Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.074
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(21): 5375-5390.e16, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34562363

RESUMO

Although oxidative phosphorylation is best known for producing ATP, it also yields reactive oxygen species (ROS) as invariant byproducts. Depletion of ROS below their physiological levels, a phenomenon known as reductive stress, impedes cellular signaling and has been linked to cancer, diabetes, and cardiomyopathy. Cells alleviate reductive stress by ubiquitylating and degrading the mitochondrial gatekeeper FNIP1, yet it is unknown how the responsible E3 ligase CUL2FEM1B can bind its target based on redox state and how this is adjusted to changing cellular environments. Here, we show that CUL2FEM1B relies on zinc as a molecular glue to selectively recruit reduced FNIP1 during reductive stress. FNIP1 ubiquitylation is gated by pseudosubstrate inhibitors of the BEX family, which prevent premature FNIP1 degradation to protect cells from unwarranted ROS accumulation. FEM1B gain-of-function mutation and BEX deletion elicit similar developmental syndromes, showing that the zinc-dependent reductive stress response must be tightly regulated to maintain cellular and organismal homeostasis.


Assuntos
Estresse Fisiológico , Aminoácidos/química , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Feminino , Humanos , Íons , Camundongos , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Relação Estrutura-Atividade , Especificidade por Substrato/efeitos dos fármacos , Complexos Ubiquitina-Proteína Ligase/química , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitinação/efeitos dos fármacos , Zinco/farmacologia
2.
Nature ; 626(8001): 963-974, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38418916

RESUMO

Transporting small molecules across cell membranes is an essential process in cell physiology. Many structurally diverse, secondary active transporters harness transmembrane electrochemical gradients of ions to power the uptake or efflux of nutrients, signalling molecules, drugs and other ions across cell membranes. Transporters reside in lipid bilayers on the interface between two aqueous compartments, where they are energized and regulated by symported, antiported and allosteric ions on both sides of the membrane and the membrane bilayer itself. Here we outline the mechanisms by which transporters couple ion and solute fluxes and discuss how structural and mechanistic variations enable them to meet specific physiological needs and adapt to environmental conditions. We then consider how general bilayer properties and specific lipid binding modulate transporter activity. Together, ion gradients and lipid properties ensure the effective transport, regulation and distribution of small molecules across cell membranes.


Assuntos
Transporte Biológico Ativo , Íons , Bicamadas Lipídicas , Lipídeos , Proteínas de Membrana Transportadoras , Transporte de Íons , Íons/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Carreadoras de Solutos/metabolismo
3.
Nature ; 627(8005): 905-914, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448589

RESUMO

A string of nucleotides confined within a protein capsid contains all the instructions necessary to make a functional virus particle, a virion. Although the structure of the protein capsid is known for many virus species1,2, the three-dimensional organization of viral genomes has mostly eluded experimental probes3,4. Here we report all-atom structural models of an HK97 virion5, including its entire 39,732 base pair genome, obtained through multiresolution simulations. Mimicking the action of a packaging motor6, the genome was gradually loaded into the capsid. The structure of the packaged capsid was then refined through simulations of increasing resolution, which produced a 26 million atom model of the complete virion, including water and ions confined within the capsid. DNA packaging occurs through a loop extrusion mechanism7 that produces globally different configurations of the packaged genome and gives each viral particle individual traits. Multiple microsecond-long all-atom simulations characterized the effect of the packaged genome on capsid structure, internal pressure, electrostatics and diffusion of water, ions and DNA, and revealed the structural imprints of the capsid onto the genome. Our approach can be generalized to obtain complete all-atom structural models of other virus species, thereby potentially revealing new drug targets at the genome-capsid interface.


Assuntos
Bacteriófagos , Capsídeo , DNA Viral , Genoma Viral , Vírion , Montagem de Vírus , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Difusão , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Íons/análise , Íons/química , Íons/metabolismo , Eletricidade Estática , Vírion/química , Vírion/genética , Vírion/metabolismo , Montagem de Vírus/genética , Água/análise , Água/química , Água/metabolismo
4.
Nature ; 630(8016): 493-500, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718835

RESUMO

The introduction of AlphaFold 21 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design2-6. Here we describe our AlphaFold 3 model with a substantially updated diffusion-based architecture that is capable of predicting the joint structure of complexes including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy over many previous specialized tools: far greater accuracy for protein-ligand interactions compared with state-of-the-art docking tools, much higher accuracy for protein-nucleic acid interactions compared with nucleic-acid-specific predictors and substantially higher antibody-antigen prediction accuracy compared with AlphaFold-Multimer v.2.37,8. Together, these results show that high-accuracy modelling across biomolecular space is possible within a single unified deep-learning framework.


Assuntos
Aprendizado Profundo , Ligantes , Modelos Moleculares , Proteínas , Software , Humanos , Anticorpos/química , Anticorpos/metabolismo , Antígenos/metabolismo , Antígenos/química , Aprendizado Profundo/normas , Íons/química , Íons/metabolismo , Simulação de Acoplamento Molecular , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas/química , Proteínas/metabolismo , Reprodutibilidade dos Testes , Software/normas
5.
Nature ; 627(8002): 157-164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418877

RESUMO

The accumulation of metabolic waste is a leading cause of numerous neurological disorders, yet we still have only limited knowledge of how the brain performs self-cleansing. Here we demonstrate that neural networks synchronize individual action potentials to create large-amplitude, rhythmic and self-perpetuating ionic waves in the interstitial fluid of the brain. These waves are a plausible mechanism to explain the correlated potentiation of the glymphatic flow1,2 through the brain parenchyma. Chemogenetic flattening of these high-energy ionic waves largely impeded cerebrospinal fluid infiltration into and clearance of molecules from the brain parenchyma. Notably, synthesized waves generated through transcranial optogenetic stimulation substantially potentiated cerebrospinal fluid-to-interstitial fluid perfusion. Our study demonstrates that neurons serve as master organizers for brain clearance. This fundamental principle introduces a new theoretical framework for the functioning of macroscopic brain waves.


Assuntos
Encéfalo , Líquido Cefalorraquidiano , Líquido Extracelular , Neurônios , Potenciais de Ação , Encéfalo/citologia , Encéfalo/metabolismo , Ondas Encefálicas/fisiologia , Líquido Cefalorraquidiano/metabolismo , Líquido Extracelular/metabolismo , Sistema Glinfático/metabolismo , Cinética , Rede Nervosa/fisiologia , Neurônios/metabolismo , Optogenética , Tecido Parenquimatoso/metabolismo , Íons/metabolismo
6.
Annu Rev Biochem ; 83: 813-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24606136

RESUMO

Ions surround nucleic acids in what is referred to as an ion atmosphere. As a result, the folding and dynamics of RNA and DNA and their complexes with proteins and with each other cannot be understood without a reasonably sophisticated appreciation of these ions' electrostatic interactions. However, the underlying behavior of the ion atmosphere follows physical rules that are distinct from the rules of site binding that biochemists are most familiar and comfortable with. The main goal of this review is to familiarize nucleic acid experimentalists with the physical concepts that underlie nucleic acid-ion interactions. Throughout, we provide practical strategies for interpreting and analyzing nucleic acid experiments that avoid pitfalls from oversimplified or incorrect models. We briefly review the status of theories that predict or simulate nucleic acid-ion interactions and experiments that test these theories. Finally, we describe opportunities for going beyond phenomenological fits to a next-generation, truly predictive understanding of nucleic acid-ion interactions.


Assuntos
Íons/química , Ácidos Nucleicos/química , Algoritmos , Sítios de Ligação , Cátions , Cristalografia por Raios X , DNA/química , Magnésio/química , Metais/química , Modelos Teóricos , Conformação de Ácido Nucleico , Distribuição de Poisson , RNA/química , Software , Eletricidade Estática , Termodinâmica
7.
Nature ; 620(7976): 1001-1006, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37648756

RESUMO

Bio-integrated devices need power sources to operate1,2. Despite widely used technologies that can provide power to large-scale targets, such as wired energy supplies from batteries or wireless energy transduction3, a need to efficiently stimulate cells and tissues on the microscale is still pressing. The ideal miniaturized power source should be biocompatible, mechanically flexible and able to generate an ionic current for biological stimulation, instead of using electron flow as in conventional electronic devices4-6. One approach is to use soft power sources inspired by the electrical eel7,8; however, power sources that combine the required capabilities have not yet been produced, because it is challenging to obtain miniaturized units that both conserve contained energy before usage and are easily triggered to produce an energy output. Here we develop a miniaturized soft power source by depositing lipid-supported networks of nanolitre hydrogel droplets that use internal ion gradients to generate energy. Compared to the original eel-inspired design7, our approach can shrink the volume of a power unit by more than 105-fold and it can store energy for longer than 24 h, enabling operation on-demand with a 680-fold greater power density of about 1,300 W m-3. Our droplet device can serve as a biocompatible and biological ionic current source to modulate neuronal network activity in three-dimensional neural microtissues and in ex vivo mouse brain slices. Ultimately, our soft microscale ionotronic device might be integrated into living organisms.


Assuntos
Materiais Biocompatíveis , Fontes de Energia Bioelétrica , Materiais Biomiméticos , Condutividade Elétrica , Eletrônica , Íons , Animais , Camundongos , Elétrons , Hidrogéis/química , Íons/análise , Íons/metabolismo , Enguias , Rede Nervosa/fisiologia , Encéfalo/citologia , Encéfalo/fisiologia , Microquímica
8.
Nature ; 618(7963): 87-93, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37259003

RESUMO

Technologically critical rare-earth elements are notoriously difficult to separate, owing to their subtle differences in ionic radius and coordination number1-3. The natural lanthanide-binding protein lanmodulin (LanM)4,5 is a sustainable alternative to conventional solvent-extraction-based separation6. Here we characterize a new LanM, from Hansschlegelia quercus (Hans-LanM), with an oligomeric state sensitive to rare-earth ionic radius, the lanthanum(III)-induced dimer being >100-fold tighter than the dysprosium(III)-induced dimer. X-ray crystal structures illustrate how picometre-scale differences in radius between lanthanum(III) and dysprosium(III) are propagated to Hans-LanM's quaternary structure through a carboxylate shift that rearranges a second-sphere hydrogen-bonding network. Comparison to the prototypal LanM from Methylorubrum extorquens reveals distinct metal coordination strategies, rationalizing Hans-LanM's greater selectivity within the rare-earth elements. Finally, structure-guided mutagenesis of a key residue at the Hans-LanM dimer interface modulates dimerization in solution and enables single-stage, column-based separation of a neodymium(III)/dysprosium(III) mixture to >98% individual element purities. This work showcases the natural diversity of selective lanthanide recognition motifs, and it reveals rare-earth-sensitive dimerization as a biological principle by which to tune the performance of biomolecule-based separation processes.


Assuntos
Proteínas de Bactérias , Elementos da Série dos Lantanídeos , Lantânio , Multimerização Proteica , Disprósio/química , Disprósio/isolamento & purificação , Íons/química , Elementos da Série dos Lantanídeos/química , Elementos da Série dos Lantanídeos/isolamento & purificação , Lantânio/química , Neodímio/química , Neodímio/isolamento & purificação , Methylocystaceae , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Estrutura Quaternária de Proteína
9.
Mol Cell ; 81(14): 2929-2943.e6, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34166608

RESUMO

The HCN1-4 channel family is responsible for the hyperpolarization-activated cation current If/Ih that controls automaticity in cardiac and neuronal pacemaker cells. We present cryoelectron microscopy (cryo-EM) structures of HCN4 in the presence or absence of bound cAMP, displaying the pore domain in closed and open conformations. Analysis of cAMP-bound and -unbound structures sheds light on how ligand-induced transitions in the channel cytosolic portion mediate the effect of cAMP on channel gating and highlights the regulatory role of a Mg2+ coordination site formed between the C-linker and the S4-S5 linker. Comparison of open/closed pore states shows that the cytosolic gate opens through concerted movements of the S5 and S6 transmembrane helices. Furthermore, in combination with molecular dynamics analyses, the open pore structures provide insights into the mechanisms of K+/Na+ permeation. Our results contribute mechanistic understanding on HCN channel gating, cyclic nucleotide-dependent modulation, and ion permeation.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico/fisiologia , Íons/metabolismo , Proteínas Musculares/metabolismo , Canais de Potássio/metabolismo , Linhagem Celular , Microscopia Crioeletrônica/métodos , AMP Cíclico/metabolismo , Células HEK293 , Humanos
10.
Mol Cell ; 81(22): 4650-4662.e4, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34715014

RESUMO

Mutations in ATP13A2, also known as PARK9, cause a rare monogenic form of juvenile-onset Parkinson's disease named Kufor-Rakeb syndrome and other neurodegenerative diseases. ATP13A2 encodes a neuroprotective P5B P-type ATPase highly enriched in the brain that mediates selective import of spermine ions from lysosomes into the cytosol via an unknown mechanism. Here we present three structures of human ATP13A2 bound to an ATP analog or to spermine in the presence of phosphomimetics determined by cryoelectron microscopy. ATP13A2 autophosphorylation opens a lysosome luminal gate to reveal a narrow lumen access channel that holds a spermine ion in its entrance. ATP13A2's architecture suggests physical principles underlying selective polyamine transport and anticipates a "pump-channel" intermediate that could function as a counter-cation conduit to facilitate lysosome acidification. Our findings establish a firm foundation to understand ATP13A2 mutations associated with disease and bring us closer to realizing ATP13A2's potential in neuroprotective therapy.


Assuntos
Encéfalo/metabolismo , Poliaminas/química , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , Sítio Alostérico , Sítios de Ligação , Transporte Biológico , Microscopia Crioeletrônica , Humanos , Íons/química , Lisossomos/química , Mutação , Fosforilação , Domínios Proteicos , Proteínas Recombinantes/química , Espermina/metabolismo , Especificidade por Substrato
11.
Nature ; 603(7901): 522-527, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236987

RESUMO

Selective metal coordination is central to the functions of metalloproteins:1,2 each metalloprotein must pair with its cognate metallocofactor to fulfil its biological role3. However, achieving metal selectivity solely through a three-dimensional protein structure is a great challenge, because there is a limited set of metal-coordinating amino acid functionalities and proteins are inherently flexible, which impedes steric selection of metals3,4. Metal-binding affinities of natural proteins are primarily dictated by the electronic properties of metal ions and follow the Irving-Williams series5 (Mn2+ < Fe2+ < Co2+ < Ni2+ < Cu2+ > Zn2+) with few exceptions6,7. Accordingly, metalloproteins overwhelmingly bind Cu2+ and Zn2+ in isolation, regardless of the nature of their active sites and their cognate metal ions1,3,8. This led organisms to evolve complex homeostatic machinery and non-equilibrium strategies to achieve correct metal speciation1,3,8-10. Here we report an artificial dimeric protein, (AB)2, that thermodynamically overcomes the Irving-Williams restrictions in vitro and in cells, favouring the binding of lower-Irving-Williams transition metals over Cu2+, the most dominant ion in the Irving-Williams series. Counter to the convention in molecular design of achieving specificity through structural preorganization, (AB)2 was deliberately designed to be flexible. This flexibility enabled (AB)2 to adopt mutually exclusive, metal-dependent conformational states, which led to the discovery of structurally coupled coordination sites that disfavour Cu2+ ions by enforcing an unfavourable coordination geometry. Aside from highlighting flexibility as a valuable element in protein design, our results illustrate design principles for constructing selective metal sequestration agents.


Assuntos
Metaloproteínas , Metais , Proteínas , Aminoácidos , Domínio Catalítico , Íons , Metaloproteínas/química , Metais/química , Metais/metabolismo , Proteínas/química
12.
Nature ; 610(7933): 699-703, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36261526

RESUMO

Gas exchange and ion regulation at gills have key roles in the evolution of vertebrates1-4. Gills are hypothesized to have first acquired these important homeostatic functions from the skin in stem vertebrates, facilitating the evolution of larger, more-active modes of life2,3,5. However, this hypothesis lacks functional support in relevant taxa. Here we characterize the function of gills and skin in a vertebrate (lamprey ammocoete; Entosphenus tridentatus), a cephalochordate (amphioxus; Branchiostoma floridae) and a hemichordate (acorn worm; Saccoglossus kowalevskii) with the presumed burrowing, filter-feeding traits of vertebrate ancestors6-9. We provide functional support for a vertebrate origin of gas exchange at the gills with increasing body size and activity, as direct measurements in vivo reveal that gills are the dominant site of gas exchange only in ammocoetes, and only with increasing body size or challenges to oxygen supply and demand. Conversely, gills of all three taxa are implicated in ion regulation. Ammocoete gills are responsible for all ion flux at all body sizes, whereas molecular markers for ion regulation are higher in the gills than in the skin of amphioxus and acorn worms. This suggests that ion regulation at gills has an earlier origin than gas exchange that is unrelated to vertebrate size and activity-perhaps at the very inception of pharyngeal pores in stem deuterostomes.


Assuntos
Brânquias , Íons , Oxigênio , Filogenia , Vertebrados , Animais , Brânquias/metabolismo , Anfioxos/metabolismo , Oxigênio/metabolismo , Vertebrados/classificação , Vertebrados/metabolismo , Íons/metabolismo , Tamanho Corporal , Lampreias/metabolismo , Pele/metabolismo
13.
Nat Methods ; 21(4): 619-622, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443506

RESUMO

Orbitrap-based charge detection mass spectrometry utilizes single-molecule sensitivity to enable mass analysis of even highly heterogeneous, high-mass macromolecular assemblies. For contemporary Orbitrap instruments, the accessible ion detection (recording) times are maximally ~1-2 s. Here by modifying a data acquisition method on an Orbitrap ultrahigh mass range mass spectrometer, we trapped and monitored individual (single) ions for up to 25 s, resulting in a corresponding and huge improvement in signal-to-noise ratio (×5 compared with 1 s), mass resolution (×25) and accuracy in charge and mass determination of Orbitrap-based charge detection mass spectrometry.


Assuntos
Espectrometria de Massas , Espectrometria de Massas/métodos , Análise Espectral , Íons
14.
Immunity ; 48(4): 616-618, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29669242

RESUMO

Some metal ions, such as Ca2+ and Zn2+, are involved in intracellular communication in immune cells by acting as second messengers. In this issue of Immunity, Wang et al. (2018) present findings implying a similar role for an additional metal ion, by showing that manganese participates in the recognition of cytoplasmic DNA.


Assuntos
Íons , Manganês , DNA , Vírus de DNA
15.
Nature ; 597(7874): 57-63, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34471277

RESUMO

Fibre lithium-ion batteries are attractive as flexible power solutions because they can be woven into textiles, offering a convenient way to power future wearable electronics1-4. However, they are difficult to produce in lengths of more than a few centimetres, and longer fibres were thought to have higher internal resistances3,5 that compromised electrochemical performance6,7. Here we show that the internal resistance of such fibres has a hyperbolic cotangent function relationship with fibre length, where it first decreases before levelling off as length increases. Systematic studies confirm that this unexpected result is true for different fibre batteries. We are able to produce metres of high-performing fibre lithium-ion batteries through an optimized scalable industrial process. Our mass-produced fibre batteries have an energy density of 85.69 watt hour per kilogram (typical values8 are less than 1 watt hour per kilogram), based on the total weight of a lithium cobalt oxide/graphite full battery, including packaging. Its capacity retention reaches 90.5% after 500 charge-discharge cycles and 93% at 1C rate (compared with 0.1C rate capacity), which is comparable to commercial batteries such as pouch cells. Over 80 per cent capacity can be maintained after bending the fibre for 100,000 cycles. We show that fibre lithium-ion batteries woven into safe and washable textiles by industrial rapier loom can wirelessly charge a cell phone or power a health management jacket integrated with fibre sensors and a textile display.


Assuntos
Cobalto/química , Fontes de Energia Elétrica , Eletrônica , Lítio/química , Óxidos/química , Têxteis , Dispositivos Eletrônicos Vestíveis , Grafite/química , Humanos , Íons , Masculino , Tecnologia sem Fio
16.
Annu Rev Biochem ; 80: 211-37, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21548783

RESUMO

Signal transduction across biological membranes is central to life. This process generally happens through communication between different domains and hierarchical coupling of information. Here, we review structural and thermodynamic principles behind transmembrane (TM) signal transduction and discuss common themes. Communication between signaling domains can be understood in terms of thermodynamic and kinetic principles, and complex signaling patterns can arise from simple wiring of thermodynamically coupled domains. We relate this to functions of several signal transduction systems: the M2 proton channel from influenza A virus, potassium channels, integrin receptors, and bacterial kinases. We also discuss key features in the structural rearrangements responsible for signal transduction in these systems.


Assuntos
Comunicação Celular/fisiologia , Membrana Celular/fisiologia , Integrinas , Canais de Potássio , Proteínas da Matriz Viral , Integrinas/química , Integrinas/metabolismo , Íons/química , Íons/metabolismo , Ligantes , Modelos Moleculares , Canais de Potássio/química , Canais de Potássio/metabolismo , Conformação Proteica , Transdução de Sinais/fisiologia , Termodinâmica , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo
17.
Nat Methods ; 20(2): 205-213, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36424442

RESUMO

Artificial intelligence-based protein structure prediction approaches have had a transformative effect on biomolecular sciences. The predicted protein models in the AlphaFold protein structure database, however, all lack coordinates for small molecules, essential for molecular structure or function: hemoglobin lacks bound heme; zinc-finger motifs lack zinc ions essential for structural integrity and metalloproteases lack metal ions needed for catalysis. Ligands important for biological function are absent too; no ADP or ATP is bound to any of the ATPases or kinases. Here we present AlphaFill, an algorithm that uses sequence and structure similarity to 'transplant' such 'missing' small molecules and ions from experimentally determined structures to predicted protein models. The algorithm was successfully validated against experimental structures. A total of 12,029,789 transplants were performed on 995,411 AlphaFold models and are available together with associated validation metrics in the alphafill.eu databank, a resource to help scientists make new hypotheses and design targeted experiments.


Assuntos
Inteligência Artificial , Proteínas , Conformação Proteica , Proteínas/química , Zinco , Íons , Ligantes
18.
Mol Cell Proteomics ; 23(1): 100694, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097181

RESUMO

Multiplex proteomics using isobaric labeling tags has emerged as a powerful tool for the simultaneous relative quantification of peptides and proteins across multiple experimental conditions. However, the quantitative accuracy of the approach is largely compromised by ion interference, a phenomenon that causes fold changes to appear compressed. The degree of compression is generally unknown, and the contributing factors are poorly understood. In this study, we thoroughly characterized ion interference at the MS2 level using a defined two-proteome experimental system with known ground-truth. We discovered remarkably poor agreement between the apparent precursor purity in the isolation window and the actual level of observed reporter ion interference in MS2 scans-a discrepancy that we found resolved by considering cofragmentation of peptide ions hidden within the spectral "noise" of the MS1 isolation window. To address this issue, we developed a regression modeling strategy to accurately predict reporter ion interference in any dataset. Finally, we demonstrate the utility of our procedure for improved fold change estimation and unbiased PTM site-to-protein normalization. All computational tools and code required to apply this method to any MS2 TMT dataset are documented and freely available.


Assuntos
Peptídeos , Proteômica , Proteômica/métodos , Proteoma/metabolismo , Íons
19.
Proc Natl Acad Sci U S A ; 120(1): e2211442120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574693

RESUMO

In this study, an aqueous nonlinear synaptic element showing plasticity behavior is developed, which is based on the chemical processes in an ionic diode. The device is simple, fully ionic, and easily configurable, requiring only two terminals-for input and output-similar to biological synapses. The key processes realizing the plasticity features are chemical precipitation and dissolution, which occur at forward- or reverse-biased ionic diode junctions in appropriate reservoir electrolytes. Given that the precipitate acts as a physical barrier in the circuit, the above processes change the diode conductivity, which can be interpreted as adjusting "synaptic weight" of the system. By varying the operating conditions, we first demonstrate the four types of plasticity that can be found in biological system: long-term potentiation/depression and short-term potentiation/depression. The plasticity of the proposed iontronic device has characteristics similar to those of neural synapses. To demonstrate its potential use in comparatively complex information processing, we develop a precipitation-based iontronic synapse (PIS) capable of both potentiation and depression. Finally, we show that the postsynaptic signals from the multiple excitatory or inhibitory PISs can be integrated into the total "dendritic" current, which is a function of time and input history, as in actual hippocampal neural circuits.


Assuntos
Hidrogéis , Plasticidade Neuronal , Solubilidade , Potenciação de Longa Duração , Sinapses , Íons , Precipitação Química
20.
Proc Natl Acad Sci U S A ; 120(26): e2220343120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339196

RESUMO

In bacterial voltage-gated sodium channels, the passage of ions through the pore is controlled by a selectivity filter (SF) composed of four glutamate residues. The mechanism of selectivity has been the subject of intense research, with suggested mechanisms based on steric effects, and ion-triggered conformational change. Here, we propose an alternative mechanism based on ion-triggered shifts in pKa values of SF glutamates. We study the NavMs channel for which the open channel structure is available. Our free-energy calculations based on molecular dynamics simulations suggest that pKa values of the four glutamates are higher in solution of K+ ions than in solution of Na+ ions. Higher pKa in the presence of K+ stems primarily from the higher population of dunked conformations of the protonated Glu sidechain, which exhibit a higher pKa shift. Since pKa values are close to the physiological pH, this results in predominant population of the fully deprotonated state of glutamates in Na+ solution, while protonated states are predominantly populated in K+ solution. Through molecular dynamics simulations we calculate that the deprotonated state is the most conductive, the singly protonated state is less conductive, and the doubly protonated state has significantly reduced conductance. Thus, we propose that a significant component of selectivity is achieved through ion-triggered shifts in the protonation state, which favors more conductive states for Na+ ions and less conductive states for K+ ions. This mechanism also suggests a strong pH dependence of selectivity, which has been experimentally observed in structurally similar NaChBac channels.


Assuntos
Bactérias , Canais de Sódio Disparados por Voltagem , Íons , Bactérias/metabolismo , Simulação de Dinâmica Molecular , Glutamatos , Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa