RESUMO
Systematic characterizations of adipose regulatory T (Treg) cell subsets and their phenotypes remain uncommon. Using single-cell ATAC-sequencing and paired single-cell RNA and T cell receptor (TCR) sequencing to map mouse adipose Treg cells, we identified CD73hiST2lo and CD73loST2hi subsets with distinct clonal expansion patterns. Analysis of TCR-sharing data implied a state transition between CD73hiST2lo and CD73loST2hi subsets. Mechanistically, we revealed that insulin signaling occurs through a HIF-1α-Med23-PPAR-γ axis to drive the transition of CD73hiST2lo into a CD73loST2hi adipose Treg cell subset. Treg cells deficient in insulin receptor, HIF-1α or Med23 have decreased PPAR-γ expression that in turn promotes accumulation of CD73hiST2lo adipose Treg cells and physiological adenosine production to activate beige fat biogenesis. We therefore unveiled a developmental trajectory of adipose Treg cells and its dependence on insulin signaling. Our findings have implications for understanding the dynamics of adipose Treg cell subsets in aged and obese contexts.
Assuntos
Tecido Adiposo/imunologia , Resistência à Insulina/imunologia , Insulina/metabolismo , Receptor de Insulina/metabolismo , Linfócitos T Reguladores/imunologia , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Tecido Adiposo/citologia , Envelhecimento/imunologia , Animais , Células Cultivadas , Sequenciamento de Nucleotídeos em Larga Escala , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Masculino , Complexo Mediador/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/imunologia , PPAR gama/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T Reguladores/citologiaRESUMO
Live regulatory T cells (Treg cells) suppress antitumor immunity, but how Treg cells behave in the metabolically abnormal tumor microenvironment remains unknown. Here we show that tumor Treg cells undergo apoptosis, and such apoptotic Treg cells abolish spontaneous and PD-L1-blockade-mediated antitumor T cell immunity. Biochemical and functional analyses show that adenosine, but not typical suppressive factors such as PD-L1, CTLA-4, TGF-ß, IL-35, and IL-10, contributes to apoptotic Treg-cell-mediated immunosuppression. Mechanistically, apoptotic Treg cells release and convert a large amount of ATP to adenosine via CD39 and CD73, and mediate immunosuppression via the adenosine and A2A pathways. Apoptosis in Treg cells is attributed to their weak NRF2-associated antioxidant system and high vulnerability to free oxygen species in the tumor microenvironment. Thus, the data support a model wherein tumor Treg cells sustain and amplify their suppressor capacity through inadvertent death via oxidative stress. This work highlights the oxidative pathway as a metabolic checkpoint that controls Treg cell behavior and affects the efficacy of therapeutics targeting cancer checkpoints.
Assuntos
Apoptose/imunologia , Antígeno B7-H1/metabolismo , Tolerância Imunológica/imunologia , Neoplasias Ovarianas/imunologia , Estresse Oxidativo/fisiologia , Linfócitos T Reguladores/imunologia , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Animais , Antígenos CD/metabolismo , Apirase/metabolismo , Antígeno CTLA-4/metabolismo , Feminino , Proteínas Ligadas por GPI/genética , Humanos , Interleucina-10/metabolismo , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Oxigênio/metabolismo , Receptor A2A de Adenosina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral/imunologiaRESUMO
As catabolic enzyme, CD73 dephosphorylates adenosine monophosphate (AMP) and can also regulate tumor cell proliferation and metastasis. To date, very few studies have explored the role of CD73 in mediating non-small cell lung cancer (NSCLC) metastasis, and the underlying transducing signal has not been elucidated. In the present study, we demonstrated that the CD73/Axl axis could regulate Smad3-induced epithelial-to-mesenchymal transition (EMT) to promote NSCLC metastasis. Mechanically, CD73 can be secreted via the Golgi apparatus transport pathway. Then secreted CD73 may activate AXl by directly bind with site R55 located in Axl extracellular domain independently of GAS6. In addition, we proved that CD73 can stabilize Axl expression via inhibiting CBLB expression. We also identified the distinct function of CD73 activity in adenocarcinoma and squamous cell carcinoma. Our findings indicated a role of CD73 in mediating NSCLC metastasis and propose it as a therapeutic target for NSCLC.
Assuntos
5'-Nucleotidase , Receptor Tirosina Quinase Axl , Carcinoma Pulmonar de Células não Pequenas , Transição Epitelial-Mesenquimal , Proteínas Ligadas por GPI , Peptídeos e Proteínas de Sinalização Intercelular , Neoplasias Pulmonares , Metástase Neoplásica , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Transdução de Sinais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , 5'-Nucleotidase/metabolismo , 5'-Nucleotidase/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Linhagem Celular Tumoral , Animais , Camundongos , Proteína Smad3/metabolismo , Proteína Smad3/genética , Regulação Neoplásica da Expressão GênicaRESUMO
ABSTRACT: Activated Notch signaling is highly prevalent in T-cell acute lymphoblastic leukemia (T-ALL), but pan-Notch inhibitors showed excessive toxicity in clinical trials. To find alternative ways to target Notch signals, we investigated cell division cycle 73 (Cdc73), which is a Notch cofactor and key component of the RNA polymerase-associated transcriptional machinery, an emerging target in T-ALL. Although we confirmed previous work that CDC73 interacts with NOTCH1, we also found that the interaction in T-ALL was context-dependent and facilitated by the transcription factor ETS1. Using mouse models, we showed that Cdc73 is important for Notch-induced T-cell development and T-ALL maintenance. Mechanistically, chromatin and nascent gene expression profiling showed that Cdc73 intersects with Ets1 and Notch at chromatin within enhancers to activate expression of known T-ALL oncogenes through its enhancer functions. Cdc73 also intersects with these factors within promoters to activate transcription of genes that are important for DNA repair and oxidative phosphorylation through its gene body functions. Consistently, Cdc73 deletion induced DNA damage and apoptosis and impaired mitochondrial function. The CDC73-induced DNA repair expression program co-opted by NOTCH1 is more highly expressed in T-ALL than in any other cancer. These data suggest that Cdc73 might induce a gene expression program that was eventually intersected and hijacked by oncogenic Notch to augment proliferation and mitigate the genotoxic and metabolic stresses of elevated Notch signaling. Our report supports studying factors such as CDC73 that intersect with Notch to derive a basic scientific understanding on how to combat Notch-dependent cancers without directly targeting the Notch complex.
Assuntos
5'-Nucleotidase , Leucemia de Células T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animais , Camundongos , Linhagem Celular Tumoral , Cromatina , Dano ao DNA/genética , Leucemia de Células T/genética , Leucemia de Células T/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Fatores de Transcrição/genética , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismoRESUMO
Purinergic signaling plays an important role in regulating bladder contractility and voiding. Abnormal purinergic signaling is associated with lower urinary tract symptoms (LUTS). Ecto-5'-nucleotidase (NT5E) catalyzes dephosphorylation of extracellular AMP to adenosine, which in turn promotes adenosine-A2b receptor signaling to relax bladder smooth muscle (BSM). The functional importance of this mechanism was investigated using Nt5e knockout (Nt5eKO) mice. Increased voiding frequency of small voids revealed by voiding spot assay was corroborated by urodynamic studies showing shortened voiding intervals and decreased bladder compliance. Myography indicated reduced contractility of Nt5eKO BSM. These data support a role for NT5E in regulating bladder function through modulation of BSM contraction and relaxation. However, the abnormal bladder phenotype of Nt5eKO mice is much milder than we previously reported in A2b receptor knockout (A2bKO) mice, suggesting compensatory response(s) in Nt5eKO mouse bladder. To better understand this compensatory mechanism, we analyzed changes in purinergic and other receptors controlling BSM contraction and relaxation in the Nt5eKO bladder. We found that the relative abundance of muscarinic CHRM3 (cholinergic receptor muscarinic 3), purinergic P2X1, and A2b receptors was unchanged, whereas P2Y12 receptor was significantly downregulated, suggesting a negative feedback response to elevated ADP signaling. Further studies of additional ecto-nucleotidases indicated significant upregulation of the nonspecific urothelial alkaline phosphatase ALPL, which might mitigate the degree of voiding dysfunction by compensating for Nt5e deletion. These data suggest a mechanistic complexity of the purinergic signaling network in bladder and imply a paracrine mechanism in which urothelium-released ATP and its rapidly produced metabolites coordinately regulate BSM contraction and relaxation.
Assuntos
5'-Nucleotidase , Bexiga Urinária , Animais , Camundongos , 5'-Nucleotidase/genética , Adenosina , Fosfatase Alcalina , Colinérgicos , Camundongos KnockoutRESUMO
Found in as many as 80% of women, uterine leiomyomas are a frequent cause of abnormal uterine bleeding, pelvic pain, and infertility. Despite their significant clinical impact, the mechanisms responsible for driving leiomyoma growth remain poorly understood. After obtaining IRB permission, expression of ecto-5'-nucleotidase (NT5E, CD73) was assessed in matched specimens of myometrium and leiomyoma by real-time qPCR, Western blot, and immunohistochemistry (IHC). Adenosine concentrations were measured by enzyme-linked assay. Primary cultures were used to assess the impact of adenosine and/or adenosine receptor agonists on proliferation, apoptosis, and patterns of intracellular signaling in vitro. When compared to matched specimens of healthy myometrium, uterine leiomyomas were characterized by reduced CD73 expression. Largely limited to thin-walled vascular structures and the pseudocapsule of leiomyomas despite diffuse myometrial distribution. Restricted intra-tumoral CD73 expression was accompanied by decreased levels of intra-tumoral adenosine. In vitro, incubation of primary leiomyoma cultures with adenosine or its hydrolysis-resistant analog 2-chloro-adenosine (2-CL-AD) inhibited proliferation, induced apoptosis, and reduced proportion of myocytes in S- and G2-M phases of the cell cycle. Decreased proliferation was accompanied by reduced expression of phospho-Akt, phospho-Cdk2-Tyr15, and phospho-Histone H3. Enforced expression of the A2B adenosine receptor (ADORA2B) and ADORA2B-selective agonists similarly suppressed proliferation and inhibited Akt phosphorylation. Collectively, these observations broadly implicate CD73 and reduced extracellular concentrations of adenosine as key regulators of leiomyoma growth and potentially identify novel strategies for clinically managing these common tumors.
Assuntos
5'-Nucleotidase , Proliferação de Células , Leiomioma , Proteínas Proto-Oncogênicas c-akt , Neoplasias Uterinas , Humanos , 5'-Nucleotidase/metabolismo , 5'-Nucleotidase/genética , Feminino , Leiomioma/metabolismo , Leiomioma/patologia , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Miométrio/metabolismo , Miométrio/patologia , Apoptose , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética , Adulto , Pessoa de Meia-Idade , Transdução de Sinais , Adenosina/análogos & derivados , Adenosina/metabolismoRESUMO
The zinc finger protein 804A (ZNF804A) and the 5'-nucleotidase cytosolic II (NT5C2) genes are amongst the first schizophrenia susceptibility genes to have been identified in large-scale genome-wide association studies. ZNF804A has been implicated in the regulation of neuronal morphology and is required for activity-dependent changes to dendritic spines. Conversely, NT5C2 has been shown to regulate 5' adenosine monophosphate-activated protein kinase activity and has been implicated in protein synthesis in human neural progenitor cells. Schizophrenia risk genotype is associated with reduced levels of both NT5C2 and ZNF804A in the developing brain, and a yeast two-hybrid screening suggests that their encoded proteins physically interact. However, it remains unknown whether this interaction also occurs in cortical neurons and whether they could jointly regulate neuronal function. Here, we show that ZNF804A and NT5C2 colocalise and interact in HEK293T cells and that their rodent homologues, ZFP804A and NT5C2, colocalise and form a protein complex in cortical neurons. Knockdown of the Zfp804a or Nt5c2 genes resulted in a redistribution of both proteins, suggesting that both proteins influence the subcellular targeting of each other. The identified interaction between ZNF804A/ZFP804A and NT5C2 suggests a shared biological pathway pertinent to schizophrenia susceptibility within a neuronal cell type thought to be central to the neurobiology of the disorder, providing a better understanding of its genetic landscape.
Assuntos
Esquizofrenia , Humanos , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Estudo de Associação Genômica Ampla , Células HEK293 , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Neurônios/fisiologia , Esquizofrenia/genética , Esquizofrenia/metabolismoRESUMO
CD8+ T cells play a crucial role against chronic viral infections, however, their effector functions are influenced by the expression of co-stimulatory/inhibitory receptors. For example, CD73 works with CD39 to convert highly inflammatory ATP to adenosine. However, its expression on T cells in the context of viral infections has not been well defined. Here, we analyzed the expression of CD73 on human T cells in a cohort of 102 HIV-infected individuals including those on antiretroviral therapy (ART), ART-naïve, and long-term non-progressors who were not on ART. We found that the frequency of CD73+ T cells was markedly lower among T cell subsets (e.g. naïve, effector or memory) in the peripheral blood of all HIV-infected individuals. Notably, CD73 was decreased at the cell surface, intracellular and gene levels. Functionally, CD8+CD73+ T cells exhibited decreased cytokine expression (TNF-α, IFN-γ and IL-2) upon global or antigen-specific stimulation and impaired expression of cytolytic molecules at the gene and protein levels. In contrast, CD8+CD73+ T cells expressed elevated levels of homing receptors such as CCR7, α4ß7 integrin, which suggests a migratory advantage for these cells as observed in vitro. We also observed significant migration of CD73+CD8+ T cells into the cerebrospinal fluids of multiple sclerosis (MS) patients at the time of disease relapse. Moreover, we found that elevated levels of ATP in the plasma of HIV-infected individuals upregulates the expression of miRNA30b-e in T cells in vitro. In turn, inhibition of miRNAs (30b, 30c and 30e) resulted in significant upregulation of CD73 mRNA in CD8+ T cells. Therefore, we provide a novel mechanism for the downregulation of CD73 via ATP-induced upregulation of miRNA30b, 30c and 30e in HIV infection. Finally, these observations imply that ATP-mediated downregulation of CD73 mainly occurs via its receptor, P2X1/P2RX1. Our results may in part explain why HIV-infected individuals have reduced risk of developing MS considering the role of CD73 for efficient T cell entry into the central nervous system.
Assuntos
5'-Nucleotidase , Infecções por HIV , MicroRNAs , 5'-Nucleotidase/genética , Trifosfato de Adenosina/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Proteínas Ligadas por GPI/genética , Infecções por HIV/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Subpopulações de Linfócitos TRESUMO
Pancreatitis is currently the leading cause of gastrointestinal hospitalizations in the US. This condition occurs in response to abdominal injury, gallstones, chronic alcohol consumption or, less frequently, the cause remains idiopathic. CD73 is a cell surface ecto-5'-nucleotidase that generates extracellular adenosine, which can contribute to resolution of inflammation by binding adenosine receptors on infiltrating immune cells. We hypothesized genetic deletion of CD73 would result in more severe pancreatitis due to decreased generation of extracellular adenosine. CD73 knockout (CD73-/- ) and C57BL/6 (wild type, WT) mice were used to evaluate the progression and response of caerulein-induced acute and chronic pancreatitis. In response to caerulein-mediated chronic or acute pancreatitis, WT mice display resolution of pancreatitis at earlier timepoints than CD73-/- mice. Using immunohistochemistry and analysis of single-cell RNA-seq (scRNA-seq) data, we determined CD73 localization in chronic pancreatitis is primarily observed in mucin/ductal cell populations and immune cells. In murine pancreata challenged with caerulein to induce acute pancreatitis, we compared CD73-/- to WT mice and observed a significant infiltration of Ly6G+, MPO+, and Granzyme B+ cells in CD73-/- compared to WT pancreata and we quantified a significant increase in acinar-to-ductal metaplasia demonstrating sustained metaplasia and inflammation in CD73-/- mice. Using neutrophil depletion in CD73-/- mice, we show neutrophil depletion significantly reduces metaplasia defined by CK19+ cells per field and significantly reduces acute pancreatitis. These data identify CD73 enhancers as a potential therapeutic strategy for patients with acute and chronic pancreatitis as adenosine generation and activation of adenosine receptors is critical to resolve persistent inflammation in the pancreas.
Assuntos
5'-Nucleotidase , Pancreatite Crônica , Camundongos , Animais , 5'-Nucleotidase/genética , Ceruletídeo/toxicidade , Adenosina , Neutrófilos , Doença Aguda , Camundongos Endogâmicos C57BL , Metaplasia , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/genética , InflamaçãoRESUMO
Over the years, the importance of the epithelium in the assessment of allergic sensitization and development of allergic diseases has increased. Sensitization to allergens appears to be influenced by genetic and external environmental factors. However, not all subjects exposed to environmental factors that damage epithelial cells suffer from allergic diseases. On this basis, identifying the signaling pathways that characterize the different phenotypes and endotypes of allergy is of high priority for a successful personalized therapy. Ecto-5'-nucleotidase/CD73 is a membrane-bound enzyme responsible for extracellular adenosine accumulation from AMP derived, in turn, from the hydrolysis of extracellular ATP. Current knowledge suggests that CD73 expression and enzymatic activity at epithelial barriers would be of fundamental importance to control the first defense against allergens, by preserving both physical and immunological epithelial barrier functions. Here, we highlight evidence for a crucial role of CD73 in features of allergic sensitization and the potential of this enzyme as prognostic marker and target of therapeutic intervention.
Assuntos
5'-Nucleotidase , Adenosina , Humanos , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Prognóstico , Adenosina/metabolismo , Monofosfato de AdenosinaRESUMO
BACKGROUND: Arterial calcification due to deficiency of CD73 (ACDC; OMIM 211800) is a rare genetic disease resulting in calcium deposits in arteries and small joints causing claudication, resting pain, severe joint pain, and deformities. Currently, there are no standard treatments for ACDC. Our previous work identified etidronate as a potential targeted ACDC treatment, using in vitro and in vivo disease models with patient-derived cells. In this study, we test the safety and effectiveness of etidronate in attenuating the progression of lower-extremity arterial calcification and vascular blood flow based on the computed tomography (CT) calcium score and ankle-brachial index (ABI). METHODS: Seven adult patients with a confirmed genetic diagnosis of ACDC were enrolled in an open-label, nonrandomized, single-arm pilot study for etidronate treatment. They took etidronate daily for 14 days every 3 months and were examined at the NIH Clinical Center bi-annually for 3 years. They received a baseline evaluation as well as yearly follow up after treatment. Study visits included imaging studies, exercise tolerance tests with ABIs, clinical blood and urine testing, and full dental exams. RESULTS: Etidronate treatment appeared to have slowed the progression of further vascular calcification in lower extremities as measured by CT but did not have an effect in reversing vascular and/or periarticular joint calcifications in our small ACDC cohort. CONCLUSIONS: Etidronate was found to be safe and well tolerated by our patients and, despite the small sample size, appeared to show an effect in slowing the progression of calcification in our ACDC patient cohort.(ClinicalTrials.gov Identifier NCT01585402).
Assuntos
5'-Nucleotidase , Ácido Etidrônico , Proteínas Ligadas por GPI , Calcificação Vascular , Humanos , Projetos Piloto , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/diagnóstico por imagem , Ácido Etidrônico/uso terapêutico , Ácido Etidrônico/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Resultado do Tratamento , 5'-Nucleotidase/genética , 5'-Nucleotidase/deficiência , Fatores de Tempo , Proteínas Ligadas por GPI/sangue , Índice Tornozelo-Braço , Adulto , Conservadores da Densidade Óssea/uso terapêutico , Conservadores da Densidade Óssea/efeitos adversos , Progressão da Doença , Doença Arterial Periférica/tratamento farmacológico , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/fisiopatologia , Idoso , Extremidade Inferior/irrigação sanguínea , Angiografia por Tomografia Computadorizada , Predisposição Genética para Doença , Fluxo Sanguíneo RegionalRESUMO
Relapsed acute lymphoblastic leukaemia (ALL) is associated with resistance to chemotherapy and poor prognosis. Gain-of-function mutations in the 5'-nucleotidase, cytosolic II (NT5C2) gene induce resistance to 6-mercaptopurine and are selectively present in relapsed ALL. Yet, the mechanisms involved in NT5C2 mutation-driven clonal evolution during the initiation of leukaemia, disease progression and relapse remain unknown. Here we use a conditional-and-inducible leukaemia model to demonstrate that expression of NT5C2(R367Q), a highly prevalent relapsed-ALL NT5C2 mutation, induces resistance to chemotherapy with 6-mercaptopurine at the cost of impaired leukaemia cell growth and leukaemia-initiating cell activity. The loss-of-fitness phenotype of NT5C2+/R367Q mutant cells is associated with excess export of purines to the extracellular space and depletion of the intracellular purine-nucleotide pool. Consequently, blocking guanosine synthesis by inhibition of inosine-5'-monophosphate dehydrogenase (IMPDH) induced increased cytotoxicity against NT5C2-mutant leukaemia lymphoblasts. These results identify the fitness cost of NT5C2 mutation and resistance to chemotherapy as key evolutionary drivers that shape clonal evolution in relapsed ALL and support a role for IMPDH inhibition in the treatment of ALL.
Assuntos
5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Evolução Clonal , Resistencia a Medicamentos Antineoplásicos/genética , Mutação/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Animais , Proliferação de Células , Modelos Animais de Doenças , Feminino , Mutação com Ganho de Função/genética , Guanosina/biossíntese , Células HEK293 , Humanos , IMP Desidrogenase/antagonistas & inibidores , IMP Desidrogenase/metabolismo , Masculino , Mercaptopurina/farmacologia , Mercaptopurina/uso terapêutico , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Purinas/metabolismo , Receptor Notch1/metabolismo , Recidiva , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The increasing number of patients with depressive disorder is a serious socioeconomic problem worldwide. Although several therapeutic agents have been developed and used clinically, their effectiveness is insufficient and thus discovery of novel therapeutic targets is desired. Here, focusing on dysregulation of neuronal purinergic signaling in depressive-like behavior, we examined the expression profiles of ATP channels and ectonucleotidases in astrocytes of cerebral cortex and hippocampus of chronic social defeat stress (CSDS)-susceptible BALB/c mice. Mice were exposed to 10-d CSDS, and their astrocytes were obtained using a commercially available kit based on magnetic activated cell sorting technology. In astrocytes derived from cerebral cortex of CSDS-susceptible mice, the expression levels of mRNAs for connexin 43, P2X7 receptors and maxi anion channels were increased, those for connexin 43 and P2X7 receptors being inversely correlated with mouse sociability, and the expression of mRNAs for ecto-nucleoside triphosphate diphosphohydrase 2 and ecto-5'nucleotidase was decreased and increased, respectively. On the other hand, the alteration profiles of ATP channels and ectonucleotidases in hippocampal astrocytes of CSDS-susceptible mice were different from in the case of cortical astrocytes, and there was no significant correlation between expression levels of their mRNAs and mouse sociability. These findings imply that increased expression of ATP channels in cerebral cortex might be involved in the development of reduced sociability in CSDS-subjected BALB/c mice. Together with recent findings, it is suggested that ATP channels expressed by cortical astrocytes might be potential therapeutic targets for depressive disorder.
Assuntos
Astrócitos , Córtex Cerebral , Hipocampo , Camundongos Endogâmicos BALB C , Derrota Social , Estresse Psicológico , Animais , Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Estresse Psicológico/metabolismo , Masculino , Camundongos , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Conexina 43/metabolismo , Conexina 43/genética , 5'-Nucleotidase/metabolismo , 5'-Nucleotidase/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genéticaRESUMO
Anticytotoxic T lymphocyte-associated protein 4 (CTLA4) antibodies have shown potent antitumor activity, but systemic immune activation leads to severe immune-related adverse events, limiting clinical usage. We developed novel, conditionally active biologic (CAB) anti-CTLA4 antibodies that are active only in the acidic tumor microenvironment. In healthy tissue, this binding is reversibly inhibited by a novel mechanism using physiological chemicals as protein-associated chemical switches (PaCS). No enzymes or potentially immunogenic covalent modifications to the antibody are required for activation in the tumor. The novel anti-CTLA4 antibodies show similar efficacy in animal models compared to an analog of a marketed anti-CTLA4 biologic, but have markedly reduced toxicity in nonhuman primates (in combination with an anti-PD1 checkpoint inhibitor), indicating a widened therapeutic index (TI). The PaCS encompass mechanisms that are applicable to a wide array of antibody formats (e.g., ADC, bispecifics) and antigens. Examples shown here include antibodies to EpCAM, Her2, Nectin4, CD73, and CD3. Existing antibodies can be engineered readily to be made sensitive to PaCS, and the inhibitory activity can be optimized for each antigen's varying expression level and tissue distribution. PaCS can modulate diverse physiological molecular interactions and are applicable to various pathologic conditions, enabling differential CAB antibody activities in normal versus disease microenvironments.
Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Antineoplásicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno CTLA-4/antagonistas & inibidores , Neoplasias do Colo/terapia , Imunoterapia/métodos , 5'-Nucleotidase/antagonistas & inibidores , 5'-Nucleotidase/genética , 5'-Nucleotidase/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais Humanizados/química , Anticorpos Antineoplásicos/química , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Bicarbonatos/química , Complexo CD3/antagonistas & inibidores , Complexo CD3/genética , Complexo CD3/imunologia , Antígeno CTLA-4/genética , Antígeno CTLA-4/imunologia , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Molécula de Adesão da Célula Epitelial/antagonistas & inibidores , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/imunologia , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Expressão Gênica , Humanos , Sulfeto de Hidrogênio/química , Concentração de Íons de Hidrogênio , Macaca fascicularis , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Engenharia de Proteínas/métodos , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Neuropathic pain (NPP) is a devastating and unbearable painful condition. As prevailing treatment strategies have failed to mitigate its complications, there remains a demand for effective therapies. Electroacupuncture (EA) has proved a potent remedial strategy in NPP management in humans and mammals. However, past studies have investigated the underlying mechanism of the analgesic effects of EA on NPP, focusing primarily on adenosine receptors in peripheral tissues. Herein, we elucidate the role of the adenosine (Adora-3) signaling pathway in mediating pain relief through EA in the central nervous system, which is obscure in the literature and needs exploration. Specific pathogen-free (SPF) male adult mice (C57BL/6 J) were utilized to investigate the effect of EA on adenosine metabolism (CD73, ADA) and its receptor activation (Adora-3), as potential mechanisms to mitigate NPP in the central nervous system. NPP was induced via spared nerve injury (SNI). EA treatment was administered seven times post-SNI surgery, and lumber (L4-L6) spinal cord was collected to determine the molecular expression of mRNA and protein levels. In the spinal cord of mice, following EA application, the expression results revealed that EA upregulated (p < 0.05) Adora-3 and CD73 by inhibiting ADA expression. In addition, EA triggered the release of adenosine (ADO), which modulated the nociceptive responses and enhanced neuronal activation. Meanwhile, the interplay between ADO levels and EA-induced antinociception, using an Adora-3 agonist and antagonist, showed that the Adora-3 agonist IB-MECA significantly increased (p < 0.05) nociceptive thresholds and expression levels. In contrast, the antagonist MRS1523 exacerbated neuropathic pain. Furthermore, an upregulated effect of EA on Adora-3 expression was inferred when the Adora-3 antagonist was administered, and the EA treatment increased the fluorescent intensity of Adora-3 in the spinal cord. Taken together, EA effectively modulates NPP by regulating the Adora-3 signaling pathway under induced pain conditions. These findings enhance our understanding of NPP management and offer potential avenues for innovative therapeutic interventions.
Assuntos
Eletroacupuntura , Neuralgia , Receptor A3 de Adenosina , Corno Dorsal da Medula Espinal , Animais , Eletroacupuntura/métodos , Neuralgia/terapia , Neuralgia/metabolismo , Camundongos , Masculino , Receptor A3 de Adenosina/metabolismo , Receptor A3 de Adenosina/genética , Corno Dorsal da Medula Espinal/metabolismo , Camundongos Endogâmicos C57BL , 5'-Nucleotidase/metabolismo , 5'-Nucleotidase/genética , Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Transdução de Sinais , Modelos Animais de DoençasRESUMO
6-Mercaptopurine (6-MP) is a key component in maintenance therapy for childhood acute lymphoblastic leukemia (ALL). Recent next-generation sequencing analysis of childhood ALL clarified the emergence of the relapse-specific mutations of the NT5C2 and PRPS1 genes, which are involved in thiopurine metabolism. In this scenario, minor clones of leukemia cells could acquire the 6-MP-resistant phenotype as a result of the NT5C2 or PRPS1 mutation during chemotherapy (including 6-MP treatment) and confer disease relapse after selective expansion. Thus, to establish new therapeutic modalities overcoming 6-MP resistance in relapsed ALL, human leukemia models with NT5C2 and PRPS1 mutations in the intrinsic genes are urgently required. Here, mimicking the initiation process of the above clinical course, we sought to induce two relapse-specific hotspot mutations (R39Q mutation of the NT5C2 gene and S103N mutation of the PRPS1 gene) into a human lymphoid leukemia cell line by homologous recombination (HR) using the CRISPR/Cas9 system. After 6-MP selection of the cells transfected with Cas9 combined with single-guide RNA and donor DNA templates specific for either of those two mutations, we obtained the sublines with the intended NT5C2-R39Q and PRPS1-S103N mutation as a result of HR. Moreover, diverse in-frame small insertion/deletions were also confirmed in the 6-MP-resistant sublines at the target sites of the NT5C2 and PRPS1 genes as a result of nonhomologous end joining. These sublines are useful for molecular pharmacological evaluation of the NT5C2 and PRPS1 gene mutations in the 6-MP sensitivity and development of therapy overcoming the thiopurine resistance of leukemia cells. SIGNIFICANCE STATEMENT: Mimicking the initiation process of relapse-specific mutations of the NT5C2 and PRPS1 genes in childhood acute lymphoblastic leukemia treated with 6-mercaptopurine (6-MP), this study sought to introduce NT5C2-R39Q and PRPS1-S103N mutations into a human lymphoid leukemia cell line by homologous recombination using the CRISPR/Cas9 system. In the resultant 6-MP-resistant sublines, the intended mutations and diverse in-frame small insertions/deletions were confirmed, indicating that the obtained sublines are useful for molecular pharmacological evaluation of the NT5C2 and PRPS1 gene mutations.
Assuntos
Mercaptopurina , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Mercaptopurina/farmacologia , Sistemas CRISPR-Cas/genética , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Recidiva , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , 5'-Nucleotidase/uso terapêutico , Ribose-Fosfato Pirofosfoquinase/genética , Ribose-Fosfato Pirofosfoquinase/metabolismoRESUMO
Extracellular hydrolysis of flavin-adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to riboflavin is thought to be important for cellular uptake of vitamin B2 because FAD and FMN are hydrophilic and do not pass the plasma membrane. However, it is not clear whether FAD and FMN are hydrolyzed by cell surface enzymes for vitamin B2 uptake. Here, we show that in human cells, FAD, a major form of vitamin B2 in plasma, is hydrolyzed by CD73 (also called ecto-5' nucleotidase) to FMN. Then, FMN is hydrolyzed by alkaline phosphatase to riboflavin, which is efficiently imported into cells. We determined that this two-step hydrolysis process is impaired on the surface of glycosylphosphatidylinositol (GPI)-deficient cells due to the lack of these GPI-anchored enzymes. During culture of GPI-deficient cells with FAD or FMN, we found that hydrolysis of these forms of vitamin B2 was impaired, and intracellular levels of vitamin B2 were significantly decreased compared with those in GPI-restored cells, leading to decreased formation of vitamin B2-dependent pyridoxal 5'-phosphate and mitochondrial dysfunction. Collectively, these results suggest that inefficient uptake of vitamin B2 might account for mitochondrial dysfunction seen in some cases of inherited GPI deficiency.
Assuntos
Flavina-Adenina Dinucleotídeo , Riboflavina , Humanos , Flavina-Adenina Dinucleotídeo/metabolismo , Fosfatase Alcalina , 5'-Nucleotidase/genética , Mononucleotídeo de Flavina/metabolismo , Hidrólise , VitaminasRESUMO
The prognosis of systemic lupus erythematosus (SLE) is unpredictable. This study aimed to examine the regulatory mechanism of the AHR/TET2/NT5E pathway during SLE progression. The AHR, TET2 and NT5E expression levels were examined in T regulatory cells (Tregs) of patients with SLE. The correlation of AHR, TET2 or NT5E expression levels with the immunosuppressive functions of Tregs was analysed. In patients with SLE, the number of CD4+ IL2RA- FOXP3+ T cell subset was positively correlated with the SLE disease activity index value and negatively correlated with the AHR and TET2 expression levels in CD4+ IL2RA+ FOXP3+ Tregs. Transcriptional profiles of 79 patients with SLE obtained from the Gene Expression Omnibus database (GSE61635 dataset) revealed a significant positive correlation between the mRNA expression levels of AHR and TET2. In silico analysis predicted that the TET2 promoter comprises an AHR-binding site. Kynurenine (KYN) promoted the binding of AHR to the TET2 promoter in Tregs of patients with SLE and Jurkat T cell lines. Furthermore, NT5E expression was significantly downregulated in Tregs of patients with SLE, which can be attributed to the dysregulation of NT5E promoter methylation status induced by downregulated TET2 activity. Furthermore, the Treg immunosuppressive activity, which is mediated through the TET2 and A2AR-adenosine pathways, in the KYN-treated group was approximately two-fold higher than that in the control group. The AHR/TET2/NT5E axis mediates the Treg immunosuppressive activity. These findings provide novel insights for the development of therapeutic approaches for SLE and related autoimmune diseases.
Assuntos
Dioxigenases , Lúpus Eritematoso Sistêmico , Humanos , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Fatores de Transcrição Forkhead/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Subpopulações de Linfócitos T , Linfócitos T ReguladoresRESUMO
The human epidermal melanocyte (hEM) are melanin-producing cells that provide skin pigmentation and protection against ultraviolet radiation. Although purinergic signaling is involved in skin biology and pathology, the presence of NTPDase members, as well as the rate of nucleotides degradation by melanocytes were not described yet. Therefore, in this study, we analyzed the expression of ectonucleotidases in hEM derived from discarded foreskin of male patients. The expression of purinergic enzymes was confirmed by mRNA and flow cytometry. Among the ectonucleotidases, ectonucleoside triphosphate diphosphohydrolase1 (NTPDase1) and ecto-5´-nucleotidase were the ectoenzymes with higher expressions. The hydrolysis rate for ATP, ADP, and AMP was low in comparison to other primary cells already investigated. The amount of ATP in the culture medium was increased after a scratch wound and decreased to basal levels in 48 h, while the NTPDase1 and P2X7 expressions increased. Therefore, it is possible to suggest that after cell injury, the ATP released by hEM into the extracellular space will be hydrolyzed by ectonucleotidases as the NTPDase1 that will control the levels of nucleotides in the skin micro-environment.
Assuntos
Nucleotídeos , Raios Ultravioleta , Humanos , Masculino , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Melanócitos/metabolismo , Pele/metabolismo , Trifosfato de Adenosina/metabolismoRESUMO
BACKGROUND: Epithelial-to-mesenchymal transition (EMT) of malignant cells is a driving force of disease progression in human papillomavirus-negative (HPV-negative) head and neck squamous cell carcinomas (HNSCC). Sustained hyper-activation of epidermal growth factor receptor (EGFR) induces an invasion-promoting subtype of EMT (EGFR-EMT) characterized by a gene signature ("'EGFR-EMT_Signature'") comprising 5´-ectonucleotidase CD73. Generally, CD73 promotes immune evasion via adenosine (ADO) formation and associates with EMT and metastases. However, CD73 regulation through EGFR signaling remains under-explored and targeting options are amiss. METHODS: CD73 functions in EGFR-mediated tumor cell dissemination were addressed in 2D and 3D cellular models of migration and invasion. The novel antagonizing antibody 22E6 and therapeutic antibody Cetuximab served as inhibitors of CD73 and EGFR, respectively, in combinatorial treatment. Specificity for CD73 and its role as effector or regulator of EGFR-EMT were assessed upon CD73 knock-down and over-expression. CD73 correlation to tumor budding was studied in an in-house primary HNSCC cohort. Expression correlations, and prognostic and predictive values were analyzed using machine learning-based algorithms and Kaplan-Meier survival curves in single cell and bulk RNA sequencing datasets. RESULTS: CD73/NT5E is induced by the EGF/EGFR-EMT-axis and blocked by Cetuximab and MEK inhibitor. Inhibition of CD73 with the novel antagonizing antibody 22E6 specifically repressed EGFR-dependent migration and invasion of HNSCC cells in 2D. Cetuximab and 22E6 alone reduced local invasion in a 3D-model. Interestingly, combining inefficient low-dose concentrations of Cetuximab and 22E6 revealed highly potent in invasion inhibition, substantially reducing the functional IC50 of Cetuximab regarding local invasion. A role for CD73 as an effector of EGFR-EMT in local invasion was further supported by knock-down and over-expression experiments in vitro and by high expression in malignant cells budding from primary tumors. CD73 expression correlated with EGFR pathway activity, EMT, and partial EMT (p-EMT) in malignant single HNSCC cells and in large patient cohorts. Contrary to published data, CD73 was not a prognostic marker of overall survival (OS) in the TCGA-HNSCC cohort when patients were stratified for HPV-status. However, CD73 prognosticated OS of oral cavity carcinomas. Furthermore, CD73 expression levels correlated with response to Cetuximab in HPV-negative advanced, metastasized HNSCC patients. CONCLUSIONS: In sum, CD73 is an effector of EGF/EGFR-mediated local invasion and a potential therapeutic target and candidate predictive marker for advanced HPV-negative HNSCC.