RESUMO
In this work, we investigated Diospyros kaki extract and an isolated compound for their potential as xanthine oxidase (XO) inhibitors, a target enzyme involved in inflammatory disorders. The prepared extract was subjected to column chromatography, and dinaphthodiospyrol S was isolated. Then XO inhibitory properties were assessed using a spectrophotometry microplate reader. DMSO was taken as a negative control, and allopurinol was used as a standard drug. The molecular docking study of the isolated compound to the XO active site was performed, followed by visualization and protein-ligand interaction. The defatted chloroform extract showed the highest inhibitory effect, followed by the chloroform extract and the isolated compound. The isolated compound exhibited significant inhibitory activity against XO with an IC50 value of 1.09 µM. Molecular docking studies showed that the compound strongly interacts with XO, forming hydrogen bond interactions with Arg149 and Cys113 and H-pi interactions with Cys116 and Leu147. The binding score of -7.678 kcal/mol further supported the potential of the isolated compound as an XO inhibitor. The quantum chemical procedures were used to study the electronic behavior of dinaphthodiospyrol S isolated from D. kaki. Frontier molecular orbital (FMO) analysis was performed to understand the distribution of electronic density, highest occupied molecular orbital HOMO, lowest unoccupied molecular orbital LUMO, and energy gaps. The values of HOMO, LUMO, and energy gap were found to be -6.39, -3.51 and 2.88 eV respectively. The FMO results indicated the intramolecular charge transfer. Moreover, reactivity descriptors were also determined to confirm the stability of the compound. The molecular electrostatic potential (MEP) investigation was done to analyze the electrophilic and nucleophilic sites within a molecule. The oxygen atoms in the compound exhibited negative potential, indicating that they are favorable sites for electrophilic attacks. The results indicate its potential as a therapeutic agent for related disorders. Further studies are needed to investigate this compound's in vivo efficacy and safety as a potential drug candidate.
RESUMO
It is controversial that uric acid (UA) levels are related to the severity of hypertension in preeclampsia (PE). Our aim in this study was to determine whether UA, xanthine oxidase activity (XOA), allantoin and nitrite levels are related to arterial blood pressure (BP) in PE. We formed a control group (n = 20) and a PE group (n = 20) for the study. Their BPs and plasma UA, XOA, allantoin and nitrite levels were measured. The values from the control and PE pregnant women were assessed via a Wilcoxon matched-pairs test. A Pearson correlation test was also performed. In addition, the diagnostic value of these tests was evaluated via receiver operating characteristic (ROC) analysis. The BP, UA, XOA and allantoin levels in the PE patients were found to be higher when compared with those of the pregnant controls. The UA, XOA and allantoin levels showed high correlations with BP in cases of PE. However, there was no superiority among the correlations. No differences were observed between the groups in terms of nitrite levels and the relationship between nitrite and BP. UA, XOA and allantoin levels may be high due to placental cell death because of abnormal trophoblastic activity observed in PE. Moreover, the reactive oxygen products that are created during the genetic material degradation may explain how UA, XOA and allantoin levels are related to BP. According to ROC analysis, UA, XOA and allantoin assays are reliable predictors for the determination of PE.
Assuntos
Alantoína/sangue , Hipertensão/sangue , Nitritos/sangue , Pré-Eclâmpsia/sangue , Ácido Úrico/sangue , Xantina Oxidase/sangue , Adulto , Pressão Arterial , Estudos de Casos e Controles , Feminino , Humanos , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/fisiopatologia , Valor Preditivo dos Testes , Gravidez , Curva ROC , Índice de Gravidade de Doença , Adulto JovemRESUMO
Background: The disorder of uric acid metabolism is closely associated with gut microbiota and short-chain fatty acids (SCFAs) dysregulation, but the biological mechanism is unclear, limiting the development of uric acid-lowering active polysaccharides. Konjac glucomannan (KGM) could attenuate metabolic disturbance of uric acid and modulate the gut microbiota. However, the relationship between uric acid metabolism and gut microbiota is still unknown. Methods: In this study, The fecal samples were provided by healthy volunteers and hyperuricemia (HUA) patients. Fecal samples from healthy volunteers was regarded as the NOR group. Similarly, 10% HUA fecal suspension was named as the HUA group. Then, fecal supernatant was inoculated into a growth basal medium containing glucose or KGM, and healthy fecal samples were designated as the NOR-GLU and NOR-KGM groups, while HUA fecal samples were designated as the HUA-GLU and HUA-KGM groups. All samples were cultured in an anaerobic bag system. After fermentation for 24 h, the samples were collected for further analysis of composition of intestinal microbiota, SCFAs concentration and XOD enzyme activity. Results: The results showed that KGM could be utilized and degraded by the gut microbiota from HUA subjects, and it could modulate the composition and structure of their HUA gut microbiota to more closely resemble that of a healthy group. In addition, KGM showed a superior modulated effect on HUA gut microbiota by increasing Megasphaera, Faecalibacterium, Lachnoclostridium, Lachnospiraceae, Anaerostipes, and Ruminococcus levels and decreasing Butyricicoccus, Eisenbergiella, and Enterococcus levels. Furthermore, the fermentation solution of KGM showed an inhibitory effect on xanthine oxidase (XOD) enzyme activity, which might be due to metabolites such as SCFAs. Conclusion: In conclusion, the effect of KGM on hyperuricemia subjects was investigated based on the gut microbiota in vitro. In the present study. It was found that KGM could be metabolized into SCFAs by HUA gut microbiota. Furthermore, KGM could modulate the structure of HUA gut microbiota. At the genus level, KGM could decrease the relative abundances of Butyricicoccus, Eisenbergiella, and Enterococcus, while Lachnoclostridium and Lachnospiraceae in HUA gut microbiota were significantly increased by the addition of KGM. The metabolites of gut microbiota, such as SCFAs, might be responsible for the inhibition of XOD activity. Thus, KGM exhibited a superior probiotic function on the HUA gut microbiota, which is expected as a promising candidate for remodeling the HUA gut microbiota.
RESUMO
Bioassay-guided purification of the xanthine oxidase (XOD) inhibitory extract of the roots of Ampelopsis japonica resulted in the isolation of two new triterpenoids (1-2), designated Ampejaponoside A and B, along with sixteen known compounds (3-18). The structures of Ampejaposide A and B were elucidated by comprehensive analysis of spectroscopic data with the structures of the known compounds 3-18 confirmed by comparison the spectral data with corresponding values reported in literatures. All the isolates were evaluated for their XOD inhibitory activity in vitro. As a result, compounds 2, 8, and 14-16 displayed significant XOD inhibitory effect, particularly 16 being the most potent with an IC50 value of 0.21 µM, superior to positive substance allopurinol (IC50 1.95 µM). Molecular docking uncovered a unique interaction mode of 16 with the active site of XOD. The current study showed that the triterpenoids and polyphenols from A. japonica could serve as new lead compounds with the potential to speed up the development of novel XOD inhibitors with clinical potential to treat hyperuricaemia and gout.
RESUMO
Rosehip, the fruit of Rosa canina L., has traditionally been used to treat urate metabolism disorders; however, its effects on such disorders have not been characterized in detail. Therefore, the present study investigated the effects of hot water, ethanol and ethyl acetate extracts of rosehip on xanthine oxidase (XO) activity in vitro. In addition, the serum urate lowering effects of the rosehip hot water extract in a mouse model of hyperuricemia (male ddY mice, which were intraperitoneally injected with potassium oxonate) were investigated. Furthermore, the influence of rosehip hot water extract on CYP3A4 activity, which is the most important drug-metabolizing enzyme from a herb-drug interaction perspective, was investigated. Rosehip extracts of hot water, ethanol and ethyl acetate inhibited XO activity [half maximal inhibitory concentration (IC50) values: 259.6±50.6, 242.5±46.2 and 1,462.8±544.2 µg/ml, respectively]. Furthermore, the administration of 1X rosehip hot water extract significantly reduced the levels of serum urate at 8 h, which was similar when compared with the administration of 1 mg/kg allopurinol. Rosehip hot water extract only marginally affected CYP3A4 activity (IC50 value, >1 mg/ml). These findings indicate that rosehip hot water extract may present as a functional food for individuals with a high urate level, and as a therapeutic reagent for hyperuricemic patients.
RESUMO
The aim of this study is to examine women with polycystic ovary syndrome (PCOS) to determine the relationship between xanthine oxidase (XO) and oxidative stress, inflammatory status, and various clinical and biochemical parameters. In this cross-sectional study a total of 83 women including 45 PCOS patients and 38 healthy women were enrolled. We collected blood samples for XO and superoxide dismutase (SOD) activity, hormone levels, cholesterol values, and inflammatory markers. Body mass index (BMI) , waist-to-hip ratio (WHR), and blood pressure were assessed. Blood samples were taken for hormonal levels, cholesterol levels, fasting plasma glucose (FPG), fasting plasma insulin (FPI), homeostatic model assessment-insulin resistance (HOMA-IR) index, quantitative insulin sensitivity check index (QUICKI), C-reactive protein (CRP), white blood cell and neutrophil counts, XO and SOD activities. The basal hormone levels, triglyceride (TG) levels, TG/HDL-C (high density lipoprotein-cholesterol) ratios FPG, FPI and HOMA-IR levels were higher in PCOS patients compared to controls (p<0.05). Platelet and plateletcrit (PCT) values, CRP, and XO activity were significantly increased, however SOD activity was decreased in PCOS patients (p<0.001). XO activity was positively correlated with LH/FSH and TG/HDL ratios, CRP, PCT, FPG, FPI, and HOMA-IR, and negatively correlated with QUICKI levels. In conclusion, XO is a useful marker to assess oxidative stress in PCOS patients. Positive correlations between XO and inflammatory markers and cardiovascular disease risk factors suggest that XO plays an important role in the pathogenesis of PCOS and its metabolic complications.
Assuntos
Biomarcadores/metabolismo , Doenças Cardiovasculares/diagnóstico , Inflamação/diagnóstico , Síndrome do Ovário Policístico/diagnóstico , Xantina Oxidase/metabolismo , Adulto , Glicemia/análise , Proteína C-Reativa/metabolismo , Colesterol/sangue , Estudos Transversais , Feminino , Hormônios/metabolismo , Humanos , Inflamação/metabolismo , Insulina/sangue , Estresse Oxidativo , Prognóstico , Risco , Superóxido Dismutase/metabolismo , Triglicerídeos/sangue , Adulto JovemRESUMO
Recent evidence would indicate that high serum uric acid (SUA) levels can be a significant and independent risk factor for hypertension and cardiovascular diseases, such as ischemic heart disease and heart failure. In the last few years an independent risk relationship between hyperuricemia, cardiovascular disease and mortality has also been reported. Hyperuricemia has been shown as an independent risk factor for acute myocardial infarction and an independent and conjoint association of either gout and SUA with total and cardiovascular mortality has been reported, with mortality impact in gout patients increasing with rising SUA concentrations, even for SUA levels in the normal to high range. These findings prompted a growing research interest on the possible benefits of uric acid lowering drugs in cardiovascular diseases. Indeed, clinical studies have reported on the beneficial effects of uric acid lowering drugs, in particular of xanthine oxidase inhibitors, in hypertension, ischemic heart disease and heart failure. Two main mechanisms have been claimed to explain the dangerous effects of hyperuricemia and, as a consequence, the benefits of uric acid lowering therapy: endothelial dysfunction and systemic inflammation. This brief review aims to summarize current evidence from human studies on the role of acid uric lowering therapy in cardiovascular diseases for practical and clinical purposes. The possible mechanisms underlying the benefits of acid uric lowering therapy are also addressed.