Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
1.
Cell ; 175(1): 101-116.e25, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30220459

RESUMO

IDH1 mutations are common in low-grade gliomas and secondary glioblastomas and cause overproduction of (R)-2HG. (R)-2HG modulates the activity of many enzymes, including some that are linked to transformation and some that are probably bystanders. Although prior work on (R)-2HG targets focused on 2OG-dependent dioxygenases, we found that (R)-2HG potently inhibits the 2OG-dependent transaminases BCAT1 and BCAT2, likely as a bystander effect, thereby decreasing glutamate levels and increasing dependence on glutaminase for the biosynthesis of glutamate and one of its products, glutathione. Inhibiting glutaminase specifically sensitized IDH mutant glioma cells to oxidative stress in vitro and to radiation in vitro and in vivo. These findings highlight the complementary roles for BCATs and glutaminase in glutamate biosynthesis, explain the sensitivity of IDH mutant cells to glutaminase inhibitors, and suggest a strategy for maximizing the effectiveness of such inhibitors against IDH mutant gliomas.


Assuntos
Glioma/metabolismo , Ácido Glutâmico/biossíntese , Transaminases/fisiologia , Linhagem Celular Tumoral , Glioma/fisiopatologia , Ácido Glutâmico/efeitos dos fármacos , Glutaratos/metabolismo , Glutaratos/farmacologia , Homeostase/efeitos dos fármacos , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/fisiologia , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/fisiologia , Mutação , Oxirredução/efeitos dos fármacos , Proteínas da Gravidez/genética , Proteínas da Gravidez/fisiologia , Transaminases/antagonistas & inibidores , Transaminases/genética
2.
Addict Biol ; 27(1): e13068, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34128302

RESUMO

Methamphetamine (METH) elicits endogenous glutamate (Glu) in the brain, which could partially explain METH-induced memory deficits. Here, we investigated the therapeutic effects of electroacupuncture (EA) on spatial memory deficits in METH withdrawal mice and its potential synaptic mechanisms. We found that EA at acupoints 'Baihui' and 'Yintang' ameliorated the impaired spatial memory in METH withdrawal mice. In parallel, EA attenuated the Glu levels in vivo and suppressed the neuronal activities within dCA1 of METH withdrawal mice, as indicated by the decreasing c-Fos levels and the amplitude of mEPSP. In the dCA1, EA decreased A1-like astrocytes but increased astrocytic glutamatergic transporting molecules including glutamate transporter 1 and glutamine synthase. However, EA seemed to have no effects on presynaptic Glu transmission from the dCA3, as evidenced by the similiar levels of c-Fos in the dCA3 neurons, synaptic vesicular markers of dCA3 neural terminals and values of paired-pulse ratio in the dCA1 neurons between EA-treated and sham EA-treated METH withdrawal mice. These findings suggest that EA might normalize the dCA1 Glu levels at least in part through enhancing astrocyte-mediated Glu clearance. Taken together, astrocytes might be a novel target for developing therapeutic interventions against the impaired memory behaviours in METH users, and EA represents a promising non-invasive therapeutic strategy for the management of drug-caused memory deficits.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Astrócitos/efeitos dos fármacos , Eletroacupuntura/métodos , Ácido Glutâmico/efeitos dos fármacos , Transtornos da Memória/terapia , Memória Espacial/efeitos dos fármacos , Animais , Masculino , Metanfetamina/farmacologia , Camundongos , Neurônios/efeitos dos fármacos
3.
Addict Biol ; 27(1): e13085, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390300

RESUMO

Disrupted brain gamma-aminobutyric acid (GABA)/glutamate homeostasis is a promising target for pharmacological intervention in co-occurring bipolar disorder (BD) and cannabis use disorder (CUD). Gabapentin is a safe and well-tolerated medication, FDA-approved to treat other neurological diseases, that restores GABA/glutamate homeostasis, with treatment studies supporting efficacy in treating CUD, as well as anxiety and sleep disorders that are common to both BD and CUD. The present manuscript represents the primary report of a randomized, double-blind, placebo-controlled, crossover (1-week/condition), multimodal-MRI (proton-MR spectroscopy, functional MRI) pilot study of gabapentin (1200 mg/day) in BD + CUD (n = 22). Primary analyses revealed that (1) gabapentin was well tolerated and adherence and retention were high, (2) gabapentin increased dorsal anterior cingulate cortex (dACC) and right basal ganglia (rBG) glutamate levels and (3) gabapentin increased activation to visual cannabis cues in the posterior midcingulate cortex (pMCC, a region involved in response inhibition to rewarding stimuli). Exploratory evaluation of clinical outcomes further found that in participants taking gabapentin versus placebo, (1) elevations of dACC GABA levels were associated with lower manic/mixed and depressive symptoms and (2) elevations of rBG glutamate levels and pMCC activation to cannabis cues were associated with lower cannabis use. Though promising, the findings from this study should be interpreted with caution due to observed randomization order effects on dACC glutamate levels and identification of statistical moderators that differed by randomization order (i.e. cigarette-smoking status on rBG glutamate levels and pMCC cue activation). Nonetheless, they provide the necessary foundation for a more robustly designed (urn-randomized, parallel-group) future study of adjuvant gabapentin for BD + CUD.


Assuntos
Transtorno Bipolar/tratamento farmacológico , Gabapentina/uso terapêutico , Ácido Glutâmico/efeitos dos fármacos , Abuso de Maconha/tratamento farmacológico , Ácido gama-Aminobutírico/efeitos dos fármacos , Adolescente , Adulto , Transtorno Bipolar/epidemiologia , Fumar Cigarros/epidemiologia , Método Duplo-Cego , Feminino , Gabapentina/administração & dosagem , Gabapentina/efeitos adversos , Giro do Cíngulo/efeitos dos fármacos , Humanos , Imageamento por Ressonância Magnética , Masculino , Abuso de Maconha/epidemiologia , Pessoa de Meia-Idade , Projetos Piloto , Espectroscopia de Prótons por Ressonância Magnética , Adulto Jovem
4.
Neurobiol Learn Mem ; 183: 107480, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34153453

RESUMO

Perturbations in the glutamate-glutamine cycle and glutamate release from presynaptic terminals have been involved in the development of cognitive deficits in Alzheimer's disease (AD) patients and mouse models. Glutamate transporter-1 (GLT-1) removes glutamate from the synaptic cleft and transports it into astrocytes, where it is used as substrate for the glutamate-glutamine cycle. Ceftriaxone has been reported to improve cognitive deficits in AD mice by increasing GLT-1 expression, glutamate transformation to glutamine, and glutamine efflux from astrocytes. However, the impact of ceftriaxone on glutamine metabolism in neurons is unknown. The present study aimed to investigate whether ceftriaxone regulated the production and vesicular assembly of glutamate in the presynaptic terminals of neurons and to determine GLT-1 involvement in this process. We used the amyloid precursor protein (APP)/presenilin-1 (PS1) AD mouse model and GLT-1 knockdown APP/PS1 (GLT-1+/-/APP/PS1) mice. The expression levels of sodium-coupled neutral amino-acid transporter 1 (SNAT1) and vesicular glutamate transporters 1 and 2 (VGLUT1/2) were analyzed by immunofluorescence and immunohistochemistry staining as well as by Western blotting. Glutaminase activity was assayed by fluorometry. Ceftriaxone treatment significantly increased SNAT1 expression and glutaminase activity in neurons in APP/PS1 mice. Similarly, VGLUT1/2 levels were increased in the presynaptic terminals of APP/PS1 mice treated with ceftriaxone. The deletion of one GLT-1 allele in APP/PS1 mice prevented the ceftriaxone-induced upregulation of SNAT1 and VGLUT1/2 expression, indicating that GLT-1 played an important role in ceftriaxone effect. Based on the role of SNAT1, glutaminase, and VGLUT1/2 in the glutamate-glutamine cycle in neurons, the present results suggested that ceftriaxone improved the production and vesicular assembly of glutamate as a neurotransmitter in presynaptic terminals by acting on GLT-1 in APP/PS1 mice.


Assuntos
Doença de Alzheimer/metabolismo , Antibacterianos/farmacologia , Ceftriaxona/farmacologia , Transportador 2 de Aminoácido Excitatório/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Doença de Alzheimer/genética , Sistema A de Transporte de Aminoácidos/efeitos dos fármacos , Sistema A de Transporte de Aminoácidos/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Técnicas de Silenciamento de Genes , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Glutaminase/efeitos dos fármacos , Glutaminase/metabolismo , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/efeitos dos fármacos , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/efeitos dos fármacos , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
5.
Addict Biol ; 26(2): e12896, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32187792

RESUMO

Vulnerability to drug addiction relies on substantial individual differences. We previously demonstrated that serotonin transporter knockout (SERT-/- ) rats show increased cocaine intake and develop signs of compulsivity. However, the underlying neural mechanisms are not fully understood. Given the pivotal role of glutamate and prefrontal cortex in cocaine-seeking behavior, we sought to investigate the expression of proteins implicated in glutamate neurotransmission in the prefrontal cortex of naïve and cocaine-exposed rats lacking SERT. We focused on the infralimbic (ILc) and prelimbic (PLc) cortices, which are theorized to exert opposing effects on the control over subcortical brain areas. SERT-/- rats, which compared to wild-type (SERT+/+ ) rats show increased ShA and LgA intake short-access (ShA) and long-access (LgA) cocaine intake, were sacrificed 24 h into withdrawal for ex vivo molecular analyses. In the ILc homogenate of SERT-/- rats, we observed a sharp increase in glial glutamate transporter 1 (GLT-1) after ShA, but not LgA, cocaine intake. This was paralleled by ShA-induced increases in GluN1, GluN2A, and GluN2B NMDA receptor subunits and their scaffolding protein SAP102 in the ILc homogenate, but not postsynaptic density, of these knockout animals. In the PLc, we found no major changes in the homogenate; conversely, the expression of GluN1 and GluN2A NMDA receptor subunits was increased in the postsynaptic density under ShA conditions and reduced under LgA conditions. These results point to SERT as a critical regulator of glutamate homeostasis in a way that differs between the subregions investigated, the duration of cocaine exposure as well as the cellular compartment analyzed.


Assuntos
Cocaína/farmacologia , Ácido Glutâmico/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos , Animais , Masculino , Ratos , Transmissão Sináptica/efeitos dos fármacos
6.
Addict Biol ; 26(2): e12900, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32212237

RESUMO

N-acetylcysteine (NAC) is a cystine prodrug shown to reduce cocaine- and cue-primed reinstatement of cocaine-seeking behavior in preclinical studies. In this inpatient study, the effects of NAC maintenance versus placebo on cocaine-seeking behavior were examined during cocaine-primed and unprimed self-administration sessions among non-treatment-seeking, cocaine-dependent individuals. Twelve participants completed this double-blind, placebo-controlled, within-subject crossover study. Each participant was maintained for 1 week (Sat-Fri) on NAC (1200-mg TID; 3600 mg/day total) and 1 week on placebo (0-mg TID); medication order was randomized. A subset of participants underwent proton magnetic resonance spectroscopy scans (n = 8) on the third day of medication (Mon) to assess neurochemistry in the rostral anterior cingulate (rACC; voxel = 4.5 cm3 ). In four randomized sessions (Tue-Fri) each week, each participant could earn unit amounts of cocaine (10 mg, fixed) versus money ($0.50 vs. $1.50) on a choice, progressive ratio schedule after insufflating active versus placebo cocaine-priming doses (110 mg vs. 4 mg). Relative to the placebo priming dose, the active cocaine priming dose (110 mg) increased cocaine-seeking behavior (p = .003). NAC reduced cocaine-primed cocaine-seeking behavior compared with placebo levels (p = .044) but did not alter placebo-primed cocaine-seeking behavior. The larger money alternative ($1.50) suppressed cocaine-seeking behavior relative to the smaller money alternative ($0.50; p = .011). Compared with placebo levels, NAC significantly decreased rACC glutamate + glutamine levels (p = .035) and numerically decreased rACC glutamate levels (p = .085). These preliminary findings indicate that NAC suppresses cocaine-seeking behavior in some, but not all, experimental scenarios. Further, our findings suggest NAC may exert its therapeutic effects by modulating excitatory tone in the rACC.


Assuntos
Acetilcisteína/uso terapêutico , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Comportamento de Procura de Droga/efeitos dos fármacos , Ácido Glutâmico/efeitos dos fármacos , Glutamina/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Acetilcisteína/farmacologia , Adulto , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espectroscopia de Prótons por Ressonância Magnética , Recompensa
7.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34768876

RESUMO

The glutamatergic neurotransmitter system has received substantial attention in research on the pathophysiology and treatment of neurological disorders. The study investigated the effect of the polyphenolic compound chlorogenic acid (CGA) on glutamate release in rat cerebrocortical nerve terminals (synaptosomes). CGA inhibited 4-aminopyridine (4-AP)-induced glutamate release from synaptosomes. This inhibition was prevented in the absence of extracellular Ca2+ and was associated with the inhibition of 4-AP-induced elevation of Ca2+ but was not attributed to changes in synaptosomal membrane potential. In line with evidence observed through molecular docking, CGA did not inhibit glutamate release in the presence of P/Q-type Ca2+ channel inhibitors; therefore, CGA-induced inhibition of glutamate release may be mediated by P/Q-type Ca2+ channels. CGA-induced inhibition of glutamate release was also diminished by the calmodulin and Ca2+/calmodilin-dependent kinase II (CaMKII) inhibitors, and CGA reduced the phosphorylation of CaMKII and its substrate, synapsin I. Furthermore, pretreatment with intraperitoneal CGA injection attenuated the glutamate increment and neuronal damage in the rat cortex that were induced by kainic acid administration. These results indicate that CGA inhibits glutamate release from cortical synaptosomes by suppressing P/Q-type Ca2+ channels and CaMKII/synapsin I pathways, thereby preventing excitotoxic damage to cortical neurons.


Assuntos
Canais de Cálcio/metabolismo , Ácido Clorogênico/farmacologia , Ácido Glutâmico/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio Tipo P/metabolismo , Canais de Cálcio Tipo Q/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Ácido Clorogênico/metabolismo , Fármacos Atuantes sobre Aminoácidos Excitatórios , Ácido Glutâmico/efeitos dos fármacos , Ácido Caínico/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Simulação de Acoplamento Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptossomos/metabolismo
8.
Neurobiol Dis ; 144: 105044, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32798726

RESUMO

Acetylcholine muscarinic receptors (mAChRs) contribute to both the facilitation and inhibition of levodopa-induced dyskinesia operated by striatal cholinergic interneurons, although the receptor subtypes involved remain elusive. Cholinergic afferents from the midbrain also innervate the substantia nigra reticulata, although the role of nigral mAChRs in levodopa-induced dyskinesia is unknown. Here, we investigate whether striatal and nigral M1 and/or M4 mAChRs modulate dyskinesia and the underlying striato-nigral GABAergic pathway activation in 6-hydroxydopamine hemilesioned rats. Reverse microdialysis allowed to deliver the mAChR antagonists telenzepine (M1 subtype preferring), PD-102807 and tropicamide (M4 subtype preferring), as well as the selective M4 mAChR positive allosteric modulator VU0152100 in striatum or substantia nigra, while levodopa was administered systemically. Dyskinetic movements were monitored along with nigral GABA (and glutamate) and striatal glutamate dialysate levels, taken as neurochemical correlates of striato-nigral pathway and cortico-basal ganglia-thalamo-cortical loop activation. We observed that intrastriatal telenzepine, PD-102807 and tropicamide alleviated dyskinesia and inhibited nigral GABA and striatal glutamate release. This was partially replicated by intrastriatal VU0152100. The M2 subtype preferring antagonist AFDX-116, used to elevate striatal acetylcholine levels, blocked the behavioral and neurochemical effects of PD-102807. Intranigral VU0152100 prevented levodopa-induced dyskinesia and its neurochemical correlates whereas PD-102807 was ineffective. These results suggest that striatal, likely postsynaptic, M1 mAChRs facilitate dyskinesia and striato-nigral pathway activation in vivo. Conversely, striatal M4 mAChRs can both facilitate and inhibit dyskinesia, possibly depending on their localization. Potentiation of striatal and nigral M4 mAChR transmission leads to powerful multilevel inhibition of striato-nigral pathway and attenuation of dyskinesia.


Assuntos
Dopaminérgicos/efeitos adversos , Discinesia Induzida por Medicamentos/metabolismo , Levodopa/efeitos adversos , Neostriado/metabolismo , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M4/metabolismo , Substância Negra/metabolismo , Regulação Alostérica , Animais , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/fisiopatologia , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Microdiálise , Antagonistas Muscarínicos/farmacologia , Neostriado/efeitos dos fármacos , Vias Neurais , Oxidopamina/toxicidade , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/etiologia , Transtornos Parkinsonianos/metabolismo , Ratos , Receptor Muscarínico M1/antagonistas & inibidores , Receptor Muscarínico M4/antagonistas & inibidores , Substância Negra/efeitos dos fármacos , Simpatolíticos/toxicidade , Ácido gama-Aminobutírico/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
9.
Psychol Med ; 50(13): 2182-2193, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31524118

RESUMO

BACKGROUND: Poor response to dopaminergic antipsychotics constitutes a major challenge in the treatment of psychotic disorders and markers for non-response during first-episode are warranted. Previous studies have found increased levels of glutamate and γ-aminobutyric acid (GABA) in non-responding first-episode patients compared to responders, but it is unknown if non-responders can be identified using reference levels from healthy controls (HCs). METHODS: Thirty-nine antipsychotic-naïve patients with first-episode psychosis and 36 matched HCs underwent repeated assessments with the Positive and Negative Syndrome Scale and 3T magnetic resonance spectroscopy. Glutamate scaled to total creatine (/Cr) was measured in the anterior cingulate cortex (ACC) and left thalamus, and levels of GABA/Cr were measured in ACC. After 6 weeks, we re-examined 32 patients on aripiprazole monotherapy and 35 HCs, and after 26 weeks we re-examined 30 patients on naturalistic antipsychotic treatment and 32 HCs. The Andreasen criteria defined non-response. RESULTS: Before treatment, thalamic glutamate/Cr was higher in the whole group of patients but levels normalized after treatment. ACC levels of glutamate/Cr and GABA/Cr were lower at all assessments and unaffected by treatment. When compared with HCs, non-responders at week 6 (19 patients) and week 26 (16 patients) had higher baseline glutamate/Cr in the thalamus. Moreover, non-responders at 26 weeks had lower baseline GABA/Cr in ACC. Baseline levels in responders and HCs did not differ. CONCLUSION: Glutamatergic and GABAergic abnormalities in antipsychotic-naïve patients appear driven by non-responders to antipsychotic treatment. If replicated, normative reference levels for glutamate and GABA may aid estimation of clinical prognosis in first-episode psychosis patients.


Assuntos
Antipsicóticos/uso terapêutico , Ácido Glutâmico/efeitos dos fármacos , Transtornos Psicóticos/tratamento farmacológico , Ácido gama-Aminobutírico/efeitos dos fármacos , Adolescente , Adulto , Estudos de Casos e Controles , Feminino , Ácido Glutâmico/análise , Ácido Glutâmico/metabolismo , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Humanos , Modelos Logísticos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Escalas de Graduação Psiquiátrica , Tálamo/efeitos dos fármacos , Tálamo/metabolismo , Fatores de Tempo , Adulto Jovem , Ácido gama-Aminobutírico/análise , Ácido gama-Aminobutírico/metabolismo
10.
Headache ; 60(7): 1259-1272, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32602955

RESUMO

OBJECTIVE: To review the literature on the mechanism of action of onabotulinumtoxinA in chronic migraine. BACKGROUND: OnabotulinumtoxinA is a chronic migraine preventive treatment that significantly reduces headache frequency. The traditional mechanism described for onabotulinumtoxinA - reducing muscle contractions - is insufficient to explain its efficacy in migraine, which is primarily a sensory neurological disease. METHODS: A narrative literature review on the mechanism of action of onabotulinumtoxinA in chronic migraine. RESULTS: Following injection into tissues, onabotulinumtoxinA inhibits soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE)-mediated vesicle trafficking by cleaving one of its essential proteins, soluble N-ethylmaleimide-sensitive fusion attachment protein (SNAP-25), which occurs in both motor and sensory nerves. OnabotulinumtoxinA inhibits regulated exocytosis of motor and sensory neurochemicals and proteins, as well as membrane insertion of peripheral receptors that convey pain from the periphery to the brain, because both processes are SNARE dependent. OnabotulinumtoxinA can decrease exocytosis of pro-inflammatory and excitatory neurotransmitters and neuropeptides such as substance P, calcitonin gene-related peptide, and glutamate from primary afferent fibers that transmit nociceptive pain and participate in the development of peripheral and central sensitization. OnabotulinumtoxinA also decreases the insertion of pain-sensitive ion channels such as transient receptor potential cation channel subfamily V member 1 (TRPV1) into the membranes of nociceptive neurons; this is likely enhanced in the sensitized neuron. For chronic migraine prevention, onabotulinumtoxinA is injected into 31-39 sites in 7 muscles of the head and neck. Sensory nerve endings of neurons whose cell bodies are located in trigeminal and cervical ganglia are distributed throughout the injected muscles, and are overactive in people with migraine. Through inhibition of these sensory nerve endings, onabotulinumtoxinA reduces the number of pain signals that reach the brain and consequently prevents activation and sensitization of central neurons postulated to be involved in migraine chronification. CONCLUSION: OnabotulinumtoxinA likely acts via sensory mechanisms to treat chronic migraine.


Assuntos
Toxinas Botulínicas Tipo A/farmacologia , Ácido Glutâmico/efeitos dos fármacos , Transtornos de Enxaqueca/prevenção & controle , Fármacos Neuromusculares/farmacologia , Neuropeptídeos/efeitos dos fármacos , Neurotransmissores/farmacologia , Proteínas SNARE/efeitos dos fármacos , Doença Crônica , Humanos
11.
Eur Arch Psychiatry Clin Neurosci ; 270(2): 207-216, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30353262

RESUMO

Ketamine exerts rapid antidepressant effects peaking 24 h after a single infusion, which have been suggested to be reflected by both reduced functional connectivity (FC) within default mode network (DMN) and altered glutamatergic levels in the perigenual anterior cingulate cortex (pgACC) at 24 h. Understanding the interrelation and time point specificity of ketamine-induced changes of brain circuitry and metabolism is thus key to future therapeutic developments. We investigated the correlation of late glutamatergic changes with FC changes seeded from the posterior cingulate cortex (PCC) and tested the prediction of the latter by acute fractional amplitude of low-frequency fluctuations (fALFF). In a double-blind, randomized, placebo-controlled study of 61 healthy subjects, we compared effects of subanesthetic ketamine infusion (0.5 mg/kg over 40 min) on resting-state fMRI and MR-Spectroscopy at 7 T 1 h and 24 h post-infusion. FC decrease between PCC and dorsomedial prefrontal cortex (dmPFC) was found at 24 h post-infusion (but not 1 h) and this FC decrease correlated with glutamatergic changes at 24 h in pgACC. Acute increase in fALFF was found in ventral PCC at 1 h which was not observed at 24 h and inversely correlated with the reduced dPCC FC towards the dmPFC at 24 h. The correlation of metabolic and functional markers of delayed ketamine effects and their temporal specificity suggest a potential mechanistic relationship between glutamatergic modulation and reconfiguration of brain regions belonging to the DMN.


Assuntos
Conectoma , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Ketamina/farmacologia , Rede Nervosa/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Adulto , Método Duplo-Cego , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Feminino , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Humanos , Ketamina/administração & dosagem , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/metabolismo , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/metabolismo , Adulto Jovem
12.
Addict Biol ; 25(4): e12819, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31418989

RESUMO

Stress is known to influence smoking relapse. Experimental studies indicate that acute stress increases nicotine-seeking behavior, yet neurobiological mechanisms remain poorly understood. Herein, we investigated disrupted excitatory neural activity in the dorsolateral prefrontal cortex (dlPFC) as a mechanism of stress-induced nicotine-seeking behavior. Non-treatment-seeking cigarette smokers were screened for psychiatric, medical, and neuroimaging contraindications. Using a double-blind, placebo-controlled, randomized crossover design, participants (N = 21) completed two oral-dosing sessions: stress (yohimbine 54 mg + hydrocortisone 10 mg) vs placebo (lactose 54 mg + lactose 10 mg). During each experimental session, working memory proficiency, dlPFC excitatory neural activity, nicotine-seeking behavior, and subjective effects were measured. dlPFC excitatory neural activity was quantified via glutamate modulation during working memory performance using functional proton magnetic resonance spectroscopy. Nicotine-seeking behavior was assayed using a cigarette puffs vs money choice progressive ratio task. Results indicated that yohimbine + hydrocortisone evoked a sustained physiological stress response (elevated heart rate, blood pressure, saliva cortisol, and saliva α-amylase levels; ps < .05). Relative to placebo levels, acute stress increased nicotine-seeking behavior (ps < .05), disrupted dlPFC glutamate modulation (p = .025), and impaired dlPFC function (working memory proficiency; ps < .05). The stress-induced increase in nicotine-seeking behavior was linearly related to the stress-induced disruption of dlPFC glutamate modulation (R2  = 0.24-0.37; ps < .05). These findings suggest that disrupted dlPFC excitatory neural activity is a neurobiological correlate of acute stress-induced nicotine-seeking behavior. These findings further emphasize the central role of the dlPFC in regulating drug-seeking behavior. Future studies are needed to evaluate interventions to improve dlPFC resilience to acute stress effects, including neurostimulation, working memory training, and "anti-stress" medications.


Assuntos
Fumar Cigarros/metabolismo , Comportamento de Procura de Droga/fisiologia , Ácido Glutâmico/metabolismo , Córtex Pré-Frontal/metabolismo , Estresse Fisiológico/fisiologia , Tabagismo/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Adulto , Método Duplo-Cego , Comportamento de Procura de Droga/efeitos dos fármacos , Feminino , Neuroimagem Funcional , Ácido Glutâmico/efeitos dos fármacos , Humanos , Hidrocortisona/farmacologia , Masculino , Memória de Curto Prazo , Nicotina , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/efeitos dos fármacos , Espectroscopia de Prótons por Ressonância Magnética , Distribuição Aleatória , Fumantes , Ioimbina/farmacologia , Adulto Jovem
13.
Anal Chem ; 91(23): 15123-15129, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31697073

RESUMO

Glutamate (Glu) is a critical neurotransmitter for neuronal communication in the nervous system. In vivo studies have shown that the concentration of Glu is reduced within the brains of those afflicted with Alzheimer's disease (AD), which is also associated with the accumulation of pathogenic amyloid-beta (Aß). However, the effects of Aß peptides on the level of Glu release, as well as how Aß-mediated Glu fluctuation is initiated, remain largely unknown. Here, we fabricated a Glu electrochemical biosensor and in situ quantitatively monitored the release of Glu from a single varicosity of Aß1-42-insulted hippocampal neurons. We found that before the depletion of Glu after 300 min of treatment with Aß1-42, a short-duration (30 min) incubation with Aß1-42 caused a dramatic increase in vesicular Glu release compared to that of a control. Further investigation demonstrated that the density of vesicular glutamate transporter 1 (VGLUT1), which is responsible for transport of Glu into synaptic vesicles, also displayed a significant elevation and then dramatic depletion with the extension of the time of treatment with Aß1-42. These results indicate that at the early stage of AD, Aß1-42 induces excessive Glu release, which may overstimulate the N-methyl-d-aspartic acid (NMDA) receptor, resulting in excitotoxicity and damage to neurons. In this work, the amount of Glu released together with its fluctuations under Aß1-42 oligomers toxicity conditions was monitored for the first time, and such monitoring could provide direct and new insights for current research on Aß1-42-induced abnormalities in neurotransmitter release and neuron functions.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/farmacologia , Técnicas Biossensoriais/métodos , Ácido Glutâmico/metabolismo , Fragmentos de Peptídeos/farmacologia , Animais , Eletroquímica/métodos , Ácido Glutâmico/deficiência , Ácido Glutâmico/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Neurônios/fisiologia , Fatores de Tempo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
14.
Mol Psychiatry ; 23(11): 2145-2155, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29880882

RESUMO

Conventional antipsychotic medication is ineffective in around a third of patients with schizophrenia, and the nature of the therapeutic response is unpredictable. We investigated whether response to antipsychotics is related to brain glutamate levels prior to treatment. Proton magnetic resonance spectroscopy was used to measure glutamate levels (Glu/Cr) in the anterior cingulate cortex (ACC) and in the thalamus in antipsychotic-naive or minimally medicated patients with first episode psychosis (FEP, n = 71) and healthy volunteers (n = 60), at three sites. Following scanning, patients were treated with amisulpride for 4 weeks (n = 65), then 1H-MRS was repeated (n = 46). Remission status was defined in terms of Positive and Negative Syndrome Scale for Schizophrenia (PANSS) scores. Higher levels of Glu/Cr in the ACC were associated with more severe symptoms at presentation and a lower likelihood of being in remission at 4 weeks (P < 0.05). There were longitudinal reductions in Glu/Cr in both the ACC and thalamus over the treatment period (P < 0.05), but these changes were not associated with the therapeutic response. There were no differences in baseline Glu/Cr between patients and controls. These results extend previous evidence linking higher levels of ACC glutamate with a poor antipsychotic response by showing that the association is evident before the initiation of treatment.


Assuntos
Antipsicóticos/uso terapêutico , Ácido Glutâmico/efeitos dos fármacos , Transtornos Psicóticos/tratamento farmacológico , Adulto , Feminino , Ácido Glutâmico/análise , Ácido Glutâmico/metabolismo , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Humanos , Masculino , Espectroscopia de Prótons por Ressonância Magnética/métodos , Escalas de Graduação Psiquiátrica , Esquizofrenia/tratamento farmacológico , Tálamo/efeitos dos fármacos , Tálamo/metabolismo , Adulto Jovem
15.
Addict Biol ; 24(1): 40-50, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29168271

RESUMO

Both schizophrenia (SZ) and substance abuse (SA) exhibit significant heritability. Moreover, N-methyl-d-aspartate receptors (NMDARs) have been implicated in the pathophysiology of both SZ and SA. We hypothesize that the high prevalence of comorbid SA in SZ is due to dysfunction of NMDARs caused by shared risk genes. We used transgenic mice with a null mutation of the gene encoding serine racemase (SR), the enzyme that synthesizes the NMDAR co-agonist d-serine and an established risk gene for SZ, to recreate the pathology of SZ. We determined the effect of NMDAR hypofunction resulting from the absence of d-serine on motivated behavior by using intracranial self-stimulation and neurotransmitter release in the nucleus accumbens by using in vivo microdialysis. Compared with wild-type mice, SR-/- mice exhibited similar baseline intracranial self-stimulation thresholds but were less sensitive to the threshold-lowering (rewarding) and the performance-elevating (stimulant) effects of cocaine. While basal dopamine (DA) and glutamate release were elevated in the nucleus accumbens of SR-/- mice, cocaine-induced increases in DA and glutamate release were blunted. γ-Amino-butyric acid efflux was unaffected in the SR-/- mice. Together, these findings suggest that the impaired NMDAR function and a consequent decrease in sensitivity to cocaine effects on behavior are mediated by blunted DA and glutamate responses normally triggered by the drug. Projected to humans, NMDAR hypofunction due to mutations in SR or other genes impacting glutamatergic function in SZ may render abused substances less potent and effective, thus requiring higher doses to achieve a hedonic response, resulting in elevated drug exposure and increased dependence/addiction.


Assuntos
Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Racemases e Epimerases/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/genética , Autoestimulação/efeitos dos fármacos , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Animais , Comorbidade , Dopamina/metabolismo , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Knockout , Microdiálise , Núcleo Accumbens/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Esquizofrenia/metabolismo , Serina/metabolismo , Ácido gama-Aminobutírico/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
16.
Addict Biol ; 24(6): 1204-1215, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30421483

RESUMO

Deletion of fatty acid amide hydrolase (FAAH), enzyme responsible for degrading endocannabinoids, increases alcohol consumption and preference. However, there is a lack of data on neurochemical events in mice exposed to alcohol in the absence of FAAH. Extracellular levels of endocannabinoids and relevant neurotransmitters were measured by in vivo microdialysis in the nucleus accumbens (NAc) of FAAH knockout (KO) and wild-type (WT) mice during an ethanol (EtOH; 2 g/kg, ip) challenge in EtOH-naive and repeated (r) EtOH-treated mice. In both genotypes, EtOH treatment caused no changes in baseline endocannabinoid levels, although FAAH KO mice displayed higher baseline N-arachidonoylethanolamine levels than WT mice. EtOH challenge caused a sustained increase in 2-arachidonoylglycerol (2-AG) levels in EtOH-naive WT mice but not in FAAH KO mice. In contrast, 2-AG levels were decreased following EtOH challenge in (r)EtOH-treated mice in both genotypes. Whereas (r)EtOH-treated mice showed higher baseline dopamine and serotonin levels than EtOH-naive mice in WT mice, these differences were attenuated in FAAH KO mice. Significant differences in baseline γ-aminobutyric acid (GABA) and glutamate levels by EtOH history were observed in WT mice but not in FAAH KO mice. Moreover, opposed effects on glutamate response were observed after EtOH challenge in EtOH-naive and (r)EtOH-treated FAAH KO mice. Finally, FAAH deletion failed to show EtOH-induced locomotion sensitivity. These data provide evidence of a potential influence of 2-AG in the neurochemical response to EtOH exposure in the NAc.


Assuntos
Amidoidrolases/genética , Depressores do Sistema Nervoso Central/farmacologia , Endocanabinoides/metabolismo , Etanol/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Animais , Ácidos Araquidônicos/metabolismo , Comportamento Animal , Dopamina/metabolismo , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Glicerídeos/metabolismo , Locomoção , Camundongos , Camundongos Knockout , Microdiálise , Núcleo Accumbens/metabolismo , Alcamidas Poli-Insaturadas , Serotonina/metabolismo , Ácido gama-Aminobutírico/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
17.
Addict Biol ; 24(5): 981-993, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30328656

RESUMO

Alcoholism is often associated with other forms of drug abuse, suggesting that innate predisposing factors may confer vulnerability to addiction to diverse substances. However, the neurobiological bases of these factors remain unknown. Here, we have used a combination of imaging, neurochemistry and behavioral techniques to investigate responses to the psychostimulant amphetamine in Marchigian Sardinian (msP) alcohol-preferring rats, a model of vulnerability to alcoholism. Specifically, we employed pharmacological magnetic resonance imaging to investigate the neural circuits engaged by amphetamine challenge, and to relate functional reactivity to neurochemical and behavioral responses. Moreover, we studied self-administration of cocaine in the msP rats. We found stronger functional responses in the extended amygdala, alongside with increased release of dopamine in the nucleus accumbens shell and augmented vertical locomotor activity compared with controls. Wistar and msP rats did not differ in operant cocaine self-administration under short access (2 hours) conditions, but msP rats exhibited a higher propensity to escalate drug intake following long access (6 hours). Our findings suggest that neurobiological and genetic mechanisms that convey vulnerability to excessive alcohol drinking also facilitate the transition from psychostimulants use to abuse.


Assuntos
Alcoolismo/diagnóstico por imagem , Anfetamina/farmacologia , Encéfalo/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Alcoolismo/metabolismo , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Condicionamento Operante , Modelos Animais de Doenças , Dopamina/metabolismo , Neuroimagem Funcional , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Locomoção , Imageamento por Ressonância Magnética , Microdiálise , Núcleo Accumbens/diagnóstico por imagem , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Autoadministração , Ácido gama-Aminobutírico/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
18.
Addict Biol ; 24(6): 1167-1178, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30144237

RESUMO

Serotonin (5-HT) and the habenula (Hb) contribute to motivational and emotional states such as depression and drug abuse. The dorsal raphe nucleus, where 5-HT neurons originate, and the Hb are anatomically and reciprocally interconnected. Evidence exists that 5-HT influences Hb glutamatergic transmission. Using serotonin transporter knockout (SERT-/- ) rats, which show depression-like behavior and increased cocaine intake, we investigated the effect of SERT reduction on expression of genes involved in glutamate neurotransmission under both baseline conditions as well as after short-access or long-access cocaine (ShA and LgA, respectively) intake. In cocaine-naïve animals, SERT removal led to reduced baseline Hb mRNA levels of critical determinants of glutamate transmission, such as SLC1A2, the main glutamate transporter and N-methyl-D-aspartate (Grin1, Grin2A and Grin2B) as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (Gria1 and Gria2) receptor subunits, with no changes in the scaffolding protein Dlg4. In response to ShA and LgA cocaine intake, SLC1A2 and Grin1 mRNA levels decreased in SERT+/+ rats to levels equal of those of SERT-/- rats. Our data reveal that increased extracellular levels of 5-HT modulate glutamate neurotransmission in the Hb, serving as critical neurobiological substrate for vulnerability to cocaine addiction.


Assuntos
Cocaína/administração & dosagem , Depressão/metabolismo , Inibidores da Captação de Dopamina/administração & dosagem , Ácido Glutâmico/metabolismo , Habenula/metabolismo , RNA Mensageiro/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Animais , Comportamento Animal/efeitos dos fármacos , Cocaína/farmacologia , Proteína 4 Homóloga a Disks-Large/efeitos dos fármacos , Proteína 4 Homóloga a Disks-Large/genética , Inibidores da Captação de Dopamina/farmacologia , Transportador 2 de Aminoácido Excitatório/efeitos dos fármacos , Transportador 2 de Aminoácido Excitatório/genética , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Ácido Glutâmico/efeitos dos fármacos , Habenula/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , Ratos , Ratos Transgênicos , Receptores de AMPA/efeitos dos fármacos , Receptores de AMPA/genética , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/genética , Autoadministração , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos
19.
Psychiatry Clin Neurosci ; 73(7): 386-393, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30973183

RESUMO

AIM: The purpose of this study was to examine treatment-related neurochemical changes in 28 unmedicated obsessive-compulsive disorder (OCD) patients using 1 H-magnetic resonance spectroscopy (1 H-MRS). METHODS: We included subjects diagnosed with OCD (n = 28), each with a total duration of illness of less than 5 years, as a study group and age- and sex-matched healthy controls (n = 26). The inclusion criteria for the OCD group were right-handed individuals aged 18 years or older who had not been on any specific treatment for OCD for the last at least 8 weeks and who had no other psychiatric comorbidity. A pre-post and case-control design was employed in which OCD patients underwent 1 H-MRS at baseline and 12 weeks after treatment with escitalopram (n = 21). Clinical assessment was carried out using a semi-structured pro forma Yale-Brown Obsessive Compulsive Scale and the World Health Organization Disability Assessment Scale 2.0 before and after treatment. Volume-localized 1 H-MRS was carried out with a 3-Tesla Philips MR scanner. RESULTS: Our data suggested higher levels of myoinositol (mI), total choline (tCho), and glutamate+glutamine (Glx) in the medial thalamus at pre-assessment in OCD subjects as compared to healthy controls and a significant reduction in tCho and Glx after treatment in OCD subjects. The mI levels in the caudate nucleus and Glx levels in the anterior cingulate cortex were significantly correlated with disease severity on the Yale-Brown Obsessive Compulsive Scale. CONCLUSION: Our study supports the hypothesis of a hyper-glutaminergic state (as suggested by increased Glx levels) and neurodegeneration (as suggested by increased tCho and mI in the thalamus) in cortico-striato-thalamocortical circuitry in OCD patients as suggested by previous studies using MRS as well as other functional imaging studies.


Assuntos
Núcleo Caudado , Colina/metabolismo , Citalopram/farmacologia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Giro do Cíngulo , Inositol/metabolismo , Transtorno Obsessivo-Compulsivo/tratamento farmacológico , Transtorno Obsessivo-Compulsivo/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Tálamo , Adolescente , Adulto , Estudos de Casos e Controles , Núcleo Caudado/diagnóstico por imagem , Núcleo Caudado/efeitos dos fármacos , Núcleo Caudado/metabolismo , Citalopram/administração & dosagem , Feminino , Seguimentos , Ácido Glutâmico/efeitos dos fármacos , Glutamina/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/fisiopatologia , Espectroscopia de Prótons por Ressonância Magnética , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Índice de Gravidade de Doença , Tálamo/diagnóstico por imagem , Tálamo/efeitos dos fármacos , Tálamo/metabolismo , Adulto Jovem
20.
Int J Neuropsychopharmacol ; 21(7): 677-686, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29566161

RESUMO

Background: Oxytocin reduces cued reinstatement of cocaine seeking in male and female rats, but the underlying neurobiology has not been uncovered. The majority of effort on this task has focused on oxytocin and dopamine interactions in the nucleus accumbens core. The nucleus accumbens core is a key neural substrate in relapse, and oxytocin administration in the nucleus accumbens core reduces reinstatement to methamphetamine cues. Further, the nucleus accumbens core has strong glutamatergic innervation from numerous regions including the prefrontal cortex. Thus, we hypothesize that oxytocin regulates presynaptic glutamate terminals in the nucleus accumbens core, thereby affecting reinstatement. Methods: To begin to evaluate this hypothesis, we examined the effects of intra-nucleus accumbens core oxytocin on extracellular glutamate levels in this region. We next determined if direct infusion of oxytocin into the nucleus accumbens core could attenuate cued reinstatement of cocaine seeking in a manner dependent on metabotropic glutamate 2/3 receptors. Finally, we tested if site-specific application of oxytocin in the prefrontal cortex reduced cued reinstatement of cocaine seeking. Results: We found an increase in nucleus accumbens core extracellular glutamate for several minutes following reverse dialysis of oxytocin. In male and female rats with a history of cocaine self-administration, site-specific application of oxytocin in the nucleus accumbens core and prefrontal cortex had opposing effects, decreasing and increasing cued reinstatement, respectively. The mGlu2/3 antagonist LY-341495 reversed oxytocin's ability to attenuate cued reinstatement. Conclusions: While the precise mechanism by which oxytocin increases nucleus accumbens core glutamate is yet to be determined, the present results clearly support oxytocin mediation of glutamate neurotransmission in the nucleus accumbens core that impacts cued cocaine seeking.


Assuntos
Comportamento Animal/efeitos dos fármacos , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Ácido Glutâmico , Núcleo Accumbens , Ocitocina , Córtex Pré-Frontal/efeitos dos fármacos , Reforço Psicológico , Animais , Sinais (Psicologia) , Modelos Animais de Doenças , Feminino , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ocitocina/metabolismo , Ocitocina/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa