Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Biol Cell ; : e2400061, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39151164

RESUMO

BACKGROUND: The scratch assay is commonly used in cell biology to evaluate cell migration; however, it is not a standardized method; it produces highly variable gap dimensions. We design a printable device, comprising a single wounding tool and a guide, and compared the gap produced by our device and the traditional method. The deviceis printable in a standard 3D printer. Cells were seeded on a 24-well plate. After reaching full confluency, a gap was created using the traditional method (scratch assay with a pipette tip), a pipette tip and the guide of the device, or the single wounding tool and the guide. The gaps were observed for up to 48 h under a light microscope and analyzed. RESULTS: The results show that the traditional method produces irregular and not straight gaps, and had the worst cell migration rates compared to the other groups. The wounding tool produced scrape signs at the well surface. CONCLUSION: The guide and pipette tip delivered the best results for the scratch assay. SIGNIFICANCE: The use of the guide and the pipette tip for the scratch assay allows allows to perform reproducible cell migration experiments.

2.
Histochem Cell Biol ; 162(3): 245-255, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38713267

RESUMO

As the development of chronic wound therapeutics continues to expand, the demand for advanced assay systems mimicking the inflammatory wound microenvironment in vivo increases. Currently, this is performed in animal models or in in vitro cell-based models such as cell culture scratch assays that more closely resemble acute wounds. Here, we describe for the first time a delayed scratch closure model that mimics some features of a chronic wound in vitro. Chronic wounds such as those suffered by later stage diabetic patients are characterised by degrees of slowness to heal caused by a combination of continued localised physical trauma and pro-inflammatory signalling at the wound. To recreate this in a cell-based assay, a defined physical scratch was created and stimulated by combinations of pro-inflammatory factors, namely interferon, the phorbol ester PMA, and lipopolysaccharide, to delay scratch closure. The concentrations of these factors were characterised for commonly used human keratinocyte (HaCaT) and dermal fibroblast (HDF) cell lines. These models were then tested for scratch closure responsiveness to a proprietary healing secretome derived from human Wharton's jelly mesenchymal stem cells (MSCs) previously validated and shown to be highly effective on closure of acute wound models both in vitro and in vivo. The chronically open scratches from HaCaT cells showed closure after exposure to the MSC secretome product. We propose this delayed scratch closure model for academic and industrial researchers studying chronic wounds looking for responsiveness to drugs or biological treatments prior to testing on explanted patient material or in vivo.


Assuntos
Cicatrização , Humanos , Cicatrização/efeitos dos fármacos , Células Cultivadas
3.
Biochemistry (Mosc) ; 89(3): 474-486, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38648767

RESUMO

Focal adhesions (FAs) are mechanosensory structures that transform physical stimuli into chemical signals guiding cell migration. Comprehensive studies postulate correlation between the FA parameters and cell motility metrics for individual migrating cells. However, which properties of the FAs are critical for epithelial cell motility in a monolayer remains poorly elucidated. We used high-throughput microscopy to describe relationship between the FA parameters and cell migration in immortalized epithelial keratinocytes (HaCaT) and lung carcinoma cells (A549) with depleted or inhibited vinculin and focal adhesion kinase (FAK) FA proteins. To evaluate relationship between the FA morphology and cell migration, we used substrates with varying stiffness in the model of wound healing. Cells cultivated on fibronectin had the highest FA area values, migration rate, and upregulated expression of FAK and vinculin mRNAs, while the smallest FA area and slower migration rate to the wound were specific to cells cultivated on glass. Suppression of vinculin expression in both normal and tumor cells caused decrease of the FA size and fluorescence intensity but did not affect cell migration into the wound. In contrast, downregulation or inactivation of FAK did not affect the FA size but significantly slowed down the wound closure rate by both HaCaT and A549 cell lines. We also showed that the FAK knockdown results in the FA lifetime decrease for the cells cultivated both on glass and fibronectin. Our data indicate that the FA lifetime is the most important parameter defining migration of epithelial cells in a monolayer. The observed change in the cell migration rate in a monolayer caused by changes in expression/activation of FAK kinase makes FAK a promising target for anticancer therapy of lung carcinoma.


Assuntos
Movimento Celular , Vinculina , Humanos , Vinculina/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células A549 , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Adesões Focais/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo
4.
Arch Pharm (Weinheim) ; 357(3): e2300320, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38117940

RESUMO

Certain sulfathiazole-triazolo chalcone hybrids were identified as anticancer agents with dual vascular endothelial growth factor receptor-2 (VEGFR-2)/epidermal growth factor receptor (EGFR) kinase inhibitory effect. All of the compounds were evaluated for their cytotoxic activity against the MCF-7 and HepG-2 tumor cell lines. Compounds 11g, 11h, and 11j exhibited the most potent antiproliferative activity against both cancer cell lines, with good safety toward WI-38 normal cells. Thus, they were further assessed for VEGFR-2 inhibitory activity. They have suppressed VEGFR-2 enzyme at IC50 of 0.316, 0.076, and 0.189 µM, respectively in comparison to sorafenib (IC50 = 0.035 µM). EGFR enzyme inhibition was further screened for the most potent inhibitors, 11h and 11j, where they displayed enhanced potency with IC50 of 0.085 and 0.108 µM, respectively, compared to erlotinib (IC50 = 0.037 µM). Compounds 11h and 11j were additionally investigated for inhibition of comparable kinases, PDGFR-ß and B-Raf, where results assessed adequate selectivity of both compounds toward the VEGFR-2 and EGFR kinases. Furthermore, the wound healing assay of compound 11h manifested a percent wound closure of 65.18% in MCF-7 cells compared to doxorubicin (58.51%) and untreated cells (97.77%), proving its antiangiogenic activity. The cell cycle assay of MCF-7 cells treated with 11h demonstrated cell cycle arrest at the S phase. Moreover, compound 11h induced apoptosis with a 44-fold increase compared to that induced in the control MCF-7 cells. Molecular docking results of compounds 11h and 11j established their efficacies, and in silico studies showed convenient safety profiles with drug-likeness properties.


Assuntos
Chalcona , Chalconas , Humanos , Chalconas/farmacologia , Simulação de Acoplamento Molecular , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Relação Estrutura-Atividade , Receptores ErbB , Células MCF-7 , Chalcona/farmacologia , Sulfatiazóis
5.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612805

RESUMO

Canine osteosarcoma (OSA) is an aggressive bone neoplasia with high metastatic potential. Metastasis is the main cause of death associated with OSA, and there is no current treatment available for metastatic disease. Proteomic analyses, including matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI TOF/TOF MS), are widely used to select molecular targets and identify proteins that may play a key role in primary tumours and at various steps of the metastatic cascade. The main aim of this study was to identify proteins differently expressed in canine OSA cell lines with different malignancy phenotypes (OSCA-8 and OSCA-32) compared to canine osteoblasts (CnOb). The intermediate aim of the study was to compare canine OSA cell migration capacity and assess its correlation with the malignancy phenotypes of each cell line. Using MALDI-TOF/TOF MS analyses, we identified eight proteins that were significantly differentially expressed (p ≤ 0.05) in canine OSA cell lines compared to CnOb: cilia- and flagella-associated protein 298 (CFAP298), general transcription factor II-I (GTF2I), mirror-image polydactyly gene 1 protein (MIPOL1), alpha-2 macroglobulin (A2M), phosphoglycerate mutase 1 (PGAM1), ubiquitin (UB2L6), ectodysplasin-A receptor-associated adapter protein (EDARADD), and leucine-rich-repeat-containing protein 72 (LRRC72). Using the Simple Western technique, we confirmed high A2M expression in CnOb compared to OSCA-8 and OSCA-32 cell lines (with intermediate and low A2M expression, respectively). Then, we confirmed the role of A2M in cancer cell migration by demonstrating significantly inhibited OSA cell migration by treatment with A2M (both at 10 and 30 mM concentrations after 12 and 24 h) in a wound-healing assay. This study may be the first report indicating A2M's role in OSA cell metastasis; however, further in vitro and in vivo studies are needed to confirm its possible role as an anti-metastatic agent in this malignancy.


Assuntos
Osteossarcoma , Proteômica , Animais , Cães , Fatores de Transcrição , Movimento Celular , Proteínas de Repetições Ricas em Leucina , Macroglobulinas
6.
Mar Drugs ; 22(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38248644

RESUMO

Six previously unknown triterpene glycosides, pacificusosides L-Q (1-6), and two previously known triterpene glycosides, cucumariosides B1 (7) and A5 (8), were isolated from an alcoholic extract of Pacific sun star, Solaster pacificus. The structures of 1-6 were determined using 1D and 2D NMR, ESIMS, and chemical modifications. Compound 1 is a rare type of triterpene glycoside with non-holostane aglycon, having a linear trisaccharide carbohydrate chain. Pacificusosides M-P (2-5) have new structures containing a Δ8(9)-3,16,18-trihydroxy tetracyclic triterpene moiety. This tetracyclic fragment in sea star or sea cucumber triterpene glycosides was described for the first time. All the compounds under study exhibit low or moderate cytotoxic activity against colorectal carcinoma HCT 116 cells, and breast cancer MDA-MB-231 cells were assessed by MTS assay. Compound 2 effectively suppresses the colony formation of cancer cells at a non-toxic concentration, using the soft-agar assay. A scratch assay has shown a significant anti-invasive potential of compound 2 against HCT 116 cells, but not against MDA-MB-231 cells.


Assuntos
Neoplasias Colorretais , Glicosídeos , Humanos , Glicosídeos/farmacologia , Bioensaio , Células HCT116 , Projetos de Pesquisa
7.
Chem Biodivers ; 20(12): e202301550, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37994208

RESUMO

A major challenge for clinical management of melanoma is the prevention and treatment of metastatic disease. Drug discovery efforts over the last 10 years have resulted in several drugs that improve the prognosis of metastatic melanoma; however, most patients develop early resistance to these treatments. We designed and synthesized, through a concise synthetic strategy, a series of hybrid olefin-pyridinone compounds that consist of structural motifs from tamoxifen and ilicicolin H. These compounds were tested against a human melanoma cell line and patient-derived melanoma cells that had metastasized to the brain. Three compounds 7 b, 7 c, and 7 g demonstrated promising activity (IC50=0.4-4.3 µM). Cell cycle analysis demonstrated that 7 b and 7 c induce cell cycle arrest predominantly in the G1 phase. Both 7 b and 7c significantly inhibited migration of A375 melanoma cells; greater effects were demonstrated by 7 b. Molecular modelling analysis provides insight into a plausible mechanism of action.


Assuntos
Antineoplásicos , Melanoma , Humanos , Melanoma/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Tamoxifeno , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
8.
Med Mol Morphol ; 56(4): 257-265, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37526656

RESUMO

Liver cancer is one of the most prevalent cancers in Japan with hepatocellular carcinoma (HCC) as the major histological subtype. Successful novel treatments for HCC have been reported; however, recurrences or metastasis may occur, which results in poor prognoses and high mortality of HCC patients. Fascin, an actin-bundling protein, regulates cell adhesion, migration, and invasion. Its overexpression positively correlates with poor prognosis of malignant tumors, and Fascin is considered as one of the tumor biomarkers and therapeutic target proteins. In this study, we attempted to reveal the relationship between Fascin and HCC using HLE, one of the human HCC cell lines. We performed the study with classical immunocytochemistry and recently developed techniques, such as wound-healing assay, spheroid cultivation, and low-vacuum scanning electron microscopy (LV-SEM). Non-Fascin-knockdown (FKD) cell spheroid had a regular spherical appearance with tight cell-cell connections, while FKD cell spheroid had an irregular shape with loose cell-cell connections. Cells of non-FKD spheroid presented fibrous protrusions on the cell surface, contrarily, cells of FKD spheroids showed bulbous-shaped protrusions. Morphological observation of FKD and non-FKD HLE spheroids were performed using LV-SEM. Our study may help to reveal the roles of Fascin in the process of HCC formation and its malignancy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Microscopia Eletrônica de Varredura , Vácuo , Invasividade Neoplásica , Linhagem Celular Tumoral , Movimento Celular
9.
Cell Tissue Bank ; 23(4): 845-850, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35318538

RESUMO

Cell wound healing assay is an important experimental technique for the detection of cell migration in vitro. At present, scratch on monolayer cells using a pipette tip is commonly used. However, it is difficult to guarantee the scratch with same width, and only the migration distance of a certain part is calculated. Therefore, the experimental method needs to be optimized. ATRA was used to treat hepa1-6 mouse hepatoma cells. Circular wound with diameter of 0.2 cm were formed by a circular gap forming device. The whole cell wound region could be captured under the microscope to observe cell migration. There are almost no crawling cells in the wound region. The migration capacity of hepa1-6 cells was evaluated by calculating the healing area. ATRA could significantly inhibit the migration of hepa1-6 cells. Compared with linear wound, the standard deviation of wound healing rate in the circular cell wound method is smaller. The circular cell wound method can ensure the dynamic observation of the same wound region, and calculate the healing area at the two-dimensional level with small error and high repetition rate. It is reliable and easy to operate, can be widely used in laboratory.


Assuntos
Cicatrização , Camundongos , Animais , Camundongos Endogâmicos , Movimento Celular , Linhagem Celular
10.
Molecules ; 26(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34946600

RESUMO

Molecule interacting with CasL 2 (MICAL2), a cytoskeleton dynamics regulator, are strongly expressed in several human cancer types, especially at the invasive front, in metastasizing cancer cells and in the neo-angiogenic vasculature. Although a plethora of data exist and stress a growing relevance of MICAL2 to human cancer, it is worth noting that only one small-molecule inhibitor, named CCG-1423 (1), is known to date. Herein, with the aim to develop novel MICAL2 inhibitors, starting from CCG-1423 (1), a small library of new compounds was synthetized and biologically evaluated on human dermal microvascular endothelial cells (HMEC-1) and on renal cell adenocarcinoma (786-O) cells. Among the novel compounds, 10 and 7 gave interesting results in terms of reduction in cell proliferation and/or motility, whereas no effects were observed in MICAL2-knocked down cells. Aside from the interesting biological activities, this work provides the first structure-activity relationships (SARs) of CCG-1423 (1), thus providing precious information for the discovery of new MICAL2 inhibitors.


Assuntos
Anilidas , Benzamidas , Inibidores Enzimáticos , Proteínas dos Microfilamentos , Oxirredutases , Bibliotecas de Moléculas Pequenas , Humanos , Anilidas/química , Anilidas/farmacologia , Benzamidas/química , Benzamidas/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/metabolismo , Estrutura Molecular , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
11.
Toxicol Appl Pharmacol ; 387: 114851, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31812774

RESUMO

Mesenchymal stem cells (MSCs) have unique potentials, including migration and immunomodulation. Identification of the factors that enhance these activities can improve clinical applications of MSCs. This study aimed to investigate total antioxidant capacity (TAC) and migration potential of mouse MSCs exposed to thymoquinone (TQ) in vitro, and to examine the effect of TQ-treated MSCs on the expression of mouse immune cell markers. The results of total antioxidant capacity and wound healing assays showed that TQ increased the rate of MSCs TAC and migration in a dose- and time-dependent manner. The maximum TAC and migration were detected at 600 and 250 ng/ml of TQ, respectively. Functionally, the real-time PCR data analysis indicated that TQ induced c-Met and Cxcr4 expression and therefore, there may be a correlation between upregulation of these genes and increased MSCs migration. TQ also enhanced the up and down regulating impact of MSCs on Rorγt and Plzf expression and the expression of Tcf4 in mouse immune cells, respectively. Overall, this study declares that TQ increases the TAC of MSCs. It also proposes that TQ may, through activation of c-MET and CXCR4 signalling pathways, promote MSCs migration. TQ may also augment MSCs immunogenicity through its influence on the expression of genes involved in commitment of mouse immune system cells in vivo.


Assuntos
Benzoquinonas/farmacologia , Movimento Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Movimento Celular/imunologia , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Cultura Primária de Células , Transdução de Sinais/imunologia
12.
Cancer Cell Int ; 20: 488, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041669

RESUMO

INTRODUCTION: Cancers may be treated by selective targeting of the genes vital for their survival. A number of attempts have led to discovery of several genes essential for surviving of tumor cells of different types. In this work, we tried to analyze genes that were previously predicted to be essential for melanoma surviving. Here we present the results of transient siRNA-mediated knockdown of the four of such genes, namely, UNC45A, STK11IP, RHPN2 and ZNFX1, in melanoma cell line A375, then assayed the cells for their viability, proliferation and ability to migrate in vitro. In our study, the knockdown of the genes predicted as essential for melanoma survival does not lead to statistically significant changes in cell viability. On the other hand, for each of the studied genes, mobility assays showed that the knockdown of each of the target genes accelerates the speed of cells migrating. Possible explanation for such counterintuitive results may include insufficiency of the predicting computational models or the necessity of a multiplex knockdown of the genes. AIMS: To examine the hypothesis of essentiality of hypomutated genes for melanoma surviving we have performed knockdown of several genes in melanoma cell line and analyzed cell viability and their ability to migrate. METHODS: Knockdown was performed by siRNAs transfected by Metafectene PRO. The levels of mRNAs before and after knockdown were evaluated by RT-qPCR analysis. Cell viability and proliferation were assessed by MTT assay. Cell migration was assessed by wound healing assay. RESULTS: The knockdown of the genes predicted as essential for melanoma survival does not lead to statistically significant changes in cell viability. On the other hand, for each of the studied genes, mobility assays showed that the knockdown of each of the target genes accelerates the speed of cells migrating. CONCLUSION: Our results do not confirm initial hypothesis that the genes predicted essential for melanoma survival as a matter of fact support the survival of melanoma cells.

13.
Mar Drugs ; 18(5)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429281

RESUMO

Four new conjugates, esters of polyhydroxysteroids with long-chain fatty acids (1-4), were isolated from the deep-water Far Eastern starfish Ceramaster patagonicus. The structures of 1-4 were established by NMR and ESIMS techniques as well as chemical transformations. Unusual compounds 1-4 contain the same 5α-cholestane-3ß,6ß,15α,16ß,26-pentahydroxysteroidal moiety and differ from each other in the fatty acid units: 5'Z,11'Z-octadecadienoic (1), 11'Z-octadecenoic (2), 5'Z,11'Z-eicosadienoic (3), and 7'Z-eicosenoic (4) acids. Previously, only one such steroid conjugate with a fatty acid was known from starfish. After 72 h of cell incubation, using MTS assay it was found that the concentrations of compounds 1, 2, and 3 that caused 50% inhibition of growth (IC50) of JB6 Cl41 cells were 81, 40, and 79 µM, respectively; for MDA-MB-231 cells, IC50 of compounds 1, 2, and 3 were 74, 33, and 73 µM, respectively; for HCT 116 cells, IC50 of compounds 1, 2, and 3 were 73, 31, and 71 µM, respectively. Compound 4 was non-toxic against tested cell lines even in three days of treatment. Compound 2 (20 µM) suppressed colony formation and migration of MDA-MB-231 and HCT 116 cells.


Assuntos
Antineoplásicos/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Ácidos Graxos/farmacologia , Estrelas-do-Mar , Esteroides/farmacologia , Animais , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ácidos Graxos/química , Oceanos e Mares , Federação Russa , Esteroides/química , Relação Estrutura-Atividade
14.
Molecules ; 25(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066549

RESUMO

Thymoquinone (TQ) is the main active ingredient of Nigella sativa essential oil, with remarkable anti-neoplastic activities with anti-invasive and anti-migratory abilities on a variety of cancer cell lines. However, its poor water solubility, high instability in aqueous solution and pharmacokinetic drawbacks limits its use in therapy. Soluplus® and Solutol® HS15 were employed as amphiphilic polymers for developing polymeric micelles (SSM). Chemical and physical characterization studies of micelles are reported, in terms of size, homogeneity, zeta potential, critical micelle concentration (CMC), cloud point, encapsulation efficiency (EE%), load capacity (DL), in vitro release, and stability. This study reports for the first time the anti-migratory activity of TQ and TQ loaded in SSM (TQ-SSM) in the SH-SY5Y human neuroblastoma cell line. The inhibitory effect was assessed by the wound-healing assay and compared with that of the unformulated TQ. The optimal TQ-SSM were provided with small size (56.71 ± 1.41 nm) and spherical shape at ratio of 1:4 (Soluplus:Solutol HS15), thus increasing the solubility of about 10-fold in water. The entrapment efficiency and drug loading were 92.4 ± 1.6% and 4.68 ± 0.12, respectively, and the colloidal dispersion are stable during storage for a period of 40 days. The TQ-SSM were also lyophilized to obtain a more workable product and with increased stability. In vitro release study indicated a prolonged release of TQ. In conclusion, the formulation of TQ into SSM allows a bio-enhancement of TQ anti-migration activity, suggesting that TQ-SSM is a better candidate than unformulated TQ to inhibit human SH-SY5Y neuroblastoma cell migration.


Assuntos
Antineoplásicos Alquilantes/administração & dosagem , Benzoquinonas/administração & dosagem , Benzoquinonas/farmacologia , Micelas , Antineoplásicos Alquilantes/farmacocinética , Antineoplásicos Alquilantes/farmacologia , Benzoquinonas/farmacocinética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Liofilização , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Polietilenoglicóis/química , Polivinil/química , Albumina Sérica Humana/química , Ácidos Esteáricos/química
15.
Saudi Pharm J ; 28(1): 87-94, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31933527

RESUMO

Acute or chronic wounds are one of the most common health problems worldwide and medicinal drugs or traditional remedies are often used in wound healing. Further studies regarding wound treatment are rapidly continuing. Vitexin is a phenolic compound, which is found in many medicinal plants, has different pharmacological effects such as anti-inflammatory, analgesic and antioxidant. In the present study, it is aimed to investigate the wound healing effect of formulation prepared as chitosan-based gel with vitexin in vivo and in vitro. Cytotoxicity and wound healing assays were used for in vitro and excisional wound model is used for in vivo studies. Extracted tissues from wound area were histologically examined. Wound healing process was monitored on 7, 14 and 21st days. When wound construction was evaluated, chitosan-based gel formulation containing vitexin demonstrated significant effect compared to control group. Histological examinations demonstrated that skin regeneration was promoted by vitexin formulation. Significant cell proliferation was observed with vitexin/chitosan dispersion in the wound healing assay performed with NIH 3T3 and HaCaT cells. In conclusion, our test substance chitosan-based gel formulation containing vitexin significantly accelerated wound healing both in vivo and in vitro.

16.
Molecules ; 24(16)2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412609

RESUMO

Nanotechnologies are increasingly being developed for medical purposes. However, these nanomaterials require ultrastability for better control of their pharmacokinetics. The present study describes three types of ultrastable gold nanoparticles stabilized by thiolated polyethylene glycol groups remaining intact when subjected to some of the harshest conditions described thus far in the literature, such as autoclave sterilization, heat and freeze-drying cycles, salts exposure, and ultracentrifugation. Their stability is characterized by transmission electron microscopy, UV-visible spectroscopy, and dynamic light scattering. For comparison purposes, two conventional nanoparticle types were used to assess their colloidal stability under all conditions. The ability of ultrastable gold nanoparticles to encapsulate bimatoprost, a drug for glaucoma treatment, is demonstrated. MTS assays on human corneal epithelial cells is assessed without changing cell viability. The impact of ultrastable gold nanoparticles on wound healing dynamics is assessed on tissue engineered corneas. These results highlight the potential of ultrastable gold nanoparticles as a drug delivery system in ocular therapy.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Ouro , Nanopartículas Metálicas , Linhagem Celular , Sobrevivência Celular , Fenômenos Químicos , Técnicas de Química Sintética , Portadores de Fármacos/química , Ouro/química , Humanos , Ligantes , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Análise Espectral , Cicatrização
17.
Molecules ; 24(7)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934664

RESUMO

Nanoparticles have become popular in life sciences in the last few years. They have been produced in many variants and have recently been used in both biological experiments and in clinical applications. Due to concerns over nanomaterial risks, there has been a dramatic increase in investigations focused on safety research. The aim of this paper is to present the advanced testing of rhodamine-derived superparamagnetic maghemite nanoparticles (SAMN-R), which are used for their nontoxicity, biocompatibility, biodegradability, and magnetic properties. Recent results were expanded upon from the basic cytotoxic tests to evaluate cell proliferation and migration potential. Two cell types were used for the cell proliferation and tracking study: mouse embryonic fibroblast cells (3T3) and human mesenchymal stem cells (hMSCs). Advanced microscopic methods allowed for the precise quantification of the function of both cell types. This study has demonstrated that a dose of nanoparticles lower than 20 µg·cm-2 per area of the dish does not negatively affect the cells' morphology, migration, cytoskeletal function, proliferation, potential for wound healing, and single-cell migration in comparison to standard CellTracker™ Green CMFDA (5-chloromethylfluorescein diacetate). A higher dose of nanoparticles could be a potential risk for cytoskeletal folding and detachment of the cells from the solid extracellular matrix.


Assuntos
Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Nanopartículas de Magnetita , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Rodaminas/farmacologia , Animais , Biomarcadores , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Humanos , Imunofenotipagem , Nanopartículas de Magnetita/química , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Rodaminas/química
18.
J Mol Recognit ; 31(9): e2719, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29701269

RESUMO

Mechanical properties of myofibroblasts play a key role in Dupuytren's disease. Here, we used atomic force microscopy to measure the viscoelastic properties of 3 different types of human primary fibroblasts derived from a same patient: normal and scar dermal fibroblasts and palmar fascial fibroblasts from Dupuytren's nodules. Different stiffness hydrogels (soft ~1 kPa and stiff ~ 50 kPa) were used as cell culture matrix to mimic the mechanical properties of the natural tissues, and atomic force microscopy step response force curves were used to discriminate between elastic and viscous properties of cells. Since transforming growth factor-ß1 (TGF-ß1) is known to induce expression of α-smooth muscle actin positive stress fibers in myofibroblasts, we investigated the behavior of these fibroblasts before and after applying TGF-ß1. Finally, we performed an in vitro cell motility test, the wound healing or scratch assay, to evaluate the migratory properties of these fibroblasts. We found that (1) Dupuytren's fibroblasts are stiffer than normal and scar fibroblasts, the elastic modulus E ranging from 4.4, 2.1, to 1.8 kPa, for Dupuytren's, normal and scar fibroblasts, respectively; (2) TGF-ß1 enhances the level of α-smooth muscle actin expression and thus cell stiffness in Dupuytren's fibroblasts (E, ~6.2 kPa); (3) matrix stiffness influences cell mechanical properties most prominently in Dupuytren's fibroblasts; and (4) Dupuytren's fibroblasts migrate slower than the other fibroblasts by a factor of 3. Taking together, our results showed that mechanical and migratory properties of fibroblasts might help to discriminate between different pathological conditions, helping to identify and recognize specific cell phenotypes.


Assuntos
Cicatriz/patologia , Fibroblastos/patologia , Fenômenos Mecânicos , Fator de Crescimento Transformador beta1/genética , Actinas/genética , Movimento Celular/genética , Contratura de Dupuytren/patologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Miofibroblastos/química , Miofibroblastos/patologia , Fibras de Estresse/química
19.
Microb Cell Fact ; 17(1): 57, 2018 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-29626934

RESUMO

BACKGROUND: AmbLOXe is a lipoxygenase, which is up-regulated during limb-redevelopment in the Mexican axolotl, Ambystoma mexicanum, an animal with remarkable regeneration capacity. Previous studies have shown that mammalian cells transformed with the gene of this epidermal lipoxygenase display faster migration and wound closure rate during in vitro wound healing experiments. RESULTS: In this study, the gene of AmbLOXe was codon-optimized for expression in Escherichia coli and was produced in the insoluble fraction as protein aggregates. These inclusion bodies or nanopills were shown to be reservoirs containing functional protein during in vitro wound healing assays. For this purpose, functional inclusion bodies were used to coat cell culture surfaces prior cell seeding or were added directly to the medium after cells reached confluence. In both scenarios, AmbLOXe inclusion bodies led to faster migration rate and wound closure, in comparison to controls containing either no AmbLOXe or GFP inclusion bodies. CONCLUSIONS: Our results demonstrate that AmbLOXe inclusion bodies are functional and may serve as stable reservoirs of this enzyme. Nevertheless, further studies with soluble enzyme are also necessary in order to start elucidating the exact molecular substrates of AmbLOXe and the biochemical pathways involved in the wound healing effect.


Assuntos
Corpos de Inclusão/fisiologia , Lipoxigenase/genética , Cicatrização , Ambystoma mexicanum/fisiologia , Animais , Linhagem Celular , Escherichia coli , Extremidades/fisiologia , Humanos , Queratinócitos/fisiologia , Agregados Proteicos/genética , Regeneração
20.
Cytometry A ; 91(12): 1192-1199, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29156109

RESUMO

This article presents a microfabricated 96-well wound-healing assay enabling high-throughput measurement of cellular migration capabilities. Within each well, the middle area is the wound region, made of microfabricated gold surface with self-assembled PEG repellent for cell seeding. After the formation of a cellular confluent monolayer around the wound region, collagen solution was applied to form three-dimensional matrix to cover the PEG surface, initiating the wound-healing process. By interpreting the numbers of migrated cells into the wound regions as a function of specific stimuli with different concentrations, EC50 (half-maximal effective concentration) was obtained. Using H1299 as a model, values of EC50 were quantified as 8% and 160 ng/ml for fetal bovine serum and CXCL12, respectively. In addition, the values of EC50 were demonstrated not to be affected by variations in compositions of extracellular matrix and geometries of wounds, which can thus be regarded as an intrinsic marker. Furthermore, the migration capabilities of a second cell type (HeLa) were characterized by the developed wound-healing assay, producing EC50 of 2% when fetal bovine serum was used as the stimuli. These results validated the proposed high-throughput wound-healing assay, which may function as an enabling tool in studying cellular capabilities of migration and invasion. © 2017 International Society for Advancement of Cytometry.


Assuntos
Movimento Celular/fisiologia , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Cicatrização/fisiologia , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa