RESUMO
The pathogenic fungus Batrachochytrium dendrobatidis (Bd) is associated with drastic global amphibian declines. Prophylactic exposure to killed zoospores and the soluble chemicals they produce (Bd metabolites) can induce acquired resistance to Bd in adult Cuban treefrogs Osteopilus septentrionalis. Here, we exposed metamorphic frogs of a second species, the Pacific chorus frog Pseudacris regilla, to one of 2 prophylactic treatments prior to live Bd exposures: killed Bd zoospores with metabolites, killed zoospores alone, or a water control. Prior exposure to killed Bd zoospores with metabolites reduced Bd infection intensity in metamorphic Pacific chorus frogs by 60.4% compared to control frogs. Interestingly, Bd intensity in metamorphs previously exposed to killed zoospores alone did not differ in magnitude relative to the control metamorphs, nor to those treated with killed zoospores plus metabolites. Previous work indicated that Bd metabolites alone can induce acquired resistance in tadpoles, and so these findings together indicate that it is possible that the soluble Bd metabolites may contain immunomodulatory components that drive this resistance phenotype. Our results expand the generality of this prophylaxis work by identifying a second amphibian species (Pacific chorus frog) and an additional amphibian life stage (metamorphic frog) that can acquire resistance to Bd after metabolite exposure. This work increases hopes that a Bd-metabolite prophylaxis might be widely effective across amphibian species and life stages.
RESUMO
The devil facial tumour disease (DFTD) has led to a massive decline in the wild Tasmanian devil (Sarcophilus harrisii) population. The disease is caused by two independent devil facial tumours (DFT1 and DFT2). These transmissible cancers have a mortality rate of nearly 100â%. An adenoviral vector-based vaccine has been proposed as a conservation strategy for the Tasmanian devil. This study aimed to determine if a human adenovirus serotype 5 could express functional transgenes in devil cells. As DFT1 cells do not constitutively express major histocompatibility complex class I (MHC-I), we developed a replication-deficient adenoviral vector that encodes devil interferon gamma (IFN-γ) fused to a fluorescent protein reporter. Our results show that adenoviral-expressed IFN-γ was able to stimulate upregulation of beta-2 microglobulin, a component of MHC-I, on DFT1, DFT2 and devil fibroblast cell lines. This work suggests that human adenoviruses can serve as a vaccine platform for devils and potentially other marsupials.
Assuntos
Infecções por Adenoviridae , Adenovírus Humanos , Neoplasias Faciais , Marsupiais , Animais , Humanos , Adenovírus Humanos/genética , Interferon gama , Adenoviridae/genética , Neoplasias Faciais/genética , Neoplasias Faciais/veterinária , Antígenos de Histocompatibilidade Classe I/genéticaRESUMO
Rodents serve as the natural reservoir and vector for a variety of pathogens, some of which are responsible for severe and life-threatening disease in humans. Despite the significant impact in humans many of these viruses, including Old and New World hantaviruses as well as Arenaviruses, most have no specific vaccine or therapeutic to treat or prevent human infection. The recent success of wildlife vaccines to mitigate rabies in animal populations offers interesting insight into the use of similar strategies for other zoonotic agents of human disease. In this review, we discuss the notion of using baited vaccines as a means to interrupt the transmission of viral pathogens between rodent reservoirs and to susceptible human hosts.