-end manner. In particular, counting wheat spikes is a typical visual counting problem, which is substantially studied under the name of object counting in Computer Vision. TasselNet, which represents one of the state-of-the-art counting approaches, is a convolutional neural network-based local regression model, and currently benchmarks the best record on counting maize tassels. However, when applying TasselNet to wheat spikes, it cannot predict accurate counts when spikes partially present. RESULTS: In this paper, we make an important observation that the counting performance of local regression networks can be significantly improved via adding visual context to the local patches. Meanwhile, such context can be treated as part of the receptive field without increasing the model capacity. We thus propose a simple yet effective contextual extension of TasselNet-TasselNetv2. If implementing TasselNetv2 in a fully convolutional form, both training and inference can be greatly sped up by reducing redundant computations. In particular, we collected and labeled a large-scale wheat spikes counting (WSC) dataset, with 1764 high-resolution images and 675,322 manually-annotated instances. Extensive experiments show that, TasselNetv2 not only achieves state-of-the-art performance on the WSC dataset ( 91.01 % counting accuracy) but also is more than an order of magnitude faster than TasselNet (13.82 fps on 912 × 1216 images). The generality of TasselNetv2 is further demonstrated by advancing the state of the art on both the Maize Tassels Counting and ShanghaiTech Crowd Counting datasets. CONCLUSIONS: This paper describes TasselNetv2 for counting wheat spikes, which simultaneously addresses two important use cases in plant counting: improving the counting accuracy without increasing model capacity, and improving efficiency without sacrificing accuracy. It is promising to be deployed in a real-time system with high-throughput demand. In particular, TasselNetv2 can achieve sufficiently accurate results when training from scratch with small networks, and adopting larger pre-trained networks can further boost accuracy. In practice, one can trade off the performance and efficiency according to certain application scenarios. Code and models are made available at: https://tinyurl.com/TasselNetv2.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa