Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675319

RESUMO

KB-R7943, an isothiourea derivative, has been recognized as an inhibitor in the reverse mode of the Na+-Ca2+ exchanging process. This compound was demonstrated to prevent intracellular Na+-dependent Ca2+ uptake in intact cells; however, it is much less effective at preventing extracellular Na+-dependent Ca2+ efflux. Therefore, whether or how this compound may produce any perturbations on other types of ionic currents, particularly on voltage-gated Na+ current (INa), needs to be further studied. In this study, the whole-cell current recordings demonstrated that upon abrupt depolarization in pituitary GH3 cells, the exposure to KB-R7943 concentration-dependently depressed the transient (INa(T)) or late component (INa(L)) of INa with an IC50 value of 11 or 0.9 µM, respectively. Likewise, the dissociation constant for the KB-R7943-mediated block of INa on the basis of a minimum reaction scheme was estimated to be 0.97 µM. The presence of benzamil or amiloride could suppress the INa(L) magnitude. The instantaneous window Na+ current (INa(W)) activated by abrupt ascending ramp voltage (Vramp) was suppressed by adding KB-R7943; however, subsequent addition of deltamethrin or tefluthrin (Tef) effectively reversed KB-R7943-inhibted INa(W). With prolonged duration of depolarizing pulses, the INa(L) amplitude became exponentially decreased; moreover, KB-R7943 diminished INa(L) magnitude. The resurgent Na+ current (INa(R)) evoked by a repolarizing Vramp was also suppressed by adding this compound; moreover, subsequent addition of ranolazine or Tef further diminished or reversed, respectively, its reduction in INa(R) magnitude. The persistent Na+ current (INa(P)) activated by sinusoidal voltage waveform became enhanced by Tef; however, subsequent application of KB-R7943 counteracted Tef-stimulated INa(P). The docking prediction reflected that there seem to be molecular interactions of this molecule with the hNaV1.2 or hNaV1.7 channels. Collectively, this study highlights evidence showing that KB-R7943 has the propensity to perturb the magnitude and gating kinetics of INa (e.g., INa(T), INa(L), INa(W), INa(R), and INa(P)) and that the NaV channels appear to be important targets for the in vivo actions of KB-R7943 or other relevant compounds.


Assuntos
Trocador de Sódio e Cálcio , Tioureia , Tioureia/farmacologia
2.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35887240

RESUMO

Carbamazepine (CBZ, Tegretol®) is an anticonvulsant used in the treatment of epilepsy and neuropathic pain; however, several unwanted effects of this drug have been noticed. Therefore, the regulatory actions of CBZ on ionic currents in electrically excitable cells need to be reappraised, although its efficacy in suppressing voltage-gated Na+ current (INa) has been disclosed. This study was undertaken to explore the modifications produced by CBZ on ionic currents (e.g., INa and erg-mediated K+ current [IK(erg)]) measured from Neuro-2a (N2a) cells. In these cells, we found that this drug differentially suppressed the peak (transient, INa(T)) and sustained (late, INa(L)) components of INa in a concentration-dependent manner with effective IC50 of 56 and 18 µM, respectively. The overall current-voltage relationship of INa(T) with or without the addition of CBZ remained unchanged; however, the strength (i.e., ∆area) in the window component of INa (INa(W)) evoked by the short ascending ramp pulse (Vramp) was overly lessened in the CBZ presence. Tefluthrin (Tef), a synthetic pyrethroid, known to stimulate INa, augmented the strength of the voltage-dependent hysteresis (Hys(V)) of persistent INa (INa(P)) in response to the isosceles-triangular Vramp; moreover, further application of CBZ attenuated Tef-mediated accentuation of INa(P)'s Hys(V). With a two-step voltage protocol, the recovery of INa(T) inactivation seen in Neuro-2a cells became progressively slowed by adding CBZ; however, the cumulative inhibition of INa(T) evoked by pulse train stimulation was enhanced during exposure to this drug. Neuro-2a-cell exposure to CBZ (100 µM), the magnitude of erg-mediated K+ current measured throughout the entire voltage-clamp steps applied was mildly inhibited. The docking results regarding the interaction of CBZ and voltage-gate Na+ (NaV) channel predicted the ability of CBZ to bind to some amino-acid residues in NaV due to the existence of a hydrogen bond or hydrophobic contact. It is conceivable from the current investigations that the INa (INa(T), INa(L), INa(W), and INa(P)) residing in Neuro-2a cells are susceptible to being suppressed by CBZ, and that its block on INa(L) is larger than that on INa(T). Collectively, the magnitude and gating of NaV channels produced by the CBZ presence might have an impact on its anticonvulsant and analgesic effects occurring in vivo.


Assuntos
Anticonvulsivantes , Crista Neural , Animais , Anticonvulsivantes/farmacologia , Benzodiazepinas , Carbamazepina/farmacologia , Linhagem Celular , Camundongos , Sódio
3.
Int J Mol Sci ; 23(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36233266

RESUMO

The effects of lacosamide (LCS, Vimpat®), an anti-convulsant and analgesic, on voltage-gated Na+ current (INa) were investigated. LCS suppressed both the peak (transient, INa(T)) and sustained (late, INa(L)) components of INa with the IC50 values of 78 and 34 µM found in GH3 cells and of 112 and 26 µM in Neuro-2a cells, respectively. In GH3 cells, the voltage-dependent hysteresis of persistent INa (INa(P)) during the triangular ramp pulse was strikingly attenuated, and the decaying time constant (τ) of INa(T) or INa(L) during a train of depolarizing pulses was further shortened by LCS. The recovery time course from the INa block elicited by the preceding conditioning train can be fitted by two exponential processes, while the single exponential increase in current recovery without a conditioning train was adequately fitted. The fast and slow τ's of recovery from the INa block by the same conditioning protocol arose in the presence of LCS. In Neuro-2a cells, the strength of the instantaneous window INa (INa(W)) during the rapid ramp pulse was reduced by LCS. This reduction could be reversed by tefluthrin. Moreover, LCS accelerated the inactivation time course of INa activated by pulse train stimulation, and veratridine reversed its decrease in the decaying τ value in current inactivation. The docking results predicted the capability of LCS binding to some amino-acid residues in sodium channels owing to the occurrence of hydrophobic contact. Overall, our findings unveiled that LCS can interact with the sodium channels to alter the magnitude, gating, voltage-dependent hysteresis behavior, and use dependence of INa in excitable cells.


Assuntos
Canais de Sódio , Sódio , Íons/metabolismo , Lacosamida/farmacologia , Sódio/metabolismo , Veratridina
4.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409204

RESUMO

Mirogabalin (MGB, Tarlige®), an inhibitor of the α2δ-1 subunit of voltage-gated Ca2+ (CaV) channels, is used as a way to alleviate peripheral neuropathic pain and diabetic neuropathy. However, to what extent MGB modifies the magnitude, gating, and/or hysteresis of various types of plasmalemmal ionic currents remains largely unexplored. In pituitary tumor (GH3) cells, we found that MGB was effective at suppressing the peak (transient, INa(T)) and sustained (late, INa(L)) components of the voltage-gated Na+ current (INa) in a concentration-dependent manner, with an effective IC50 of 19.5 and 7.3 µM, respectively, while the KD value calculated on the basis of minimum reaction scheme was 8.2 µM. The recovery of INa(T) inactivation slowed in the presence of MGB, although the overall current-voltage relation of INa(T) was unaltered; however, there was a leftward shift in the inactivation curve of the current. The magnitude of the window (INa(W)) or resurgent INa (INa(R)) evoked by the respective ascending or descending ramp pulse (Vramp) was reduced during cell exposure to MGB. MGB-induced attenuation in INa(W) or INa(R) was reversed by the further addition of tefluthrin, a pyrethroid insecticide known to stimulate INa. MGB also effectively lessened the strength of voltage-dependent hysteresis of persistent INa in response to the isosceles triangular Vramp. The cumulative inhibition of INa(T), evoked by pulse train stimulation, was enhanced in its presence. Taken together, in addition to the inhibition of CaV channels, the NaV channel attenuation produced by MGB might have an impact in its analgesic effects occurring in vivo.


Assuntos
Ácido Acético , Neoplasias Hipofisárias , Compostos Bicíclicos com Pontes , Humanos , Neoplasias Hipofisárias/patologia , Sódio
5.
Biomedicines ; 11(5)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37239022

RESUMO

Omecamtiv mecarbil (OM, CK-1827452) is recognized as an activator of myosin and has been demonstrated to be beneficial for the treatment of systolic heart failure. However, the mechanisms by which this compound interacts with ionic currents in electrically excitable cells remain largely unknown. The objective of this study was to investigate the effects of OM on ionic currents in GH3 pituitary cells and Neuro-2a neuroblastoma cells. In GH3 cells, whole-cell current recordings showed that the addition of OM had different potencies in stimulating the transient (INa(T)) and late components (INa(L)) of the voltage-gated Na+ current (INa) with different potencies in GH3 cells. The EC50 value required to observe the stimulatory effect of this compound on INa(T) or INa(L) in GH3 cells was found to be 15.8 and 2.3 µM, respectively. Exposure to OM did not affect the current versus voltage relationship of INa(T). However, the steady-state inactivation curve of the current was observed to shift towards a depolarized potential of approximately 11 mV, with no changes in the slope factor of the curve. The addition of OM resulted in an increase in the decaying time constant during the cumulative inhibition of INa(T) in response to pulse-train depolarizing stimuli. Furthermore, the presence of OM led to a shortening of the recovery time constant in the slow inactivation of INa(T). Adding OM also resulted in an augmentation of the strength of the window Na+ current, which was evoked by a short ascending ramp voltage. However, the OM exposure had little to no effect on the magnitude of L-type Ca2+ currents in GH3 cells. On the other hand, the delayed-rectifier K+ currents in GH3 cells were observed to be mildly suppressed in its presence. Neuro-2a cells also showed a susceptibility to the differential stimulation of INa(T) or INa(L) upon the addition of OM. Molecular analysis revealed potential interactions between the OM molecule and hNaV1.7 channels. Overall, the direct stimulation of INa(T) and INa(L) by OM is assumed to not be mediated by an interaction with myosin, and this has potential implications for its pharmacological or therapeutic actions occurring in vivo.

6.
Front Cell Neurosci ; 17: 1159067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293624

RESUMO

Carisbamate (CRS, RWJ-333369) is a new anti-seizure medication. It remains unclear whether and how CRS can perturb the magnitude and/or gating kinetics of membrane ionic currents, despite a few reports demonstrating its ability to suppress voltage-gated Na+ currents. In this study, we observed a set of whole-cell current recordings and found that CRS effectively suppressed the voltage-gated Na+ (INa) and hyperpolarization-activated cation currents (Ih) intrinsically in electrically excitable cells (GH3 cells). The effective IC50 values of CRS for the differential suppression of transient (INa(T)) and late INa (INa(L)) were 56.4 and 11.4 µM, respectively. However, CRS strongly decreased the strength (i.e., Δarea) of the nonlinear window component of INa (INa(W)), which was activated by a short ascending ramp voltage (Vramp); the subsequent addition of deltamethrin (DLT, 10 µM) counteracted the ability of CRS (100 µM, continuous exposure) to suppress INa(W). CRS strikingly decreased the decay time constant of INa(T) evoked during pulse train stimulation; however, the addition of telmisartan (10 µM) effectively attenuated the CRS (30 µM, continuous exposure)-mediated decrease in the decay time constant of the current. During continued exposure to deltamethrin (10 µM), known to be a pyrethroid insecticide, the addition of CRS resulted in differential suppression of the amplitudes of INa(T) and INa(L). The amplitude of Ih activated by a 2-s membrane hyperpolarization was diminished by CRS in a concentration-dependent manner, with an IC50 value of 38 µM. For Ih, CRS altered the steady-state I-V relationship and attenuated the strength of voltage-dependent hysteresis (Hys(V)) activated by an inverted isosceles-triangular Vramp. Moreover, the addition of oxaliplatin effectively reversed the CRS-mediated suppression of Hys(V). The predicted docking interaction between CRS and with a model of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel or between CRS and the hNaV1.7 channel reflects the ability of CRS to bind to amino acid residues in HCN or hNaV1.7 channel via hydrogen bonds and hydrophobic interactions. These findings reveal the propensity of CRS to modify INa(T) and INa(L) differentially and to effectively suppress the magnitude of Ih. INa and Ih are thus potential targets of the actions of CRS in terms of modulating cellular excitability.

7.
Biomedicines ; 10(3)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35327523

RESUMO

GV-58 ((2R)-2-[(6-{[(5-methylthiophen-2-yl)methyl]amino}-9-propyl-9H-purin-2-yl)amino]butan-1-ol) is recognized to be an activator of N- and P/Q-type Ca2+ currents. However, its modulatory actions on other types of ionic currents in electrically excitable cells remain largely unanswered. This study was undertaken to explore the possible modifications caused by GV-58 in ionic currents (e.g., voltage-gated Na+ current [INa], A-type K+ current [IK(A)], and erg-mediated K+ current [IK(erg)]) identified from pituitary GH3 lactotrophs. GH3 cell exposure to GV-58 enhanced the transient and late components of INa with varying potencies; consequently, the EC50 values of GV-58 required for its differential increase in peak and late INa in GH3 cells were estimated to be 8.9 and 2.6 µM, respectively. The INa in response to brief depolarizing pulse was respectively stimulated or suppressed by GV-58 or tetrodotoxin, but it failed to be altered by ω-conotoxin MVIID. Cell exposure to this compound increased the recovery of INa inactivation evoked by two-pulse protocol based on a geometrics progression; however, in its presence, there was a slowing in the inactivation rate of current decay evoked by a train of depolarizing pulses. The existence of GV-58 also resulted in an increase in the amplitude of ramp-induced resurgent and window INa. The presence of this compound inhibited IK(A) magnitude, accompanied by a shortening in inactivation time course of the current; however, it mildly decreased IK(erg). Under current-clamp conditions, GV-58 increased the frequency of spontaneous action potentials in GH3 cells. Moreover, in NSC-34 motor neuron-like cells, the presence of GV-58 not only raised INa amplitude but also reduced current inactivation. Taken together, the overall work provides a noticeable yet unidentified finding which implies that, in addition to its agonistic effect on Ca2+ currents, GV-58 may concertedly modify the amplitude and gating kinetics of INa in electrically excitable cells, hence modifiying functional activities in these cells.

8.
Biomedicines ; 10(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35052766

RESUMO

Sparsentan is viewed as a dual antagonist of endothelin type A (ETA) receptor and angiotensin II (AngII) receptor and it could be beneficial in patients with focal segmental glomerulosclerosis. Moreover, it could improve glomerular filtration rate and augment protective tissue remodeling in mouse models of focal segmental glomerulosclerosis. The ionic mechanisms through which it interacts with the magnitude and/or gating kinetics of ionic currents in excitable cells were not thoroughly investigated. Herein, we aimed to examine the effects of varying sparsentan concentrations on ionic currents residing in pituitary GH3 somatolactotrophs. From whole-cell current recordings made in GH3 cells, sparsentan (0.3-100 µM) differentially inhibited the peak and late components of voltage-gated Na+ current (INa). The IC50 value of sparsentan required to exert a reduction in peak and late INa in GH3 cells was 15.04 and 1.21 µM, respectively; meanwhile, the KD value estimated from its shortening in the slow component of INa inactivation time constant was 2.09 µM. The sparsentan (10 µM) presence did not change the overall current-voltage relationship of INa; however, the steady-state inactivation curve of the current was shifted to more negative potential in its presence (10 µM), with no change in the gating charge of the curve. The window INa activated by a brief upsloping ramp was decreased during exposure to sparsentan (10 µM); moreover, recovery of peak INa became slowed in its presence. The Tefluthrin (Tef)-stimulated resurgent INa activated in response to abrupt depolarization followed by the descending ramp pulse was additionally attenuated by subsequent application of sparsentan. In continued presence of Tef (3 µM) or ß-pompilidotoxin (3 µM), further application of sparsentan (3 µM) reversed their stimulation of INa. However, sparsentan-induced inhibition of INa failed to be overcome by subsequent application of either endothelin 1 (1 µM) or angiotensin II (1 µM); moreover, in continued presence of endothelin (1 µM) or angiotensin II (1 µM), further addition of sparsentan (3 µM) effectively decreased peak INa. Additionally, the application of sparsentan (3 µM) inhibited the peak and late components of erg-mediated K+ current in GH3 cells, although it mildly decreased the amplitude of delayed-rectifier K+ current. Altogether, this study provides a distinct yet unidentified finding that sparsentan may perturb the amplitude or gating of varying ionic currents in excitable cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa