Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Toxicol ; 38(8): 1939-1950, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37102272

RESUMO

Yttrium is a typical heavy rare earth element with widespread use in numerous sectors. Only one previous study has indicated that yttrium has the potential to cause developmental immunotoxicity (DIT). Therefore, there remains a paucity of evidence on the DIT of yttrium. This study aimed to explore the DIT of yttrium nitrate (YN) and the self-recovery of YN-induced DIT. Dams were treated with 0, 0.2, 2, and 20 mg/kg bw/day YN by gavage during gestation and lactation. No significant changes were found in innate immunity between the control and YN-treated groups in offspring. In female offspring at postnatal day 21 (PND21), YN markedly inhibited humoral and cellular immune responses, the proliferative capacity of splenic T lymphocytes, and the expression of costimulatory molecules in splenic lymphocytes. Moreover, the inhibitory effect on cellular immunity in female offspring persisted to PND42. Unlike females, YN exposure did not change the adaptive immune responses in male offspring. Overall, maternal exposure to YN showed a strong DIT to offspring, with the lowest effective dose of 0.2 mg/kg in the current study. The toxicity of cellular immunity could persist throughout development into adulthood. There were sex-specific differences in YN-induced DIT, with females being more vulnerable.


Assuntos
Exposição Materna , Efeitos Tardios da Exposição Pré-Natal , Camundongos , Humanos , Animais , Masculino , Feminino , Exposição Materna/efeitos adversos , Nitratos/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Camundongos Endogâmicos BALB C , Ítrio/efeitos adversos
2.
J Trace Elem Med Biol ; 76: 127117, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36512970

RESUMO

OBJECTIVE: To evaluate the effects of yttrium nitrate on the development of the parent, offspring and third generation of Sprague-Dawley (SD) rats by using a two-generation reproductive toxicity test. METHODS: The SD rats were randomly divided into 0 mg/kg group, 10.0 mg/kg group, 30.0 mg/kg group and 90.0 mg/kg group according to the different doses of yttrium nitrate administration. The reproductive toxicity of parent, offspring and third generation SD rats were compared. RESULTS: The weight gains of F1a female rats and F2a female rats in the low-dose groups were significantly lower than those of the control groups (p < 0.05), the weight gains of F1a male rats in the medium-dose and high-dose groups were significantly lower than those of the control groups (p < 0.05), and the weight gains of F2a male rats in the low-dose, medium-dose and high-dose groups were significantly lower than those of the control groups (p < 0.05). In F0 male rats, the absolute weight and relative weight of the liver in the low-dose, middle-dose, and high-dose groups were significantly lower than those of the control group (p < 0.05). In F1b male rats, the absolute and relative weights of the liver in the medium-dose and high-dose groups were significantly lower than those of the control group (p < 0.05). In F2b male rats, the absolute and relative weights of the liver and spleen of the medium-dose and high-dose groups were significantly lower than those of the control group (p < 0.05). In F2a female rats, the absolute weight and relative weight of oviduct in the high-dose group were significantly lower than those in the control group (p < 0.05). The absolute and relative weights of lung, spleen, brain and uterus of F2b female rats in the high-dose group were higher than those of the control group (p < 0.05). But the pathological test results showed no hepatotoxicity. There was no statistically significant difference in sperm count and sperm motility between male rats in the yttrium nitrate administration groups and the control group (p > 0.05). There was no significant correlation between F0, F1a, F1b, F2a, F2b SD rats' reproductive organ lesions and the dose of yttrium nitrate. CONCLUSION: Yttrium nitrate at a dose of 90 mg/kg has no reproductive toxicity to two generations of SD rats, but 30.0 mg/kg dose of yttrium nitrate is toxic to the liver weight of male two generations of SD rats, but no hepatotoxicity.


Assuntos
Nitratos , Motilidade dos Espermatozoides , Masculino , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Nitratos/farmacologia , Sêmen , Reprodução , Aumento de Peso , Peso Corporal
3.
ChemSusChem ; 16(24): e202300684, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37772638

RESUMO

Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) is one of the most important engineering plastics commonly utilized in various fields. Herein, chemical recycling of PPO was performed via oxidative depolymerization to form 2,6-diemthyl-p-benzoquionone (26DMBQ) as a sole aromatic product in 66 % yield using nitronium ions (NO2 + ) as a mild oxidant. Mechanistic studies revealed that PPO is oxidized by NO2 + generated from the combination of a silicotungstic acid and nitrate salts, and then subsequently attacked by H2 O to achieve C-O bond cleavage, resulting in the formation of 26DMBQ, which was sublimed at the headspace of the reaction vessel in pure form. 26DMBQ was applied to polymerization with dianilines to form polyimides. Thus, an upgrade recycling process of PPO was demonstrated.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa