Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 1629, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760380

RESUMO

Over the last few years, an increasing number of studies have reported the existence of an association between the budding yeast Saccharomyces cerevisiae and insects. The discovery of this relationship has called into question the hypothesis that S. cerevisiae is unable to survive in nature and that the presence of S. cerevisiae strains in natural specimens is the result of contamination from human-related environments. S. cerevisiae cells benefit from this association as they find in the insect intestine a shelter, but also a place where they can reproduce themselves through mating, the latter being an event otherwise rarely observed in natural environments. On the other hand, insects also take advantage in hosting S. cerevisiae as they rely on yeasts as nutriment to properly develop, to localize suitable food, and to enhance their immune system. Despite the relevance of this relationship on both yeast and insect ecology, we are still far from completely appreciating its extent and effects. It has been shown that other yeasts are able to colonize only one or a few insect species. Is it the same for S. cerevisiae cells or is this yeast able to associate with any insect? Similarly, is this association geographically or topographically limited in areas characterized by specific physical features? With this review, we recapitulate the nature of the S. cerevisiae-insect association, disclose its extent in terms of geographical distribution and species involved, and present YeastFinder, a cured online database providing a collection of information on this topic.

2.
Front Microbiol ; 11: 578425, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193200

RESUMO

In the industry of fermented food and beverages, yeast cultures are often selected and standardized in order to ensure a better control of fermentation and a more stable product over time. Several studies have shown that the organoleptic characteristics of fermented products reflect geographic variations of the microbial community composition. Despite investigations of the worldwide distribution and genetic diversity of Saccharomyces cerevisiae, it is still unclear how and to what extent human intervention has shaped the brewer's yeast population structure. The genotypic and phenotypic characterization of environmental yeast populations and their potential application in the fermentative processes can significantly enrich the industrial fermentation products. Social insects have proven to be closely associated to the yeasts ecology. The relationships between yeasts and insects represent a fundamental aspect for understanding the ecological and evolutionary forces shaping their adaptation to different niches. Studies on phylogenetic relationships of S. cerevisiae populations showed genetic differences among strains isolated from gut and non-gut environments (i.e., natural sources and fermentation). Recent evidences showed that insect's gut is a reservoir and an evolutionary niche for Saccharomyces, contributing to its survival and evolution, favoring its dispersion, mating and improving the inter-specific hybrids production during hibernation. Here, we discuss the potential use of social insects for production of a wide range of hybrid yeasts from environmental Saccharomyces isolates suitable for industrial and biotechnological applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa