Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.502
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 586(7827): 133-138, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32728212

RESUMO

Somatic mutations in p53, which inactivate the tumour-suppressor function of p53 and often confer oncogenic gain-of-function properties, are very common in cancer1,2. Here we studied the effects of hotspot gain-of-function mutations in Trp53 (the gene that encodes p53 in mice) in mouse models of WNT-driven intestinal cancer caused by Csnk1a1 deletion3,4 or ApcMin mutation5. Cancer in these models is known to be facilitated by loss of p533,6. We found that mutant versions of p53 had contrasting effects in different segments of the gut: in the distal gut, mutant p53 had the expected oncogenic effect; however, in the proximal gut and in tumour organoids it had a pronounced tumour-suppressive effect. In the tumour-suppressive mode, mutant p53 eliminated dysplasia and tumorigenesis in Csnk1a1-deficient and ApcMin/+ mice, and promoted normal growth and differentiation of tumour organoids derived from these mice. In these settings, mutant p53 was more effective than wild-type p53 at inhibiting tumour formation. Mechanistically, the tumour-suppressive effects of mutant p53 were driven by disruption of the WNT pathway, through preventing the binding of TCF4 to chromatin. Notably, this tumour-suppressive effect was completely abolished by the gut microbiome. Moreover, a single metabolite derived from the gut microbiota-gallic acid-could reproduce the entire effect of the microbiome. Supplementing gut-sterilized p53-mutant mice and p53-mutant organoids with gallic acid reinstated the TCF4-chromatin interaction and the hyperactivation of WNT, thus conferring a malignant phenotype to the organoids and throughout the gut. Our study demonstrates the substantial plasticity of a cancer mutation and highlights the role of the microenvironment in determining its functional outcome.


Assuntos
Carcinogênese/genética , Carcinogênese/patologia , Microbioma Gastrointestinal/genética , Genes Supressores de Tumor , Mutação , Oncogenes/genética , Proteína Supressora de Tumor p53/genética , Animais , Antibacterianos/farmacologia , Carcinogênese/efeitos dos fármacos , Feminino , Ácido Gálico/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Masculino , Camundongos , Organoides/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
2.
Nano Lett ; 24(26): 8179-8188, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885447

RESUMO

The unique "Iron Addiction" feature of cancer stem cells (CSCs) with tumorigenicity and plasticity generally contributes to the tumor recurrence and metastasis after a lumpectomy. Herein, a novel "Ferroptosis Amplification" strategy is developed based on integrating gallic acid-modified FeOOH (GFP) and gallocyanine into Pluronic F-127 (F127) and carboxylated chitosan (CC)-based hydrogel for CSCs eradication. This "Ferroptosis Amplifier" hydrogel is thermally sensitive and achieves rapid gelation at the postsurgical wound in a breast tumor model. Specifically, gallocyanine, as the Dickkopf-1 (DKK1) inhibitor, can decrease the expression of SLC7A11 and GPX4 and synergistically induce ferroptosis of CSCs with GFP. Encouragingly, it is found that this combination suppresses the migratory and invasive capability of cancer cells via the downregulation of matrix metalloproteinase 7 (MMP7). The in vivo results further confirm that this "Ferroptosis Amplification" strategy is efficient in preventing tumor relapse and lung metastasis, manifesting an effective and promising postsurgical treatment for breast cancer.


Assuntos
Neoplasias da Mama , Ferroptose , Hidrogéis , Células-Tronco Neoplásicas , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Hidrogéis/química , Humanos , Animais , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Camundongos , Ferroptose/efeitos dos fármacos , Linhagem Celular Tumoral , Poloxâmero/química , Poloxâmero/farmacologia , Quitosana/química , Quitosana/farmacologia , Quitosana/análogos & derivados , Ácido Gálico/farmacologia , Ácido Gálico/química , Ácido Gálico/uso terapêutico
3.
Microb Pathog ; 194: 106830, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39084307

RESUMO

Pseudomonas aeruginosa infections have become a serious threat to public health due to the increasing emergence of extensively antibiotic-resistant strains and high mortality rates. Therefore, the search for new therapeutic alternatives has become crucial. In this study, the antivirulence and antibacterial activity of methyl gallate was evaluated against six clinical isolates of extensively antibiotic-resistant P. aeruginosa. Methyl gallate exhibited minimal inhibitory concentrations of 256-384 µg/mL; moreover, the use of subinhibitory concentrations of the compound inhibited biofilm formation, swimming, swarming, proteolytic activity, and pyocyanin production. Methyl gallate plus antipseudomonal antibiotics showed a synergistic effect by reduced the MICs of ceftazidime, gentamicin and meropenem. Furthermore, the potential therapeutic effect of methyl gallate was demonstrated in an infection model. This study evidenced the antivirulence and antimicrobial activity of methyl gallate as a therapeutic alternative against P. aeruginosa.


Assuntos
Antibacterianos , Biofilmes , Sinergismo Farmacológico , Ácido Gálico , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Virulência/efeitos dos fármacos , Humanos , Animais , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Piocianina/metabolismo , Meropeném/farmacologia , Ceftazidima/farmacologia , Camundongos , Gentamicinas/farmacologia , Modelos Animais de Doenças
4.
Toxicol Appl Pharmacol ; 490: 117033, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38997070

RESUMO

Gallic acid (GA) has been found by a large number of studies to have pharmacological effects such as antioxidant and anti-inflammatory properties. However, the underlying therapeutic mechanisms are not fully understood.. Studies have shown that altering the intestinal flora affects host metabolism and effectively mediates the development of synovitis. The aim of this study was to explore the pharmacological effects of GA in the treatment of synovial inflammation and anti-synovial fibrosis in knee osteoarthritis (KOA) and the underlying mechanisms by macrogenomics combined with off-target metabolomics. We established a synovitis model via in vivo and in vitro experiments to observe the effect of GA intervention on synovitis. Moreover, we collected serum and feces from rats and analyzed the changes in intestinal flora by macro-genome sequencing and the changes in metabolites in the serum by untargeted metabolomics. We found that GA reduced the levels of IL-1ß, IL-6, and TNF-α, and decreased the protein expression levels of α-SMA, TGF-ß, and Collagen I in synovial tissues and cells, and the composition and function of the intestinal flora were similarly altered. Combined with macrogenomic pathway enrichment analysis and metabolic pathway enrichment analysis, these findings revealed that GA impacts Bacteroidia and Muribaculaceae abundance, and via the following metabolic pathways: sphingolipid metabolism, glycerophospholipid metabolism, and arginine biology.to ameliorate synovial inflammation and fibrosis in KOA. The therapeutic effect of GA on KOA synovitis and fibrosis is partly attributed to the alleviation of metabolic disorder and the rebalancing of the intestinal flora. These results provides a rationale for the therapeutic application of GA in the treatment of synovitis.


Assuntos
Fibrose , Ácido Gálico , Microbioma Gastrointestinal , Ratos Sprague-Dawley , Animais , Ácido Gálico/farmacologia , Ácido Gálico/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Ratos , Sinovite/tratamento farmacológico , Sinovite/patologia , Sinovite/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo , Modelos Animais de Doenças , Metabolômica
5.
Arch Biochem Biophys ; 756: 109978, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38636693

RESUMO

A 2D-intestinal epithelial Caco-2/RAW 264.7 macrophage co-culture model was developed to demonstrate the relative efficacy of different phenolic acids to mitigate changes in Caco-2 epithelial cell redox state initiated both directly by autoxidation products, H2O2, and indirectly through cell communication events originating from cytokine stimulated macrophage. An inducer cocktail (lipopolysaccharide + interferon gamma) was used to activate RAW 264.7 cells in the 2D- Caco-2/RAW co-culture and intracellular changes in Caco-2 cell redox signaling occurred in response to positive changes (p < 0.05) in inflammatory biomarkers derived in macrophage that included IL-6, TNF-α, nitric oxide and peroxynitrite, respectively. Phenolic acids varied in relative capacity to reduce NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) in cocktail inflamed induced macrophage. This response in addition to the relative predisposition of gallic acid (GA) to undergo autoxidation to generate H2O2 activity (p < 0.05), culminated in downstream cell signaling in Caco-2 nuclear factor erythroid 2-related factor (Nrf2) activity (increase 26.9 %), altered monolayer integrity (increase 33.7 %), and release of interleukin 8 (IL-8) (decrease 80.5 %) (p < 0.05). It can be concluded that the co-culture model described herein was useful to assess the importance of communication between cytokine stimulated macrophage and intestinal cells. Moreover, the relative unique efficacy of GA, compared to other phenolic acids tested to protect against activated macrophage induced changes related to intestinal dysfunction were particularly relevant to epithelial redox signaling, intestinal permeability and regulation of tight junction proteins. This study concludes that phenolic acids are not equal in the capacity to protect against intestinal cell dysfunction despite some indication of biological activity.


Assuntos
Técnicas de Cocultura , Ácido Gálico , Proteínas de Junções Íntimas , Células CACO-2 , Ácido Gálico/farmacologia , Humanos , Camundongos , Animais , Células RAW 264.7 , Proteínas de Junções Íntimas/metabolismo , Inflamação/metabolismo , Oxirredução/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Intestinos/citologia , Intestinos/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos
6.
Mol Pharm ; 21(5): 2577-2589, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38647021

RESUMO

This study aimed to repurpose the antifungal drug flucytosine (FCN) for anticancer activity together with cocrystals of nutraceutical coformers sinapic acid (SNP) and syringic acid (SYA). The cocrystal screening experiments with SNP resulted in three cocrystal hydrate forms in which two are polymorphs, namely, FCN-SNP F-I and FCN-SNP F-II, and the third one with different stoichiometry in the asymmetric unit (1:2:1 ratio of FCN:SNP:H2O, FCN-SNP F-III). Cocrystallization with SYA resulted in two hydrated cocrystal polymorphs, namely, FCN-SYA F-I and FCN-SYA F-II. All the cocrystal polymorphs were obtained concomitantly during the slow evaporation method, and one of the polymorphs of each system was produced in bulk by the slurry method. The interaction energy and lattice energies of all cocrystal polymorphs were established using solid-state DFT calculations, and the outcomes correlated with the experimental results. Further, the in vitro cytotoxic activity of the cocrystals was determined against DU145 prostate cancer and the results showed that the FCN-based cocrystals (FCN-SNP F-III and FCN-SYA F-I) have excellent growth inhibitory activity at lower concentrations compared with parent FCN molecules. The prepared cocrystals induce apoptosis by generating oxidative stress and causing nuclear damage in prostate cancer cells. The Western blot analysis also depicted that the cocrystals downregulate the inflammatory markers such as NLRP3 and caspase-1 and upregulate the intrinsic apoptosis signaling pathway marker proteins, such as Bax, p53, and caspase-3. These findings suggest that the antifungal drug FCN can be repurposed for anticancer activity.


Assuntos
Antifúngicos , Antineoplásicos , Apoptose , Reposicionamento de Medicamentos , Flucitosina , Neoplasias da Próstata , Transdução de Sinais , Apoptose/efeitos dos fármacos , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Antifúngicos/farmacologia , Antifúngicos/química , Masculino , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Reposicionamento de Medicamentos/métodos , Flucitosina/farmacologia , Flucitosina/química , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia , Ácido Gálico/química , Ácido Gálico/farmacologia , Ácido Gálico/análogos & derivados , Cristalização , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
7.
Biomacromolecules ; 25(9): 6026-6037, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39137337

RESUMO

Intracellular pathogens can survive inside the macrophages to protect themselves from eradication by the innate immune system and conventional antibiotics, resulting in severe bacterial infections. In this work, an antibiotic-free nanocomplex (HA/GA-Fe@NO-DON), exhibiting macrophage-targeted synergistic gas therapy (nitric oxide, NO)/chemodynamic therapy/immunotherapy, was reported. HA/GA-Fe nanoparticles were synthesized by the strong coordination interactions among carboxyl groups of hyaluronic acid (HA), polyphenol groups of gallic acid (GA), and Fe(II) ions. The hydrophobic glutathione (GSH)-responsive NO donor (NO-DON) was encapsulated in HA/GA-Fe nanoparticles to form the final nanocomplexes (HA/GA-Fe@NO-DON). HA on the nanocomplexes guides the macrophage-specific uptake and intracellular accumulation. After the uptake, HA/GA-Fe@NO-DON nanocomplexes could not only generate highly toxic hydroxyl radicals (•OH) by the Fenton reaction and GSH depletion but also release NO when stimulated by intracellular GSH. Meanwhile, the nanocomplexes could trigger an efficient proinflammation immune response to reinforce the antibacterial activity. This work presents the development of antibiotic-free macrophage-targeted HA/GA-Fe@NO-DON nanocomplexes as an effective adjuvant nanomedicine with synergistic gas therapy/chemodynamic therapy/immunotherapy for eliminating intracellular bacterial infection.


Assuntos
Ácido Gálico , Glutationa , Macrófagos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos , Animais , Glutationa/química , Glutationa/metabolismo , Células RAW 264.7 , Ácido Gálico/química , Ácido Gálico/farmacologia , Imunoterapia/métodos , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Ácido Hialurônico/química , Infecções Bacterianas/tratamento farmacológico , Nanopartículas/química , Ferro/química
8.
Biomacromolecules ; 25(7): 4358-4373, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38924782

RESUMO

Chitosan (CS)-based photo-cross-linkable hydrogels have gained increasing attention in biomedical applications. In this study, we grafted CS with gallic acid (GA) by carbodiimide chemistry to prepare the GA-CS conjugate, which was subsequently modified with methacrylic anhydride (MA) modification to obtain the methacrylated GA-CS conjugate (GA-CS-MA). Our results demonstrated that the GA-CS-MA hydrogel not only exhibited improved physicochemical properties but also showed antibacterial, antioxidative, and anti-inflammatory capacity. It showed moderate antibacterial activity and especially showed a more powerful inhibitory effect against Gram-positive bacteria. It modulated macrophage polarization, downregulated pro-inflammatory gene expression, upregulated anti-inflammatory gene expression, and significantly reduced reactive oxygen species (ROS) and nitric oxide (NO) production under lipopolysaccharide (LPS) stimulation. Subcutaneously implanted GA-CS-MA hydrogels induced significantly lower inflammatory responses, as evidenced by less inflammatory cell infiltration, thinner fibrous capsule, and predominately promoted M2 polarization. This study provides a feasible strategy to prepare CS-based photo-cross-linkable hydrogels with improved physicochemical properties for biomedical applications.


Assuntos
Antibacterianos , Anti-Inflamatórios , Antioxidantes , Quitosana , Ácido Gálico , Hidrogéis , Metacrilatos , Quitosana/química , Ácido Gálico/química , Ácido Gálico/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Camundongos , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/síntese química , Metacrilatos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Células RAW 264.7 , Reagentes de Ligações Cruzadas/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Óxido Nítrico/metabolismo
9.
J Pharmacol Sci ; 155(4): 140-147, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880548

RESUMO

Previously, we have shown that pyrogallol alleviated nasal symptoms and suppressed IL-9 gene up-regulation in allergy model rats by inhibiting calcineurin/NFAT signaling. As pyrogallol has antioxidative activity, it may be responsible for inhibiting calcineurin/NFAT signaling-mediated IL-9 gene expression. However, the relationship between antioxidative activity and suppression of IL-9 gene expression has not been elucidated yet. Here, we conducted the structure-activity relationship studies of pyrogallol and its structurally related compounds to understand the mechanism of IL-9 gene suppression by pyrogallol. 2, 2-Diphenyl-1-picrylhydrazyl radical scavenging assay showed that the antioxidative activity of catechol, resorcinol, phloroglucinol, and gallic acid is 60.1%, 10.4%, 18.8%, and 113.5% of pyrogallol, respectively. Catechol, resorcinol, and phloroglucinol did not suppress NFAT dephosphorylation. Gallic acid suppressed dephosphorylation of NFAT. Gallic acid also suppressed ionomycin-induced up-regulation of IL-9 gene expression with the IC50 value of 82.6 µM. However, catechol, resorcinol and phloroglucinol showed no suppressive activity. In addition, using gallic acid-immobilized beads, we isolated and identified Poly(U)-binding-splicing factor 60 (PUF60) as a pyrogallol binding protein. These results suggest that the antioxidative activity of pyrogallol is not likely to be the mechanism of IL-9 gene suppression. Data also suggest that PUF60 is one of its target molecules responsible for the suppression of calcineurin/NFAT signaling by pyrogallol.


Assuntos
Antioxidantes , Calcineurina , Fatores de Transcrição NFATC , Pirogalol , Transdução de Sinais , Pirogalol/farmacologia , Calcineurina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Relação Estrutura-Atividade , Antioxidantes/farmacologia , Humanos , Ácido Gálico/farmacologia , Expressão Gênica/efeitos dos fármacos , Animais , Fosforilação/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Ratos
10.
J Periodontal Res ; 59(1): 204-219, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37957813

RESUMO

BACKGROUND AND OBJECTIVE: Gallic acid (GA) possesses various beneficial functions including antioxidant, anticancer, anti-inflammatory as well as inhibiting osteoclastogeneis. However, effects on osteogenic differentiation, especially in human ligament periodontal (hPDL) cells, remain unclear. Thus, the aim of this study was to evaluate the function of GA on osteogenesis and anti-inflammation in hPDL cells and to explore the involved underlying mechanism. METHODS: Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) treatment was used as a model for periodontitis. ROS production was determined by H2DCFDA staining. Trans-well and wound healing assays were performed for checking the migration effect of GA. Alizarin red and alkaline phosphatase activity (ALP) assays were performed to evaluate osteogenic differentiation. Osteogenesis and inflammatory-related genes and proteins were measured by real-time PCR and western blot. RESULTS: Our results showed that GA-treated hPDL cells had higher proliferation and migration effect. GA inhibited ROS production-induced by Pg-LPS. Besides, GA abolished Pg-LPS-induced inflammation cytokines (il-6, il-1ß) and inflammasome targets (Caspase-1, NLRP3). In addition, GA promoted ALP activity and mineralization in hPDL cells, lead to enhance osteoblast differentiation process. The effect of GA is related to G-protein-coupled receptor 35 (GPR35)/GSK3ß/ß-catenin signaling pathway. CONCLUSION: GA attenuated Pg-LPS-induced inflammatory responses and periodontitis in hPDL cells. Taken together, GA may be targeted for therapeutic interventions in periodontal diseases.


Assuntos
Osteogênese , Periodontite , Humanos , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Ligamento Periodontal , beta Catenina/metabolismo , Ácido Gálico/farmacologia , Ácido Gálico/metabolismo , Lipopolissacarídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas , Transdução de Sinais , Diferenciação Celular , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Anti-Inflamatórios/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Osteoblastos
11.
J Biochem Mol Toxicol ; 38(9): e23809, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39148263

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is an alarming ailment that leads to severe liver damage and increases the risk of serious health conditions. The prevalence of NAFLD due to oxidative stress could be mitigated by plant-derived antioxidants. This study aims to investigate the effects of syringic acid (SA) on NAFLD in a high-fat diet (HFD) rat model. Twenty-four rats were randomly divided into four groups (n = 6): normal control, HFD, SA-administered HFD, and positive control SA on a normal diet. Rats in the normal control and positive control groups received a normal diet, and the remaining groups received an HFD for 8 weeks. SA (20 mg/kg b.w.) was orally (gavage) administered for 8 weeks. Lipid profiles were controlled by SA against HFD-fed rats (p < 0.05). SA reduced the serum aspartate aminotransferase and alanine aminotransferase levels by 70%-190%. SA also suppressed pro-inflammatory cytokines and attenuated histopathological and immunohistochemical changes against HFD-fed rats. SA reversed oxidative stress by suppressing the malondialdehyde formation by 82% and replenished the nonenzymatic and enzymatic antioxidant activities (p < 0.05). Gene expressions of nuclear factor-erythroid 2-related factor/heme oxygenase 1 (Nrf2/HO-1) were elevated in SA-treated rats. Ameliorative effects of SA on NAFLD induced by an HFD in rats were prominent through the reversal of oxidative stress and inflammation, regulated by an intrinsic mechanism of defense against oxidative stress, the Nrf2/HO-1 pathway.


Assuntos
Ácido Gálico , Heme Oxigenase (Desciclizante) , Fator 2 Relacionado a NF-E2 , Hepatopatia Gordurosa não Alcoólica , Transdução de Sinais , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Ratos , Masculino , Transdução de Sinais/efeitos dos fármacos , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ratos Sprague-Dawley , Antioxidantes/farmacologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia
12.
J Appl Microbiol ; 135(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38148145

RESUMO

AIMS: To evaluate the antifungal and antibiofilm activity of gallic acid derivatives TPP+-C10 and TPP+-C12 and their effects on mitochondrial function on two Candida albicans reference strains (ATCC 90029 and ATCC 10231). METHODS AND RESULTS: First, we determined minimal inhibitory concentration (MIC) using a microdilution assay. Both compounds exerted antifungal effects, and their MICs ranged from 3.9 to 13 µM, with no statistically significant differences between them (P > 0.05, t-test). These concentrations served as references for following assays. Subsequently, we measured oxygen consumption with a Clark electrode. Our observations revealed that both drugs inhibited oxygen consumption in both strains with TPP+-C12 exerting a more pronounced inhibitory effect. We then employed flow cytometry with TMRE as a probe to assess mitochondrial membrane potential. For each strain assayed, the compounds induced a decay in transmembrane potential by 75%-90% compared to the control condition (P < 0.05, ANOVA). Then, we measured ATP levels using a commercial kit. TPP+-C12 showed a 50% decrease of ATP content (P < 0.05 ANOVA), while TPP+-C10 exhibited a less pronounced effect. Finally, we assessed the antibiofilm effect using the MTT reduction assay. Both compounds were effective, but TPP+-C12 displayed a greater potency, requiring a lower concentration to inhibit 50% of biofilms viability (P < 0.05, t-test). CONCLUSIONS: Derivatives of gallic acid linked to a TPP+ group exert antifungal and antibiofilm activity through impairment of mitochondrial function in C. albicans.


Assuntos
Antifúngicos , Candida albicans , Antifúngicos/farmacologia , Ácido Gálico/farmacologia , Testes de Sensibilidade Microbiana , Biofilmes , Mitocôndrias , Trifosfato de Adenosina
13.
Bioorg Chem ; 147: 107381, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38669781

RESUMO

The development of XOD/URAT1 dual target inhibitors has emerged as a promising therapeutic strategy for the management of hyperuricemia. Here, through virtual screening, we have identified digallic acid as a novel dual target inhibitor of XOD/URAT1 and subsequently evaluated its pharmacological properties, pharmacokinetics, and toxicities. Digallic acid inhibited URAT1 with an IC50 of 5.34 ± 0.65 µM, which is less potent than benzbromarone (2.01 ± 0.36 µM) but more potent than lesinurad (10.36 ± 1.23 µM). Docking and mutation analysis indicated that residues S35, F241 and R477 of URAT1 confer a high affinity for digallic acid. Digallic acid inhibited XOD with an IC50 of 1.04 ± 0.23 µM. Its metabolic product, gallic acid, inhibited XOD with an IC50 of 0.91 ± 0.14 µM. Enzyme kinetic studies indicated that both digallic acid and gallic acid act as mixed-type XOD inhibitors. It shares the same binding mode as digallic acid, and residues E802, R880, F914, T1010, N768 and F1009 contribute to their high affinity. The anion group (carboxyl) of digallic acid contribute significantly to its inhibition activity on both XOD and URAT1 as indicated by docking analysis. Remarkably, at a dosage of 10 mg/kg in vivo, digallic acid exhibited a stronger urate-lowering and uricosuric effect compared to the positive drug benzbromarone and lesinurad. Pharmacokinetic study indicated that digallic acid can be hydrolyzed into gallic acid in vivo and has a t1/2 of 0.77 ± 0.10 h. Further toxicity evaluation indicated that digallic acid exhibited no obvious renal toxicity, as reflected by CCK-8, biochemical analysis (CR and BUN) and HE examination. The findings of our study can provide valuable insights for the development of XOD/URAT1 dual target inhibitors, and digallic acid deserves further investigation as a potential anti-hyperuricemic drug.


Assuntos
Relação Dose-Resposta a Droga , Inibidores Enzimáticos , Hiperuricemia , Transportadores de Ânions Orgânicos , Proteínas de Transporte de Cátions Orgânicos , Hiperuricemia/tratamento farmacológico , Humanos , Animais , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Urato Oxidase/química , Descoberta de Drogas , Simulação de Acoplamento Molecular , Camundongos , Masculino , Ácido Gálico/química , Ácido Gálico/farmacologia , Ácido Gálico/análogos & derivados , Ratos Sprague-Dawley
14.
Biochemistry (Mosc) ; 89(1): 173-183, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38467553

RESUMO

Natural polyphenols are promising compounds for the pharmacological control of oxidative stress in various diseases. However, low bioavailability and rapid metabolism of polyphenols in a form of glycosides or aglycones have stimulated the search for the vehicles that would provide their efficient delivery to the systemic circulation. Conjugation of polyphenols with cationic amphiphilic peptides yields compounds with a strong antioxidant activity and ability to pass through biological barriers. Due to a broad range of biological activities characteristic of polyphenols and peptides, their conjugates can be used in the antioxidant therapy, including the treatment of viral, oncological, and neurodegenerative diseases. In this work, we synthesized linear and dendrimeric cationic amphiphilic peptides that were then conjugated with gallic acid (GA). GA is a non-toxic natural phenolic acid and an important functional element of many flavonoids with a high antioxidant activity. The obtained GA-peptide conjugates showed the antioxidant (antiradical) activity that exceeded 2-3 times the antioxidant activity of ascorbic acid. GA attachment had no effect on the toxicity and hemolytic activity of the peptides. GA-modified peptides stimulated the transmembrane transfer of the pGL3 plasmid encoding luciferase reporter gene, although GA attachment at the N-terminus of peptides reduced their transfection activity. Several synthesized conjugates demonstrated the antibacterial activity in the model of Escherichia coli Dh5α growth inhibition.


Assuntos
Antioxidantes , Polifenóis , Antioxidantes/farmacologia , Antioxidantes/química , Polifenóis/farmacologia , Polifenóis/química , Peptídeos/farmacologia , Peptídeos/química , Ácido Gálico/farmacologia , Ácido Gálico/química , Antibacterianos/química
15.
J Infect Chemother ; 30(9): 867-875, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38462174

RESUMO

INTRODUCTION: Gallic acid (GA) has a good therapeutic effect in bacteriological inhibition and plays a variety of functions in maintaining the stability of the immune system. The aim of the present study was to investigate the effect of GA on the bactericidal activity of macrophages against Vibrio vulnificus (Vv). METHODS: A cell counting kit-8 (CCK-8) assay was carried out to test the cytotoxicity of GA on J774A.1 cells. Concentration of proinflammatory cytokines in J774A.1 cells were evaluated by ELISA. The internalization and degradation of Vv in the phagosomes were observed by transmission electron microscopy (TEM). The phagosome acidification and phagolysosome formation were detected to evaluate the bacteria-clearing function of J774A.1 cells. The bactericidal activity of GA in vivo was also investigated by collecting the survival time of Vv infected mice and observing the inflammatory infiltration of organs. RESULTS: Our results demonstrated that GA at 50 µM significantly inhibited the proinflammatory cytokines levels, promoted phagosome acidification and phagolysosome formation in J774A.1 cells with Vv infection. This may be related to the activation of NLRP3/mTOR signaling pathway. Additionally, GA treatment improves the survival and bactericidal activity of mice infected with Vv. CONCLUSIONS: In summary, GA exerts bactericidal activity against Vv infection by regulating the formation and acidification of phagocytic lysosomes in macrophages.


Assuntos
Ácido Gálico , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fagossomos , Transdução de Sinais , Serina-Treonina Quinases TOR , Vibrio vulnificus , Ácido Gálico/farmacologia , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Vibrio vulnificus/efeitos dos fármacos , Linhagem Celular , Citocinas/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Feminino
16.
Biofouling ; 40(5-6): 348-365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38836472

RESUMO

Our research focuses on developing environmentally friendly biodegradable ultrafiltration (UF) membranes for small-scale water purification in areas lacking infrastructure or during emergencies. To address biofouling challenges without resorting to harmful chemicals, we incorporate bio-based extracts, such as methyl gallate from A. occidentale leaves, a Malaysian ulam herb, known for its quorum sensing inhibition (QSI) properties. The methyl gallate enriched extract was purified by solvent partitioning and integrated into cellulose-based UF membranes (0 to 7.5% w w-1) through phase inversion technique. The resulting membranes exhibited enhanced anti-organic fouling and anti-biofouling properties, with flux recovery ratio (FRR) of 87.84 ± 2.00% against bovine serum albumin and FRRs of 76.67 ± 1.89% and 69.57 ± 1.77% against E. coli and S. aureus, respectively. The CA/MG-5 membrane showed a 224% improvement in pure water flux (PWF) compared to the neat CA membrane. Our innovative approach significantly improves PWF, presenting an environmentally friendly method for biofouling prevention in UF membrane applications.


Assuntos
Anacardium , Incrustação Biológica , Escherichia coli , Membranas Artificiais , Extratos Vegetais , Ultrafiltração , Purificação da Água , Incrustação Biológica/prevenção & controle , Ultrafiltração/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Escherichia coli/efeitos dos fármacos , Anacardium/química , Purificação da Água/métodos , Staphylococcus aureus/efeitos dos fármacos , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacologia , Ácido Gálico/química , Soroalbumina Bovina/química
17.
Acta Biochim Biophys Sin (Shanghai) ; 56(6): 905-915, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38516705

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory disease characterized by intestinal barrier dysfunction, inflammatory synergistic effects and excessive tissue injury. Gallic acid (GA) is renowned for its remarkable biological activity, encompassing anti-inflammatory and antioxidant properties. However, the underlying mechanisms by which GA protects against intestinal inflammation have not been fully elucidated. The aim of this study is to investigate the effect of GA on the inflammation of a lipopolysaccharide (LPS)-stimulated human colon carcinoma cell line (Caco-2) and on the intestinal barrier dysfunction, and explore the underlying molecular mechanism involved. Our findings demonstrate that 5 µg/mL GA restores the downregulation of the mRNA and protein levels of Claudin-1, Occludin, and ZO-1 and decreases the expressions of inflammatory factors such as IL-6, IL-1ß and TNF-α induced by LPS. In addition, GA exhibits a protective effect by reducing the LPS-enhanced early and late apoptotic ratios, downregulating the mRNA levels of pro-apoptotic factors ( Bax, Bad, Caspase-3, Caspase-8, and Caspase-9), and upregulating the mRNA levels of anti-apoptotic factor Bcl-2 in Caco-2 cells. GA also reduces the levels of reactive oxygen species increased by LPS and restores the activity of antioxidant enzymes, namely, superoxide dismutase and catalase, as well as the level of glutathione. More importantly, GA exerts its anti-inflammatory effects by inhibiting the LPS-induced phosphorylation of key signaling molecules in the NF-κB/MAPK pathway, including p65, IκB-α, p38, JNK, and ERK, in Caco-2 cells. Overall, our findings show that GA increases the expressions of tight junction proteins, reduces cell apoptosis, relieves oxidative stress and suppresses the activation of the NF-κB/MAPK pathway to reduce LPS-induced intestinal inflammation in Caco-2 cells, indicating that GA has potential as a therapeutic agent for intestinal inflammation.


Assuntos
Apoptose , Ácido Gálico , Inflamação , Lipopolissacarídeos , NF-kappa B , Humanos , Ácido Gálico/farmacologia , Células CACO-2 , Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo , Inflamação/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Apoptose/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Transdução de Sinais/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos
18.
Biomed Chromatogr ; 38(7): e5887, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38751131

RESUMO

Omics, bioinformatics, molecular docking, and experimental validation were used to elucidate the hepatoprotective effects, mechanisms, and active compounds of Shandougen (SDG) based on the biolabel-led research pattern. Integrated omics were used to explore the biolabels of SDG intervention in liver tissue. Subsequently, bioinformatics and molecular docking were applied to topologically analyze its therapeutic effects, mechanisms, and active compounds based on biolabels. Finally, an animal model was used to verify the biolabel analysis results. Omics, bioinformatics, and molecular docking revealed that SDG may exert therapeutic effects on liver diseases in the multicompound and multitarget synergistic modes, especially liver cirrhosis. In the validation experiment, SDG and its active compounds (betulinic acid and gallic acid) significantly improved the liver histopathological damage in the CCl4-induced liver cirrhosis model. Meanwhile, they also produced significant inhibitory effects on the focal adhesion pathway (integrin alpha-1, myosin regulatory light chain 2, laminin subunit gamma-1, etc.) and alleviated the associated pathological processes: focal adhesion (focal adhesion kinase 1)-extracellular matrix (collagen alpha-1(IV) chain, collagen alpha-1(VI) chain, and collagen alpha-2(VI) chain) dysfunction, carcinogenesis (alpha-fetoprotein, NH3, and acetylcholinesterase), inflammation (tumor necrosis factor alpha, interleukin-1 [IL-1], IL-6, and IL-10), and oxidative stress (reactive oxygen species, malonaldehyde, and superoxide dismutase). This study provides new evidence and insights for the hepatoprotective effects, mechanisms, and active compounds of SDG.


Assuntos
Biologia Computacional , Simulação de Acoplamento Molecular , Animais , Fígado/efeitos dos fármacos , Fígado/metabolismo , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Masculino , Ratos , Tetracloreto de Carbono , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Ácido Gálico/química , Ácido Gálico/farmacologia , Triterpenos/química , Triterpenos/farmacologia , Proteômica/métodos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química
19.
Ecotoxicol Environ Saf ; 283: 116790, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39083864

RESUMO

Terrestrial dissolved organic matter (tDOM) holds great promise for controlling cyanobacteria blooms through watershed management. To identify tDOM that could inhibit the growth, photosynthesis and colony formation, unicellular Microcystis aeruginosa Kützing (FACHB-469) was cultivated and treated with varying concentrations of gallic acid, proline and tea polyphenols at different levels of iron. The results indicated that gallic acid and tea polyphenols could inhibit Microcystis growth by suppressing photosynthesis and colony formation by reducing extracellular polysaccharides (EPS) secretion. However, proline had no significant effect on the growth, photosynthesis, colony size and EPS content of Microcystis. Transcriptome analysis showed Microcystis may optimize the internal energy transfer mode of photosynthesis through the change of phycobilisome at different levels of iron. In addition, Microcystis adapted to different iron concentration environments by regulating the expression of genes associated with iron uptake and transport. These findings suggest that the effects of plant species on algal blooms should be considered in reforestation of watershed. This consideration necessitates finding a balance between the costs and benefits of controlling cyanobacteria blooms using tDOM.


Assuntos
Ferro , Microcystis , Fotossíntese , Microcystis/efeitos dos fármacos , Microcystis/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Ácido Gálico/farmacologia , Prolina/metabolismo , Polifenóis , Eutrofização , Chá/química
20.
Folia Biol (Praha) ; 70(1): 53-61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38830123

RESUMO

Psoriasis is a chronic non-contagious autoimmune disease. Gallic acid is a natural compound with potential health benefits, including antioxidant, anticancer, antiviral and antibacterial properties. Nevertheless, the influence of gallic acid on psoriasis has not been fully determined. This investigation aimed to discover the effect of gallic acid on psoriasis. Thirty-one pairs of psoriatic skin tissues and healthy adult human skin tissues were collected. Human keratinocytes (HaCaT cells) were transfected with interleukin 17A (IL-17A) to create the psoriatic keratinocyte model. The content of bromodomain-containing protein 4 (BRD4) microRNA was assessed using qRT-PCR testing. The content of BRD4 was detected by Western blotting. Cell migration was evaluated by conducting a wound healing assay. Cell proliferation was determined using an EdU assay. Apoptosis was detected by the TUNEL assay. The contents of interferon gamma (IFN-γ), IL-6, IL-8 and IL-17 were detected by ELISA. BRD4 was up-regulated in psoriatic skin tissues and in the IL-17A group compared to the healthy adult human skin tissues and the control group. Silencing BRD4 inhibited cell migration, proliferation and inflammatory response but induced apoptosis in IL-17A-treated HaCaT cells. Conversely, BRD4 over-expression promoted cell migration, proliferation and inflammatory response but suppressed apoptosis in IL-17A-treated HaCaT cells. Gallic acid repressed cell migration, proliferation and inflammatory response but indu-ced apoptosis in HaCaT cells transfected with IL-17A by down-regulating BRD4. Gallic acid represses cell migration, proliferation and inflammatory response but induces apoptosis in IL-17A-transfected HaCaT cells by down-regulating BRD4.


Assuntos
Apoptose , Proteínas de Ciclo Celular , Movimento Celular , Proliferação de Células , Ácido Gálico , Inflamação , Queratinócitos , Psoríase , Fatores de Transcrição , Humanos , Psoríase/metabolismo , Psoríase/patologia , Psoríase/tratamento farmacológico , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ácido Gálico/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Apoptose/efeitos dos fármacos , Inflamação/patologia , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Interleucina-17/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Adulto , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Masculino , Células HaCaT , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Linhagem Celular , Proteínas que Contêm Bromodomínio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa