Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(3): e2315341121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190519

RESUMO

Wing dimorphism of insect vectors is a determining factor for viral long-distance dispersal and large-area epidemics. Although plant viruses affect the wing plasticity of insect vectors, the potential underlying molecular mechanisms have seldom been investigated. Here, we found that a planthopper-vectored rice virus, rice stripe virus (RSV), specifically induces a long-winged morph in male insects. The analysis of field populations demonstrated that the long-winged ratios of male insects are closely associated with RSV infection regardless of viral titers. A planthopper-specific and testis-highly expressed gene, Encounter, was fortuitously found to play a key role in the RSV-induced long-winged morph. Encounter resembles malate dehydrogenase in the sequence, but it does not have corresponding enzymatic activity. Encounter is upregulated to affect male wing dimorphism at early larval stages. Encounter is closely connected with the insulin/insulin-like growth factor signaling pathway as a downstream factor of Akt, of which the transcriptional level is activated in response to RSV infection, resulting in the elevated expression of Encounter. In addition, an RSV-derived small interfering RNA directly targets Encounter to enhance its expression. Our study reveals an unreported mechanism underlying the direct regulation by a plant virus of wing dimorphism in its insect vectors, providing the potential way for interrupting viral dispersal.


Assuntos
Epidemias , Vírus de Plantas , Infecções por Vírus Respiratório Sincicial , Tenuivirus , Masculino , Animais , Vírus de Plantas/genética , Tenuivirus/genética , Insetos Vetores , Peptídeos Semelhantes à Insulina
2.
Arch Insect Biochem Physiol ; 115(3): e22096, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500448

RESUMO

The microbial community structure plays an important role in the internal environment of brown planthopper (BPH), Nilaparvata lugens (Hemiptera: Delphacidae), which is an indispensable part to reflect the internal environment of BPH. Wing dimorphism is a strategy for balancing flight and reproduction of insects. Here, quantitative fluorescence PCR was used to analyse the number and changes of the symbionts in the fat body of long- and short-winged BPHs at different developmental stages. A metagenomic library was constructed based on the 16 S rRNA sequence and internal transcribed spacer sequence for high-throughput sequencing, to analyze the community structure and population number of the symbionts of long- and short-winged BPHs, and to make functional prediction. This study enriches the connotation of BPH symbionts, and laid a theoretical foundation for the subsequent study of BPH-symbionts interaction and the function of symbionts in the host.


Assuntos
Corpo Adiposo , Hemípteros , Animais , Hemípteros/genética
3.
Biol Lett ; 19(5): 20230024, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37194256

RESUMO

Many organisms exhibit phenotypic plasticity, in which developmental processes result in different phenotypes depending on their environmental context. Here we focus on the molecular mechanisms underlying that environmental response. Pea aphids (Acyrthosiphon pisum) exhibit a wing dimorphism, in which pea aphid mothers produce winged or wingless daughters when exposed to a crowded or low-density environment, respectively. We investigated the role of dopamine in mediating this wing plasticity, motivated by a previous study that found higher dopamine titres in wingless- versus winged-producing aphid mothers. In this study, we found that manipulating dopamine levels in aphid mothers affected the numbers of winged offspring they produced. Specifically, asexual female adults injected with a dopamine agonist produced a lower percentage of winged offspring, while asexual females injected with a dopamine antagonist produced a higher percentage of winged offspring, matching expectations based on the titre difference. We also found that genes involved in dopamine synthesis, degradation and signalling were not differentially expressed between wingless- and winged-producing aphids. This result indicates that titre regulation possibly happens in a non-transcriptional manner or that sampling of additional timepoints or tissues is necessary. Overall, our work emphasizes that dopamine is an important component of how organisms process information about their environments.


Assuntos
Afídeos , Feminino , Animais , Afídeos/fisiologia , Dopamina/metabolismo , Pisum sativum , Fenótipo , Asas de Animais
4.
J Therm Biol ; 115: 103626, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37364441

RESUMO

Temperature is a key environmental factor in ectotherms and influences many life history traits. In the present study, the nymphal development time, sex ratio and wing dimorphism of the small brown planthopper Laodelphax striatellus were examined under the conditions of constant temperatures, naturally varying temperatures (or different generations), and different temperatures combined with different photoperiod. The results showed that from 18 to 28 °C, the developmental time of nymphs was gradually shortened with the increase of temperature, whereas the high temperatures of 30 and 32 °C in the third to fifth instar nymphal stages and high summer temperature of 28.8 and 29.7 °C significantly delayed developmental time and resulted in higher mortality of nymphs. In all treatments, the developmental time was longer in females than males. The nymphs took significantly longer time to develop in the short daylength of 12 h than in longer daylengths of 13, 14, 15 and 16. Differences in developmental time were also found between wing morph, with long-winged individuals being significantly longer than the short-winged individuals at lower temperatures and significantly shorter than the short-winged individuals at higher temperatures. In all treatments, the sex ratio was stable, approaching 1:1, without being affected by temperature, generations and photoperiod. Photoperiod and temperature had significantly influence on the wing dimorphism. Long daylength combined with different temperatures resulted in significantly higher proportions of long-winged morph, whereas the low temperatures combined with the short daylengths in autumn and winter resulted in significantly high proportion of short-winged morph. This study broadens our understanding of the life-history traits of this planthopper and provides basic data for analyzing the effects of climate change on the planthopper reproduction.


Assuntos
Hemípteros , Temperatura Alta , Humanos , Animais , Masculino , Feminino , Temperatura , Reprodução , Fotoperíodo , Hemípteros/fisiologia , Ninfa
5.
Cell Tissue Res ; 387(1): 29-38, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34661757

RESUMO

The winter moth, Nyssiodes lefuarius, exhibits striking sexual dimorphism in wing form; males have functional wings of normal size, whereas females lack wings. We previously found that the steroid hormone 20-hydroxyecdysone (20E) triggered massive programmed cell death (PCD) only in the female pupal wing epithelium; however, when and how early sexual trait development of the pupal wings is initiated during pupal-adult metamorphosis remains obscure. To clarify the detailed morphological changes and mechanisms underlying early sexual trait development and cell death, we examined the effects of 20E on early ultrastructural and histological changes in the pupal wing epithelium of both sexes. Before the onset of adult differentiation, no morphological differences were observed in the epithelial cells of both sexes at an ultrastructural level. When 5.4 µg of 20E was injected into pupae of both sexes at 15 days after the onset of pupation, retraction of the wing epithelium from the pupal cuticle was initiated at day 2 after 20E injection in both sexes. Although overt degeneration of wing tissue was not still obvious, apoptotic body-like structures and auto-phagosomes were visible at day 3 after 20E injection in females, whereas development of scale precursor cells started on day 4 after injection in males. Our results suggest that (1) the injection of 20E induced sexually dimorphic changes in the pattern of organelle distribution in wing epithelial cells, and (2) abnormally shaped mitochondria in the cytoplasm of the female wing epithelium might be involved in the PCD that occurs during wing tissue degeneration.


Assuntos
Mariposas/crescimento & desenvolvimento , Animais , Diferenciação Celular , Feminino , Masculino , Caracteres Sexuais
6.
J Evol Biol ; 34(8): 1340-1346, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34109692

RESUMO

Life-history theory predicts a negative correlation between reproduction and survival because individuals differ in their investment in early reproduction at the expense of survival. However, life-history trade-offs can be masked when individual differences in resource allocation are smaller than those in resource acquisition. In polymorphic species, as distinct morphs exhibit differences in intrinsic physiology, the relative effects of resource acquisition and allocation on life-history traits will differ between morphs, contributing to morph-specific life-history correlations. Here, in the wing-dimorphic water strider Aquarius paludum, we found that wing morphs differed in within-morph individual-level life-history correlations. Longer-lived flight-capable long-winged females produced fewer eggs per day and matured later, whereas life-history trade-offs were not observed in short-winged flightless females. The survival-reproduction trade-off observed in long-winged females may be a result of individual differences in the timing of wing muscle histolysis. Individuals that underwent wing histolysis early would have increased reproduction at the expense of a shorter life, whereas individuals with late wing histolysis would have reduced reproduction but a longer life. Short-winged females, who never develop wings, effectively have more resources to allocate to both survival and reproduction, masking any life-history trade-offs. Thus, we suggest that morph-specific effects of resource allocation trade-offs can shape the morph-specific extent of individual variation in life-history strategies, which may contribute to the evolution and maintenance of within-species polymorphism.


Assuntos
Gryllidae , Água , Animais , Feminino , Humanos , Músculos , Reprodução , Asas de Animais
7.
J Exp Biol ; 224(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33692081

RESUMO

The frequency, duration and co-occurrence of several environmental stressors, such as heat waves and droughts, are increasing globally. Such multiple stressors may have compounding or interactive effects on animals, resulting in either additive or non-additive costs, but animals may mitigate these costs through various strategies of resource conservation or shifts in resource allocation. Through a factorial experiment, we investigated the independent and interactive effects of a simulated heat wave and water limitation on life-history, physiological and behavioral traits. We used the variable field cricket, Gryllus lineaticeps, which exhibits a wing dimorphism that mediates two distinct life-history strategies during early adulthood. Long-winged individuals invest in flight musculature and are typically flight capable, whereas short-winged individuals lack flight musculature and capacity. A comprehensive and integrative approach with G. lineaticeps allowed us to examine whether life-history strategy influenced the costs of multiple stressors as well as the resulting cost-limiting strategies. Concurrent heat wave and water limitation resulted in largely non-additive and single-stressor costs to important traits (e.g. survival and water balance), extensive shifts in resource allocation priorities (e.g. reduced prioritization of body mass) and a limited capacity to conserve resources (e.g. heat wave reduced energy use only when water was available). Life-history strategy influenced the emergency life-history stage because wing morphology and stressor(s) interacted to influence body mass, boldness behavior and immunocompetence. Our results demonstrate that water availability and life-history strategy should be incorporated into future studies integrating important conceptual frameworks of stress across a suite of traits - from survival and life history to behavior and physiology.


Assuntos
Gryllidae , Características de História de Vida , Adulto , Animais , Temperatura Alta , Estágios do Ciclo de Vida , Água
8.
Proc Natl Acad Sci U S A ; 115(29): 7563-7568, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967173

RESUMO

Food quality is a critical environmental condition that impacts an animal's growth and development. Many insects facing this challenge have evolved a phenotypically plastic, adaptive response. For example, many species of insect exhibit facultative wing growth, which reflects a physiological and evolutionary trade-off between dispersal and reproduction, triggered by environmental conditions. What the environmental cues are and how they are transduced to produce these alternative forms, and their associated ecological shift from dispersal to reproduction, remains an important unsolved problem in evolutionary ecology. In this study, we investigated the role that host quality has on the induction of wing development in a wing polyphenic insect exhibiting strong tradeoffs in investment between dispersal and reproduction, the brown planthopper, a serious rice pest in Asia. As rice plants grow, the short-winged brown planthopper dominates the population, but a shift occurs as the plants mature and senesce in the field such that long-winged brown planthoppers emerge and migrate. It remains unknown how changes in the rice plant induce development of the long-winged morph, despite recent discoveries on the role of the insulin and JNK signaling pathways in wing development. We found that by mimicking the glucose concentration of senescing rice plants, we significantly increased the proportion of long-winged female planthoppers. The effects of glucose on wing morph are additive with previously described effects of density. Our results show that host quality both directly regulates phenotypic plasticity and interacts with other factors such as density to produce the appropriate phenotype for specific environmental conditions.


Assuntos
Evolução Biológica , Hemípteros/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Oryza/parasitologia , Asas de Animais/fisiologia , Animais , Feminino , Hemípteros/anatomia & histologia , Masculino , Asas de Animais/anatomia & histologia
9.
Proc Biol Sci ; 287(1937): 20201349, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33081611

RESUMO

A key focus of evolutionary developmental biology is on how phenotypic diversity is generated. In particular, both plasticity and developmental instability contribute to phenotypic variation among genetically identical individuals, but the interactions between the two phenomena and their general fitness impacts are unclear. We discovered a striking example of asymmetry in pea aphids: the presence of wings on one side and the complete or partial absence of wings on the opposite side. We used this asymmetric phenotype to study the connection between plasticity, developmental instability and fitness. We found that this asymmetric wing development (i) occurred equally on both sides and thus is a developmental instability; (ii) is present in some genetically unique lines but not others, and thus has a genetic basis; and (iii) has intermediate levels of fecundity, and thus does not necessarily have negative fitness consequences. We conclude that this dramatic asymmetry may arise from incomplete switching between developmental targets, linking plasticity and developmental instability. We suspect that what we have observed may be a more widespread phenomenon, occurring across species that routinely produce distinct, alternative phenotypes.


Assuntos
Afídeos/fisiologia , Asas de Animais , Animais , Evolução Biológica , Pisum sativum , Fenótipo
10.
Biol Lett ; 16(4): 20190940, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32343935

RESUMO

Geomagnetic field (GMF) intensity can be used by some animals to determine their position during migration. However, its role, if any, in mediating other migration-related phenotypes remains largely unknown. Here, we simulated variation in GMF intensity between two locations along the migration route of a nocturnal insect migrant, the brown planthopper Nilaparvata lugens, that varied by approximately 5 µT in field intensity. After one generation of exposure, we tested for changes in key morphological, behavioural and physiological traits related to migratory performance, including wing dimorphism, flight capacity and positive phototaxis. Our results showed that all three morphological and behavioural phenotypes responded to a small difference in magnetic field intensity. Consistent magnetic responses in the expression of the phototaxis-related Drosophila-like cryptochrome 1 (Cry1) gene and levels of two primary energy substrates used during flight, triglyceride and trehalose, were also found. Our findings indicate changes in GMF intensity can alter the expression of phenotypes critical for insect migration and highlight the unique role of magnetoreception as a trait that may help migratory insects express potentially beneficial phenotypes in geographically variable environments.


Assuntos
Hemípteros , Animais , Hemípteros/genética , Proteínas de Insetos/genética , Campos Magnéticos , Fenótipo , Asas de Animais
11.
BMC Genomics ; 20(1): 396, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31113376

RESUMO

BACKGROUND: Phenotypic plasticity is a common and highly adaptive phenomenon where the same genotype produces different phenotypes in response to environmental cues. Sogatella furcifera, a migratory pest of rice exhibits wing dimorphism, is a model insect for studying phenotypic plasticity of wing size. The Insullin-PI3K-Akt-FOXO signaling pathway plays a crucial role in the manipulation of wing size in the migratory insects. However, the regulatory mechanism via the pathway involved in wing dimorphism are still unexplored. RESULTS: Accompanied by special alternative splicing, genes involved in muscle contraction and energy metabolism were highly expressed in the wing hinges of macropters, demonstrating their adaptation for energy-demanding long-distance flights. Based on FOXO ChIP-Seq analysis, a total of 1259 putative target genes were observed in the wing hinges, including wing morph development, flight muscle and energy metabolism genes. An integrated gene interaction network was built by combining four heterogeneous datasets, and the IIS-PI3K-Akt-FOXO pathway was clustered in a divided functional module. In total, 45 genes in the module directly interacting with the IIS-PI3K-Akt-FOXO pathway showed differential expression levels between the two wing hinges, thus are regarded as potential Insulin pathway mediated wing dimorphism related genes (IWDRGs). Of the 45 IWDRGs, 5 were selected for verification by gene knockdown experiments, and played significant roles in the insect wing size regulation. CONCLUSIONS: We provided valuable insights on the genetic basis of wing dimorphism, and also demonstrated that network analysis is a powerful approach to identify new genes regulating wing dimorphic development via insulin signaling pathway in the migratory insect.


Assuntos
Genes de Insetos , Hemípteros/genética , Insulina/fisiologia , Asas de Animais/metabolismo , Processamento Alternativo , Animais , Ácidos Graxos/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica , Redes Reguladoras de Genes , Hemípteros/anatomia & histologia , Hemípteros/metabolismo , Proteínas de Insetos/metabolismo , Proteínas Musculares/genética , Fenótipo , Transdução de Sinais , Asas de Animais/anatomia & histologia
12.
J Insect Sci ; 162016.
Artigo em Inglês | MEDLINE | ID: mdl-27044649

RESUMO

Sogatella furcifera(Horvath) is an important rice pest with the wing dimorphism, including macropterous and brachypterous morphs. The protein expression profiles in two wing-type adults and two wing-type disc fifth-instar nymphs were analyzed using two-dimensional gel protein electrophoresis and mass spectrometry. In adults and fifth-instar nymphs, 127 and 162 protein spots were detected, respectively. Fifty-five differentially expressed protein spots were identified between the long-winged adults and the short-winged adults, and 62 differentially expressed protein spots were found between the long-winged disc fifth-instar nymphs and short-winged disc fifth-instar nymphs. In long-winged and short-winged adults, six and seven specific protein spots were identified, respectively, with five and seven protein spots having more than threefold increased level, respectively. In long-winged and short-winged disc morph nymphs, 8 and 12 specific protein spots were identified, respectively, with 11 and 17 spots containing more than threefold increased level, respectively. Among the 16 identified proteins, five proteins are associated with muscle function, suggesting that muscle is a main tissue where the genes were differentially expressed between the two wing types. In addition, the content of a peptidase with an insulinase domain was higher (by 3.02 ± 0.59 fold) in the short-winged fifth-instar nymphs than in the long-winged fifth-instar nymphs, which suggests that this peptidase may be involved in wing differentiation by regulating insulin receptors. The results of this study provide some genetic clues for the wing differential development inS. furcifera and provide more references for future studies.


Assuntos
Hemípteros/metabolismo , Proteínas de Insetos/metabolismo , Animais , Eletroforese em Gel Bidimensional , Feminino , Hemípteros/anatomia & histologia , Hemípteros/crescimento & desenvolvimento , Espectrometria de Massas , Ninfa/metabolismo , Transcriptoma , Asas de Animais/anatomia & histologia , Asas de Animais/crescimento & desenvolvimento
13.
J Insect Sci ; 14: 117, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25368061

RESUMO

The effects of environmental factors and appendage injury on the wing variation in Velarifictorus ornatus (Shiraki) (Orthoptera: Gryllidae) were investigated. The percentage of micropters was more than 95% when the nymphs were reared at constant photoperiods, and changing photoperiod did not affect wing variation in V. ornatus at 25 or 30°C. In the crowding experiment, the percentage of macropters was only 11.2% when the nymphs were reared separately at 25°C. In contrast, the percentage of macropters was significantly higher when the rearing density was increased to two nymphs per container and lower when the rearing density was increased to five or 10 nymphs per container. These results indicate that low and high rearing densities induce micropters, but intermediate rearing density stimulates the formation of macropters. Meanwhile, severance of appendages, such as antennae, femora, and tibiae, in the nymph stage exerted a micropterizing effect. The period sensitive to such stresses ranged from 35 to 60 days of nymph development.


Assuntos
Gryllidae/anatomia & histologia , Asas de Animais/anatomia & histologia , Animais , Meio Ambiente , Ninfa , Fotoperíodo , Densidade Demográfica , Asas de Animais/lesões
14.
J Insect Physiol ; 152: 104587, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043786

RESUMO

The brown planthopper (BPH, Nilaparvata lugens), a major insect pest of rice, can make a shift in wing dimorphism to adapt to complex external environments. Our previous study showed that NlODC (Ornithine decarboxylase in N. lugens) was involved in wing dimorphism of the brown planthopper. Here, further experiments were conducted to reveal possible molecular mechanism of NlODC in manipulating the wing dimorphism. We found that the long-winged rate (LWR) of BPH was significantly reduced after RNAi of NlODC or injection of DFMO (D, L-α-Difluoromethylornithine), and LWR of males and females significantly decreased by 21.7% and 34.6%, respectively. Meanwhile, we also examined the contents of three polyamines under DFMO treatment and found that the contents of putrescine and spermidine were significantly lower compared to the control. After 3rd instar nymphs were injected with putrescine and spermidine, LWR was increased significantly in both cases, and putrescine was a little bit more effective, with 5.6% increase in males and 11.4% in females. Three days after injection of dsNlODC, injection of putrescine and spermidine rescued LWR to the normal levels. In the regulation of wing differentiation in BPH, NlODC mutually antagonistic to NlAkt may act through other signaling pathways rather than the classical insulin signaling pathway. This study illuminated a physiological function of an ODC gene involved in wing differentiation in insects, which could be a potential target for pest control.


Assuntos
Hemípteros , Ornitina Descarboxilase , Feminino , Masculino , Animais , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Hemípteros/fisiologia , Caracteres Sexuais , Putrescina/metabolismo , Espermidina/metabolismo
15.
Insect Sci ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728615

RESUMO

Wing dimorphism is regarded as an important phenotypic plasticity involved in the migration and reproduction of aphids. However, the signal transduction and regulatory mechanism of wing dimorphism in aphids are still unclear. Herein, the optimal environmental conditions were first explored for inducing winged offspring of green peach aphid, and the short photoperiod was the most important environmental cue to regulate wing dimorphism. Compared to 16 L:8 D photoperiod, the proportion of winged offspring increased to 90% under 8 L:16 D photoperiod. Subsequently, 5 differentially expressed microRNAs (miRNAs) in aphids treated with long and short photoperiods were identified using small RNA sequencing, and a novel miR-3040 was identified as a vital miRNA involved in photoperiod-mediated wing dimorphism. More specifically, the inhibition of miR-3040 expression could reduce the proportion of winged offspring induced by short photoperiod, whereas its activation increased the proportion of winged offspring under long photoperiod. Meanwhile, the expression level of miR-3040 in winged aphids was about 2.5 times that of wingless aphids, and the activation or inhibition of miR-3040 expression could cause wing deformity, revealing the dual-role regulator of miR-3040 in wing dimorphism and wing development. In summary, the current study identified the key environmental cue for wing dimorphism in green peach aphid, and the first to demonstrate the dual-role regulator of miR-3040 in photoperiod-mediated wing dimorphism and wing development.

16.
Insect Sci ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961475

RESUMO

Wing dimorphism in Nilaparvata lugens is controlled by the insulin-like growth factor 1 (IGF-1) signaling - Forkhead transcription factors (IIS-FoxO) pathway. However, the role of this signal in the wing development program remains largely unclear. Here, we identified 2 R-SMAD proteins, NlMAD1 and NlMAD2, in the brown planthopper (BPH) transcriptome, derived from the intrinsic transforming growth factor-ß pathway of insect wing development. Both proteins share high sequence similarity and conserved domains. Phylogenetic analysis placed them in the R-SMAD group and revealed related insect orthologs. The expression of Nlmad1 was elevated in the late instar stages of the macropterous BPH strain. Nlmad1 knockdown in nymphs results in malformed wings and reduced wing size in adults, which affects the forewing membrane. By contrast, Nlmad2 expression was relatively consistent across BPH strains and different developmental stages. Nlmad2 knockdown had a milder effect on wing morphology and mainly affected forewing veins and cuticle thickness in the brachypterous strain. NlMAD1 functions downstream of the IIS-FoxO pathway by mediating the FoxO-regulated vestigial transcription and wing morph switching. Inhibiting Nlmad1 partially reversed the long-winged phenotype caused by NlFoxO knockdown. These findings indicate that NlMAD1 and NlMAD2 play distinct roles in regulating wing development and morph differentiation in BPH. Generally, NlMAD1 is a key mediator of the IIS-FoxO pathway in wing morph switching.

17.
Sci Rep ; 14(1): 11306, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760487

RESUMO

The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most important rice pests in Asia rice regions. BPH has monophagy, migration, rapid reproduction and strong environmental adaptability, and its control is a major problem in pest management. Adult BPH exhibit wing dimorphism, and the symbiotic microbiota enriched in the gut can provide energy for wing flight muscles as a source of nutrition. In order to study the diversity of symbiotic microbiota in different winged BPHs, this paper takes female BPH as the research object. It was found that the number of symbiotic microbiota of different winged BPHs would change at different development stages. Then, based on the 16S rRNA and ITS sequences, a metagenomic library was constructed, combined with fluorescent quantitative PCR and high-throughput sequencing, the dominant symbiotic microbiota flora in the gut of different winged BPHs was found, and the community structure and composition of symbiotic microbiota in different winged BPHs were further determined. Together, our results preliminarily revealed that symbiotic microbiota in the gut of BPHs have certain effects on wing morphology, and understanding the mechanisms underlying wing morph differentiation will clarify how nutritional factors or environmental cues alter or regulate physiological and metabolic pathways. These findings also establish a theoretical basis for subsequent explorations into BPH-symbiont interplay.


Assuntos
Microbioma Gastrointestinal , Hemípteros , RNA Ribossômico 16S , Simbiose , Asas de Animais , Animais , Hemípteros/microbiologia , Hemípteros/fisiologia , Asas de Animais/microbiologia , Feminino , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética
18.
Curr Biol ; 34(2): 403-409.e3, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38141618

RESUMO

The initial process by which novel sexual signals evolve remains unclear, because rare new variants are susceptible to loss by drift or counterselection imposed by prevailing female preferences.1,2,3,4 We describe the diversification of an acoustic male courtship signal in Hawaiian populations of the field cricket Teleogryllus oceanicus, which was brought about by the evolution of a brachypterous wing morph ("small-wing") only 6 years ago.5 Small-wing has a genetic basis and causes silence or reduced-amplitude signaling by miniaturizing male forewings, conferring protection against an eavesdropping parasitoid, Ormia ochracea.5 We found that wing reduction notably increases the fundamental frequency of courtship song from an average of 5.1 kHz to 6.4 kHz. It also de-canalizes male song, broadening the range of peak signal frequencies well outside normal song character space. As courtship song prompts female mounting and is sexually selected,6,7,8,9 we evaluated two scenarios to test the fate of these new signal values. Females might show reduced acceptance of small-wing males, imposing counterselection via prevailing preferences. Alternatively, females might accept small-wing males as readily as long-wing males if their window of preference is sufficiently wide. Our results support the latter. Females preferred males who produced some signal over none, but they mounted sound-producing small-wing males as often as sound-producing long-wing males. Indiscriminate mating can facilitate the persistence of rare, novel signal values. If female permissiveness is a general characteristic of the earliest stages of sexual signal evolution, then taxa with low female mate acceptance thresholds should be more prone to diversification via sexual selection.


Assuntos
Gryllidae , Comportamento Sexual Animal , Animais , Masculino , Feminino , Asas de Animais , Havaí , Som , Acústica
19.
Insect Biochem Mol Biol ; 161: 104003, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37657610

RESUMO

Wing dimorphism occurs in insects as a survival strategy to adapt to environmental changes. In response to environmental cues, mother aphids transmit signals to their offspring, and the offspring either emerge as winged adults or develop as wingless adults with degeneration of the wing primordia in the early instar stage. However, how the wing morph is determined in the early instar stage is still unclear. Here, we established a surgical sampling method to obtain precise wing primordium tissues for transcriptome analysis. We identified Wnt as a regulator of wing determination in the early second instar stage in the pea aphid. Inhibiting Wnt signaling via knockdown of Wnt2, Wnt11b, the Wnt receptor-encoding gene fz2 or the downstream targets vg and omb resulted in a decreased proportion of winged aphids. Activation of Wnt signaling via knockdown of miR-8, an inhibitor of the Wnt/Wg pathway, led to an increased proportion of winged aphids. Furthermore, the wing primordia of wingless nymphs underwent apoptosis in the early second instar, and cell death was activated by knockdown of fz2 under the wing-inducing condition. These results indicate that the developmental plasticity of aphid wings is modulated by the intrinsic Wnt pathway in response to environmental challenges.

20.
Parasit Vectors ; 16(1): 8, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624528

RESUMO

BACKGROUND: Triatoma guasayana is considered an emerging vector of Chagas disease in the Southern Cone of South America. The presence of a triatomine population with brachypterous individuals, in which both wings are reduced, has recently been reported for this species. The aim of the present study was to determine if flight-related traits varied across populations, if these traits could explain differences in flight capacity across populations and if flight-related traits are associated with geographic and/or climatic variation. METHODS: The study involved 66 male T. guasayana specimens from 10 triatomine populations. Digital images of wing, head and pronotum were used to estimate linear and geometric morphometric variables. Variations in size and shape were analysed using one-way analysis of variance and canonical variate analysis (CVA), respectively. Mantel tests were applied to analyse the relationship between morphometric and geographic distances, and the association between size measurements was analysed using Pearson's correlation. We explored covariation between size and shape variables using partial least square analyses (PLS). The association of geographic and climatic variables with size measurements was tested using linear regression analyses. We performed PLS analyses for shape measurements. RESULTS: Wing size differed significantly across triatomine populations. The CVA showed that wing shape of the brachypterous population is well discriminated from that of the other populations. The Mantel test showed a positive and significant association between wing shape and geographic distances. The heads of the brachypterous population were significantly larger than those of the other populations. Similar to wing shape, the head shape of the brachypterous population was well discriminated from those of the other populations. Pronotum width did not show significant differences across populations. Geographic and climatic factors were associated with size and shape of both the wing and head, but not with pronotum width. CONCLUSIONS: Most of the traits related to flight dispersal varied across populations. Wing shape and head shape were found to be better markers for differentiated morphological variation across populations. Head measurements also varied in accordance with this condition. Geographic and climatic variables were associated with most of the flight-related traits.


Assuntos
Doença de Chagas , Triatoma , Humanos , Animais , Masculino , Fenótipo , América do Sul , Variação Biológica da População , Asas de Animais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa