Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33627387

RESUMO

Australian lineages of avian influenza A viruses (AIVs) are thought to be phylogenetically distinct from those circulating in Eurasia and the Americas, suggesting the circulation of endemic viruses seeded by occasional introductions from other regions. However, processes underlying the introduction, evolution and maintenance of AIVs in Australia remain poorly understood. Waders (order Charadriiformes, family Scolopacidae) may play a unique role in the ecology and evolution of AIVs, particularly in Australia, where ducks, geese, and swans (order Anseriformes, family Anatidae) rarely undertake intercontinental migrations. Across a 5-year surveillance period (2011 to 2015), ruddy turnstones (Arenaria interpres) that "overwinter" during the Austral summer in southeastern Australia showed generally low levels of AIV prevalence (0 to 2%). However, in March 2014, we detected AIVs in 32% (95% confidence interval [CI], 25 to 39%) of individuals in a small, low-density, island population 90 km from the Australian mainland. This epizootic comprised three distinct AIV genotypes, each of which represent a unique reassortment of Australian-, recently introduced Eurasian-, and recently introduced American-lineage gene segments. Strikingly, the Australian-lineage gene segments showed high similarity to those of H10N7 viruses isolated in 2010 and 2012 from poultry outbreaks 900 to 1,500 km to the north. Together with the diverse geographic origins of the American and Eurasian gene segments, these findings suggest extensive circulation and reassortment of AIVs within Australian wild birds over vast geographic distances. Our findings indicate that long-term surveillance in waders may yield unique insights into AIV gene flow, especially in geographic regions like Oceania, where Anatidae species do not display regular inter- or intracontinental migration.IMPORTANCE High prevalence of avian influenza viruses (AIVs) was detected in a small, low-density, isolated population of ruddy turnstones in Australia. Analysis of these viruses revealed relatively recent introductions of viral gene segments from both Eurasia and North America, as well as long-term persistence of introduced gene segments in Australian wild birds. These data demonstrate that the flow of viruses into Australia may be more common than initially thought and that, once introduced, these AIVs have the potential to be maintained within the continent. These findings add to a growing body of evidence suggesting that Australian wild birds are unlikely to be ecologically isolated from the highly pathogenic H5Nx viruses circulating among wild birds throughout the Northern Hemisphere.


Assuntos
Animais Selvagens/virologia , Charadriiformes/virologia , Surtos de Doenças/veterinária , Vírus da Influenza A Subtipo H10N7 , Influenza Aviária , Aves Domésticas/virologia , Migração Animal , Animais , Austrália , Fluxo Gênico , Genes Virais , Vírus da Influenza A Subtipo H10N7/genética , Vírus da Influenza A Subtipo H10N7/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Prevalência , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação
2.
Viruses ; 14(9)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36146838

RESUMO

Migratory birds carried clade 2.3.4.4B H5Nx highly pathogenic avian influenza (HPAI) viruses to South Africa in 2017, 2018 and 2021, where the Gauteng Province is a high-risk zone for virus introduction. Here, we combined environmental faecal sampling with sensitive rRT-PCR methods and direct Ion Torrent sequencing to survey wild populations between February and May 2022. An overall IAV incidence of 42.92% (100/231) in water bird faecal swab pools or swabs from moribund or dead European White Storks (Ciconia ciconia) was detected. In total, 7% of the IAV-positive pools tested H5-positive, with clade 2.3.4.4B H5N1 HPAI confirmed in the storks; 10% of the IAV-positive samples were identified as H9N2, and five complete H9N2 genomes were phylogenetically closely related to a local 2021 wild duck H9N2 virus, recent Eurasian LPAI viruses or those detected in commercial ostriches in the Western and Eastern Cape Provinces since 2018. H3N1, H4N2, H5N2 and H8Nx subtypes were also identified. Targeted surveillance of wild birds using environmental faecal sampling can thus be effectively applied under sub-Saharan African conditions, but region-specific studies should first be used to identify peak prevalence times which, in southern Africa, is linked to the peak rainfall period, when ducks are reproductively active.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N2 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Struthioniformes , Animais , Animais Selvagens , Patos , Influenza Aviária/epidemiologia , Filogenia , África do Sul/epidemiologia , Água
3.
Pathogens ; 10(10)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34684243

RESUMO

The results of the Serbian national integrated West Nile virus (WNV) surveillance program conducted in 2018 and funded by the Serbian Veterinary Directorate are presented. The WNV surveillance program encompassed the entire territory of Serbia and was conducted by the veterinary service in collaboration with entomologists and ornithologists. The objective of the program was early detection of WNV circulation in the environment and timely reporting to the public health service and local authorities to increase clinical and mosquito control preparedness. The program was based on the detection of WNV presence in wild birds (natural hosts) and mosquitoes (virus vectors) and on serological testing of sentinel horses (WNV-specific IgM antibodies). The season 2018 was confirmed to be the season of the most intensive WNV circulation with the highest number and severity of human cases in Serbia ever reported. The most intense WNV circulation was observed in the northern and central parts of Serbia including Vojvodina Province, the Belgrade City area, and surrounding districts, where most positive samples were detected among sentinel animals, mosquitoes and wild birds. The majority of human cases were preceded by the detection of WNV circulation during the surveillance. The WNV surveillance program in 2018 showed satisfactory results in the capacity to indicate the spatial distribution of the risk for humans and sensitivity to early detection of WNV circulation in the environment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa