Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Biosci Biotechnol Biochem ; 88(8): 857-863, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38734887

RESUMO

The survival strategy of members of the bacterial genus Actinoplanes is fascinating from morphological and evolutionary perspectives. A brief motile phase is incorporated in the filamentous and resting stages of the life cycle of Actinoplanes missouriensis. Spores either lie dormant or swim under different external conditions. This review presents microscopic observations and molecular genetic analyses of A. missouriensis morphological development. Selected examples of the characterization of developmental genes and their products are also introduced.


Assuntos
Actinoplanes , Actinoplanes/genética , Actinoplanes/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Microscopia
2.
Biosci Biotechnol Biochem ; 88(2): 225-229, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37974049

RESUMO

The architecture of sporangia and zoospores of Actinoplanes missouriensis was analyzed at a high resolution using quick-freeze deep-etch replica electron microscopy. This analysis revealed that (i) sporangia were surrounded by at least 2 membranous layers with smooth surfaces, (ii) zoospores were enclosed by a fibrillar layer, and (iii) flagella were generated in a restricted area on the zoospore surface.


Assuntos
Actinoplanes , Esporângios , Microscopia Eletrônica , Flagelos
3.
Plant Dis ; 107(11): 3394-3402, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37018213

RESUMO

Phytopythium vexans (de Bary) Abad, de Cock, Bala, Robideau, A. M. Lodhi & Levesque is an important waterborne and soil-inhabiting oomycete pathogen causing root and crown rot of various plants including certain woody ornamentals, fruit, and forest trees. Early and accurate detection of Phytopythium in the nursery production system is critical, as this pathogen is quickly transported to neighboring healthy plants through the irrigation system. Conventional methods for the detection of this pathogen are tedious, frequently inconclusive, and costly. Hence, a specific, sensitive, and rapid molecular diagnostic method is required to overcome the limitations of traditional identification. In the current study, loop-mediated isothermal amplification (LAMP) for DNA amplification was developed for the identification of P. vexans. It was evaluated using real-time and colorimetric assays. Several sets of LAMP primers were designed and screened, but PVLSU2 was found to be specific to P. vexans as it did not amplify other closely related oomycetes, fungi, and bacteria. Moreover, the developed assays were sensitive enough to amplify DNA up to 102 fg per reaction. The real-time LAMP assay was more sensitive than traditional PCR and culture-based methods to detect infected plant samples. In addition, both LAMP assays detected as few as 100 zoospores suspended in 100 ml water. These LAMP assays are anticipated to save time in P. vexans detection by disease diagnostic laboratories and research institutions and enable early preparedness in the event of disease outbreaks.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Oomicetos , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase/métodos , DNA
4.
Fungal Genet Biol ; 159: 103676, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35219809

RESUMO

Zoospores are motile, asexual reproductive propagules that enable oomycete pathogens to locate and infect new host tissue. While motile, they have no cell wall and maintain tonicity with their external media using water expulsion vacuoles. Once they locate host tissue, they encyst and form a cell wall, enabling the generation of turgor pressure that will provide the driving force for germination and invasion of the host. It is not currently known how these spores respond to the osmotic stresses that might arise due to different environments on and around their hosts that have different osmotic strengths. We have made microaspiration (MA) measurements on > 800 encysted zoospores and atomic force microscopy (AFM) measurements on 12 encysted zoospores to determine their mechanical properties and how these change after hyperosmotic stress. Two types of encysted zoospores (Type A and Type B) were produced from the oomycete Achlya bisexualis, that differed in their morphology and response. With a small hyperosmotic stress (using 0.1 and 0.2 M sorbitol to give media osmolality changes of 155.4 and 295.6 mOsmol/kg), Type A zoospores initially became stiffer, with an increase in the Young's modulus (E) over 30 mins from 0.16 MPa to 0.25 and 0.22 MPa respectively. E then returned to its original value after 120 min. With a greater osmotic stress (using 0.3, 0.4 and 0.5 M sorbitol to give media osmolality changes of 438.2, 587.2 and 787.6 mOsmol/kg) the reverse occurred, with an initial decrease in E over 30 - 60 mins to values of 0.1, 0.08 and 0.09 MPa respectively, before recovery to the original value after 120 min. In 0.5 M sorbitol this recovery was only observed with AFM, but not with MA. Type B zoospores, which may be primary/secondary spores about to release secondary/tertiary spores, or else spores that were damaged during encystment, initially stiffened in response to the lower hyperosmotic stresses with a slight increase in E (from 0.077 to 0.1 MPa after 15 min (with both 0.1 and 0.2 M sorbitol) before recovering to the original value after 60 min. These spores showed no change in response to the higher osmotic stresses. The responses of the Type A spores are consistent with rapid changes in cell wall thickness and a turgor regulation mechanism. Turgor regulation is further supported by microscopic observations of the Type A spores showing protoplast retraction from the cell wall followed by deplasmolysis, coupled with measurements of spore volume. As far as we are aware this is the first demonstration of turgor regulation, not just in encysted zoospores, but in oomycetes in general.


Assuntos
Achlya , Oomicetos , Pressão Osmótica , Reprodução , Sorbitol
5.
Fungal Genet Biol ; 161: 103695, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35513256

RESUMO

Being found in all eukaryotes investigated, acyl-CoA-binding proteins (ACBPs) participate in lipid metabolism via specifically binding acyl-CoA esters with high affinity. The structures and functions of ACBP family proteins have been extensively described in yeasts, fungi, plants and mammals, but not oomycetes. In the present study, seven ACBP genes named PsACBP1-7 were identified from the genome of Phytophthora sojae, an oomycete pathogen of soybean. CRISPR-Cas9 knockout mutants targeting PsACBP1 and PsACBP2 were created for phenotypic assays. PsACBP1 knockout led to defects in sporangia production and virulence. PsACBP2 knockout mutants exhibited impaired vegetative growth, zoospore production, cyst germination and virulence. Moreover, Nile red staining of PsACBP2 knockout and over-expression lines showed that PsACBP2 is involved in the formation of lipid bodies in P. sojae. Our results demonstrate that two ACBP genes are differently required for growth and development, and both are essential for virulence in P. sojae.


Assuntos
Phytophthora , Animais , Coenzima A/metabolismo , Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/metabolismo , Mamíferos/metabolismo , Glycine max/genética , Virulência/genética
6.
Molecules ; 27(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144759

RESUMO

Potato (Solanum tuberosum L.) exhibits broad variations in cultivar resistance to tuber and root infections by the soilborne, obligate biotrophic pathogen Spongospora subterranea. Host resistance has been recognised as an important approach in potato disease management, whereas zoospore root attachment has been identified as an effective indicator for the host resistance to Spongospora root infection. However, the mechanism of host resistance to zoospore root attachment is currently not well understood. To identify the potential basis for host resistance to S. subterranea at the molecular level, twelve potato cultivars differing in host resistance to zoospore root attachment were used for comparative proteomic analysis. In total, 3723 proteins were quantified from root samples across the twelve cultivars using a data-independent acquisition mass spectrometry approach. Statistical analysis identified 454 proteins that were significantly more abundant in the resistant cultivars; 626 proteins were more abundant in the susceptible cultivars. In resistant cultivars, functional annotation of the proteomic data indicated that Gene Ontology terms related to the oxidative stress and metabolic processes were significantly over-represented. KEGG pathway analysis identified that the phenylpropanoid biosynthesis pathway was associated with the resistant cultivars, suggesting the potential role of lignin biosynthesis in the host resistance to S. subterranea. Several enzymes involved in pectin biosynthesis and remodelling, such as pectinesterase and pectin acetylesterase, were more abundant in the resistant cultivars. Further investigation of the potential role of root cell wall pectin revealed that the pectinase treatment of roots resulted in a significant reduction in zoospore root attachment in both resistant and susceptible cultivars. This study provides a comprehensive proteome-level overview of resistance to S. subterranea zoospore root attachment across twelve potato cultivars and has identified a potential role for cell wall pectin in regulating zoospore root attachment.


Assuntos
Plasmodioforídeos , Solanum tuberosum , Lignina/metabolismo , Pectinas/metabolismo , Doenças das Plantas , Plasmodioforídeos/genética , Poligalacturonase/metabolismo , Proteoma/metabolismo , Proteômica , Solanum tuberosum/metabolismo
7.
World J Microbiol Biotechnol ; 36(5): 77, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32399738

RESUMO

Protease mediated proteolysis has been widely implicated in virulence of necrotrophic fungal pathogens. This is counteracted in plants by evolving new and effective antimicrobial peptides (AMP) that constitute important components of innate immune system. Peptide extraction from rhizome of Zingiber zerumbet was optimized using ammonium sulphate (50-80% w/v) and acetone (60 and 100% v/v) with maximal protein recovery of 1.2 ± 0.4 mg/g obtained using 100% acetone. Evaluation of inhibitory potential of Z. zerumbet rhizome protein extract to prominent hydrolases of necrotrophic Pythium myriotylum revealed maximal inhibition of proteases (75.8%) compared to other hydrolytic enzymes. Protein was purified by Sephacryl S200HR resin resulting in twofold purification and protease inhibition of 84.4%. Non-reducing polyacrylamide gel electrophoresis (PAGE) of the fractions yielded two bands of 75 kDa and 25 kDa molecular size. Peptide mass fingerprint of the protein bands using matrix assisted laser desorption/ionization (MALDI)-time of flight (TOF) mass spectroscopy (MS) and subsequent MASCOT searches revealed peptide match to methylesterase from Arabidopsis thaliana (15%) and to hypothetical protein from Oryza sativa (98%) respectively. Further centrifugal filter purification using Amicon Ultra (10,000 MW cut-off) filter, yielded a prominent band of 25 kDa size. Concentration dependent inhibition of zoospore viability by Z. zerumbet AMP designated as ZzAMP was observed with maximal inhibition of 89.5% at 4 µg protein and an IC50 value of 0.59 µg. Studies are of particular relevance in the context of identifying the molecules involved in imparting below ground defense in Z. zerumbet as well in development of AMPs as potential candidate molecules for control of necrotrophic pathogens of agricultural relevance.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeo Hidrolases/efeitos dos fármacos , Extratos Vegetais/farmacologia , Pythium/efeitos dos fármacos , Rizoma/microbiologia , Zingiberaceae/microbiologia , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Arabidopsis , Inibidores Enzimáticos , Fungos/efeitos dos fármacos , Oryza , Peptídeos/farmacologia , Extratos Vegetais/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Zingiberaceae/crescimento & desenvolvimento
8.
J Bacteriol ; 201(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31036727

RESUMO

The rare actinomycete Actinoplanes missouriensis produces terminal sporangia containing a few hundred flagellated spores. After release from the sporangia, the spores swim rapidly in aquatic environments as zoospores. The zoospores stop swimming and begin to germinate in niches for vegetative growth. Here, we report the characterization and functional analysis of zoospore type IV pili in A. missouriensis The pilus gene (pil) cluster, consisting of three apparently σFliA-dependent transcriptional units, is activated during sporangium formation similarly to the flagellar gene cluster, indicating that the zoospore has not only flagella but also pili. With a new method in which zoospores were fixed with glutaraldehyde to prevent pilus retraction, zoospore pili were observed relatively easily using transmission electron microscopy, showing 6 ± 3 pili per zoospore (n = 37 piliated zoospores) and a length of 0.62 ± 0.35 µm (n = 206), via observation of fliC-deleted, nonflagellated zoospores. No pili were observed in the zoospores of a prepilin-encoding pilA deletion (ΔpilA) mutant. In addition, the deletion of pilT, which encodes an ATPase predicted to be involved in pilus retraction, substantially reduced the frequency of pilus retraction. Several adhesion experiments using wild-type and ΔpilA zoospores indicated that the zoospore pili are required for the sufficient adhesion of zoospores to hydrophobic solid surfaces. Many zoospore-forming rare actinomycetes conserve the pil cluster, which indicates that the zoospore pili yield an evolutionary benefit in the adhesion of zoospores to hydrophobic materials as footholds for germination in their mycelial growth.IMPORTANCE Bacterial zoospores are interesting cells in that their physiological state changes dynamically: they are dormant in sporangia, show temporary mobility after awakening, and finally stop swimming to germinate in niches for vegetative growth. However, the cellular biology of a zoospore remains largely unknown. This study describes unprecedented zoospore type IV pili in the rare actinomycete Actinoplanes missouriensis Similar to the case for the usual bacterial type IV pili, zoospore pili appeared to be retractable. Our findings that the zoospore pili have a functional role in the adhesion of zoospores to hydrophobic solid surfaces and that the zoospores use both pili and flagella properly according to their different purposes provide an important insight into the cellular biology of the zoospore.


Assuntos
Actinoplanes/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Esporos Bacterianos/fisiologia , Actinoplanes/fisiologia , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Regulação Bacteriana da Expressão Gênica , Esporos Bacterianos/genética
9.
J Eukaryot Microbiol ; 66(6): 892-898, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31034699

RESUMO

Fungi encompass, in addition to classically well-studied lineages, an ever-expanding diversity of poorly known lineages that include, among others, zoosporic chytrid-like parasites. According to recent phylogenetic analysis based on 18S + 28S rRNA concatenated genes two unusual chytrid-like fungi Amoeboradix gromovi and Sanchytrium tribonematis form a monophyletic group, the family Sanchytriaceae, which represents a new divergent taxon that remains incertae sedis within Fungi. Zoospores of Amoeboradix gromovi contain one of the longest kinetosomes known in eukaryotic cells, which are composed of microtubular singlets or doublets. However, the ultrastructure of S. tribonematis, the type species of the genus had not been yet studied. Here, we provide the results of TEM investigations of zoospores and sporangia from two strains of S. tribonematis. The two strains are endowed with unusual features. Like in A. gromovi, amoeboid zoospores of S. tribonematis contain a long kinetosome composed of microtubular singlets, and the two orthogonal centrioles in their sporangia have nine microtubular singlets with an internal ring. The morphological and ultrastructural features of S. tribonematis are now included in the improved taxonomic diagnosis for this species.


Assuntos
Fungos/classificação , Fungos/citologia , Fungos/ultraestrutura , Microscopia , Microscopia Eletrônica
10.
J Eukaryot Microbiol ; 66(6): 911-924, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31077482

RESUMO

The aphelids (phylum Aphelida) are phagotrophic parasitoids of algae and represent the most basal branch in superphylum Opisthosporidia, which contains the Microsporidia, Rozellosporidia and Aphelida. Being the closest group to traditional fungi, the aphelids should have ancestral features of both phyla. As in chytrids and other zoosporic fungi, the structure of zoospores is the most informative and important morphological feature for the phylogeny and taxonomy of aphelids. Though a general zoospore description exists for some aphelid species, their flagellar apparatus (kinetid) structure, which contains pivotal taxonomic and phylogenetic characters, has not been studied. Here we represent the kinetid structure in two genera, Aphelidium and Paraphelidium, and demonstrate independent reduction in the kinetid in each genus. The kinetid-mitochondrion connection found in Aphelidium and Paraphelidium is rare for opisthokonts in general, but present in the most basal branches of Fungi and Opisthosporidia. We suggest, therefore, that this connection represents an ancestral character for both these phyla.


Assuntos
Evolução Biológica , Fungos/ultraestrutura , Fungos/classificação , Microscopia Eletrônica de Transmissão
11.
Plant Dis ; 103(12): 3057-3064, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31596694

RESUMO

A number of fir species (Abies) are produced as Christmas trees around the world. In particular, Fraser fir (Abies fraseri (Pursh) Poir.) is popular as it yields high-quality Christmas trees in temperate North America and Europe. A Phytophthora sp. causing root rot on Fraser fir was isolated from a Christmas tree farm in Connecticut, U.S.A., and found to be new to science according to morphological and molecular phylogenetic analysis using multilocus DNA sequences from ITS, Cox1, ß-Tub, Nadh1, and Hsp90 loci. Thus, it was described and illustrated as Phytophthora abietivora. An informative Koch's postulates test revealed that P. abietivora was the pathogen causing root rot of Fraser fir.


Assuntos
Abies , Filogenia , Phytophthora , Abies/parasitologia , Connecticut , DNA de Protozoário/genética , Phytophthora/classificação , Especificidade da Espécie
12.
J Eukaryot Microbiol ; 65(2): 180-190, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28749611

RESUMO

Increasing numbers of sequences of basal fungi from environmental DNA studies are being deposited in public databases. Many of these sequences remain unclassified below the phylum level because sequence information from identified species is sparse. Lack of basic biological knowledge due to a dearth of identified species is extreme in Cryptomycota, a new phylum widespread in the environment and phylogenetically basal within the fungal lineage. Consequently, we are attempting to fill gaps in the knowledge of Rozella, the best-known genus in this lineage. Rozella is a genus of unwalled, holocarpic, endobiotic parasites of hosts including Chytridiomycota, Blastocladiomycota, Oomycota, Basidiomycota, and a green alga, with most species descriptions based on morphology and host specificity. We found a Rozella parasitizing a Pythium host that was a saprobe on spruce pollen bait placed with an aquatic sample. We characterized the parasite with light microscopy, TEM of its zoospores and sporangia, and its 18S/28S rDNA. Comparison with other Rozella species indicates that the new isolate differs morphologically, ultrastructurally, and genetically from Rozella species for which we have data. Features of the zoospore also differ from those of previously studied species. Herein we describe the Rozella as a new species, R. multimorpha.


Assuntos
Fungos/classificação , Fungos/genética , Fungos/ultraestrutura , Filogenia , DNA Fúngico/genética , DNA Ribossômico/genética , Microscopia Eletrônica de Transmissão , Pythium/microbiologia , Análise de Sequência de DNA
13.
J Invertebr Pathol ; 153: 117-121, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29518430

RESUMO

In order to understand interactions between Perkinsus olseni and its host mollusk species Manila clam Ruditapes philippinarum, this study focused on invasion processes of the parasite, particularly the mechanisms of zoospore transformation to trophozoites in its portal entry into the host. We exposed Manila clam to P. olseni zoospores, then periodically quantified parasite intensity in various host organs and tissues. We detected large numbers of parasite cells within gills and labial palps of the host clam from the early to the final stages, moderately within mantle and digestive organs but low numbers within hemolymph, foot and adductor muscles. Our results suggest that P. olseni first invades the gills and labial palps of the host clam with limited translocation throughout the host body via the host's circulatory system until 12 days post exposure to zoospores. P. olseni zoospores exposed to extracts of gills and labial palps transformed into trophozoites more efficiently than they did when exposed to other tissues; this transformation was not observed when zoospores were exposed to heated organ extracts. Our results suggest the involvement of a host molecule in the transformation of P. olseni zoospores, leading to initial infection primarily within gills and labial palps of the host clam.


Assuntos
Alveolados/patogenicidade , Bivalves/parasitologia , Infecções Protozoárias em Animais/parasitologia , Animais
14.
Z Naturforsch C J Biosci ; 73(3-4): 123-135, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29397024

RESUMO

The objective of this study was to isolate and characterize antagonistic rhizobacteria from chili against a notorious phytopathogen Phytophthora capsici. Among the 48 bacteria isolated, BTLbbc-02, BTLbbc-03, and BTLbbc-05 were selected based on their inhibitory activity against P. capsici. They were tentatively identified as Burkholderia metallica BTLbbc-02, Burkholderia cepacia BTLbbc-03, and Pseudomonas aeruginosa BTLbbc-05, respectively, based on their 16S rRNA gene sequencing. All inhibited the growth of P. capsici at varying levels by inducing characteristic morphological alterations of P. capsici hyphae. The cell-free culture supernatant of all three isolates impaired motility (up to 100%) and caused lysis (up to 50%) of the halted zoospores. Bioassays revealed that Pseudomonas sp. had higher antagonism and zoospore motility-inhibitory effects against P. capsici compared with two other isolates, Burkholderia spp. and B. metallica, which caused vacuolation in mycelium. All three bacteria suppressed sporangium formation and zoosporogenesis of P. capsici, and improved the seed germination and growth of cucumber. Our findings suggest that epiphytic bacteria, B. metallica, B. cepacia, and P. aeruginosa, could be used as potential biocontrol agents against P. capsici. A further study is required to ensure conformity with the existing regulations for soil, plant, and human health.


Assuntos
Antibiose , Burkholderia cepacia/fisiologia , Phytophthora/fisiologia , Pseudomonas aeruginosa/fisiologia , Agentes de Controle Biológico/farmacologia , Phytophthora/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos
15.
BMC Genomics ; 18(1): 198, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28228125

RESUMO

BACKGROUND: The oomycete Phytophthora infestans causes the devastating late blight diseases of potato and tomato. P. infestans uses spores for dissemination and infection, like many other filamentous eukaryotic plant pathogens. The expression of a subset of its genes during spore formation and germination were studied previously, but comprehensive genome-wide data have not been available. RESULTS: RNA-seq was used to profile hyphae, sporangia, sporangia undergoing zoosporogenesis, motile zoospores, and germinated cysts of P. infestans. Parallel studies of two isolates generated robust expression calls for 16,000 of 17,797 predicted genes, with about 250 transcribed in one isolate but not the other. The largest changes occurred in the transition from hyphae to sporangia, when >4200 genes were up-regulated. More than 1350 of these were induced >100-fold, accounting for 26% of total mRNA. Genes encoding calcium-binding proteins, cation channels, signaling proteins, and flagellar proteins were over-represented in genes up-regulated in sporangia. Proteins associated with pathogenicity were transcribed in waves with subclasses induced during zoosporogenesis, in zoospores, or in germinated cysts. Genes involved in most metabolic pathways were down-regulated upon sporulation and reactivated during cyst germination, although there were exceptions such as DNA replication, where transcripts peaked in zoospores. Inhibitor studies indicated that the transcription of two-thirds of genes induced during zoosporogenesis relied on calcium signaling. A sporulation-induced protein kinase was shown to bind a constitutive Gß-like protein, which contributed to fitness based on knock-down analysis. CONCLUSIONS: Spore formation and germination involves the staged expression of a large subset of the transcriptome, commensurate with the importance of spores in the life cycle. A comparison of the RNA-seq results with the older microarray data indicated that information is now available for about twice the number of genes than before. Analyses based on function revealed dynamic changes in genes involved in pathogenicity, metabolism, and signaling, with diversity in expression observed within members of multigene families and between isolates. The effects of calcium signaling, a spore-induced protein kinase, and an interacting Gß-like protein were also demonstrated experimentally. The results reveal aspects of oomycete biology that underly their success as pathogens and potential targets for crop protection chemicals.


Assuntos
Metabolismo Energético/genética , Sequenciamento de Nucleotídeos em Larga Escala , Oomicetos/genética , Oomicetos/metabolismo , Transdução de Sinais , Transcriptoma , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/genética , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Anotação de Sequência Molecular
16.
J Eukaryot Microbiol ; 64(5): 655-667, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28187245

RESUMO

Aphelids are a diverse group of intracellular parasitoids of algae and diatoms, and are sister to true fungi. Included in four genera, the 14 described species utilize phagocytosis as their mode of nutrition, and the life cycles of these taxa are remarkably similar. However, their putative specificity of host, morphological and ultrastructural features, and genetic divergence have been considered in taxon delineation. Here, we examine the host specificity, morphology, ultrastructure, and molecular 18S gene sequence of a new species in Aphelida, Aphelidium desmodesmi sp. nov. This taxon is in a well-supported clade with two other species of Aphelidium, and this lineage is sister to Amoeboaphelidium and Paraphelidium. Of interest, the mitochondrial structure of Aph. desmodesmi is more like that of Paraphelidium than that of Aphelidium aff. melosirae, the only other species of Aphelidium to have been examined ultrastructurally. This research examines and expands our understanding of host range, morphological diversity, and genetic divergence of the aphelids.


Assuntos
Eucariotos/classificação , Análise de Sequência de DNA/métodos , DNA Ribossômico/genética , Eucariotos/genética , Eucariotos/ultraestrutura , Especificidade de Hospedeiro , Microscopia Eletrônica de Transmissão , Filogenia , RNA Ribossômico 18S/genética
17.
Mycologia ; 108(4): 731-43, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27582565

RESUMO

Only a few chytrid fungi have been reported as parasites of dinoflagellates. Among these reports, chytrids are periodically observed growing on the dinoflagellate, Peridinium gatunense, in Lake Kinneret (Sea of Galilee), Israel. Because of the distinctive roles of parasitic chytrid fungi in decreasing phytoplankton populations and in transforming inedible algae into chytrid biomass which zooplankton grazers can eat, characterizing dinoflagellate parasites contributes to our understanding of the sustainability of this important water resource. An undescribed chytrid parasite of P. gatunense from Lake Kinneret has recently been brought into pure culture (KLL_TL-060613), facilitating exploration of its infection process. To evaluate the ability of this chytrid to affect host populations, we determined the effect of: (1) temperature and light (or dark) on prevalence of infection and (2) host growth phase and parasite:host ratio on percentage of infection. The greatest amplification in host infection occurred in cultures grown in the dark at 25 C. The percentage of host cells infected increased as the availability of host cells compared to parasite cells increased. These results demonstrate that environmental factors influence the chytrid's potential to affect Peridinium gatunense populations. Because this chytrid had not been described taxonomically, we characterized its thallus morphology, development, zoospore ultrastructure and phylogenetic relationships. Zoospore ultrastructure was compatible with the Group II type zoospore characteristic of the family Chytridiaceae in the Chytridiales. Consistent with this observation, phylogenetic analyses of nuc 28S rDNA D1-D3 domains (28S) placed the chytrid in a clade among described taxa in the Chytridiaceae. Because thallus morphology was distinct from these other taxa, as well as other described parasites of dinoflagellates, this chytrid is described as a new genus and species, Dinochytrium kinnereticum.


Assuntos
Quitridiomicetos/classificação , Quitridiomicetos/isolamento & purificação , Dinoflagellida/microbiologia , Quitridiomicetos/genética , Quitridiomicetos/fisiologia , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Interações Hospedeiro-Parasita , Israel , Luz , Microscopia , Filogenia , RNA Ribossômico 28S/genética , Análise de Sequência de DNA , Temperatura
18.
Indian J Microbiol ; 56(4): 482-490, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27784946

RESUMO

Polymyxa graminis, a root endoparasite of several cereal species, is considered to be non-pathogenic but serves as a vector of various plant viruses belonging to the genera Bymovirus, Furovirus, and Pecluvirus. Specifically, it reduces barley productivity by transmitting the Barley Yellow Mosaic Virus (BaYMV). To date, due to its obligate biotrophic property, no artificial culturing of P. graminis was reported and its quantification was also technically challenging. Here, we developed a novel and simple method to infect P. graminis within sterile barley roots in contamination free by preparing nearly pure zoospore inoculum. Such artificial maintenance of P. graminis was verified based on the presence of various developmental stages in infected barley roots under microscope. In addition, the population of resting spores in host tissue was determined by establishing standard curve between manually counted number of spores and Ct values of 18S rDNA amplification using quantitative real-time PCR. Furthermore, it was validated that standard curve generated was also applicable to estimate the abundance of P. graminis in soil environments. In conclusion, the present study would help to generate a system to investigate the etiological causes as well as management of plant diseases caused by P. graminis and BaYMV in tissue and soil.

19.
Bioorg Med Chem Lett ; 25(16): 3325-9, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26071635

RESUMO

The motility of zoospores is critical in the disease cycles of the peronosporomycetes that cause devastating diseases in plants, fishes, vertebrates, and microbes. In the course of screening for secondary metabolites regulating the motility of zoospores of Phytophthora capsici, we discovered two new inhibitors from the ethyl acetate extract of the fermentation broth of a marine-derived strain Bacillus sp. 109GGC020. The structures of these novel metabolites were elucidated as new cyclic lipopeptides and named gageopeptins A (1) and B (2) by spectroscopic analyses including high resolution MS and extensive 1D and 2D NMR. The stereoconfigurations of 1 and 2 were assigned based on the chemical derivatization studies and reviews of the literature data. Although compounds 1 and 2 impaired the motility of zoospores of P. capsici in dose- and time-dependent manners, compound 1 (IC50 = 1 µg/ml) was an approximately 400-fold stronger motility inhibitor than 2 (IC50 = 400 µg/ml). Interestingly, the zoospores halted by compound 1 were subsequently lysed at higher concentrations (IC50 = 50 µg/ml). Compounds 1 and 2 were also tested against some bacteria and fungi by broth dilution assay, and exhibited moderate antibacterial and good antifungal activities.


Assuntos
Antiprotozoários/farmacologia , Organismos Aquáticos/efeitos dos fármacos , Bacillus/química , Lipopeptídeos/farmacologia , Peptídeos Cíclicos/farmacologia , Phytophthora/efeitos dos fármacos , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Lipopeptídeos/química , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/química
20.
Mycologia ; 107(4): 808-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25911694

RESUMO

Many chytrid phylogenies contain lineages representing a lone taxon or a few organisms. One such lineage in recent molecular phylogenies of Rhizophydiales contained two marine chytrids, Rhizophydium littoreum and Rhizophydium aestuarii. To better understand the relationship between these organisms, we increased sampling such that the R. littoreum/R. aestuarii lineage included 10 strains of interest. To place this lineage in Rhizophydiales, we constructed a molecular phylogeny from partial nuc 28S rDNA D1-D3 domains (28S) of these and 80 additional strains in Rhizophydiales and examined thallus morphology and zoospore ultrastructure of our strains of interest. We also analyzed sequences of the nuc rDNA region encompassing the internal transcribed spacers 1 and 2, along with the 5.8S rDNA (ITS) of our 10 strains of interest to assess sequence similarity and phylogenetic placement of strains within the lineage. The 10 strains grouped together in three well supported clades: (i) Rhizophydium littoreum+Phlyctochytrium mangrovei, (ii) three strains of Rhizophydium aestuarii and (iii) five previously unidentified strains. Light microscopic observations revealed four distinct thallus morphologies, and zoospore ultrastructural analyses revealed four distinct constellations of ultrastructural features. On the bases of morphological, ultrastructural and molecular evidence we place these strains in the new family Halomycetaceae and four new genera (Halomyces, Paludomyces, Ulkenomyces, Paranamyces) in Rhizophydiales.


Assuntos
Quitridiomicetos/classificação , Quitridiomicetos/isolamento & purificação , Quitridiomicetos/genética , Quitridiomicetos/crescimento & desenvolvimento , DNA Fúngico/genética , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , Esporos Fúngicos/classificação , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa