Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.983
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 610, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956593

RESUMO

Fibrosis is the aberrant process of connective tissue deposition from abnormal tissue repair in response to sustained tissue injury caused by hypoxia, infection, or physical damage. It can affect almost all organs in the body causing dysfunction and ultimate organ failure. Tissue fibrosis also plays a vital role in carcinogenesis and cancer progression. The early and accurate diagnosis of organ fibrosis along with adequate surveillance are helpful to implement early disease-modifying interventions, important to reduce mortality and improve quality of life. While extensive research has already been carried out on the topic, a thorough understanding of how this relationship reveals itself using modern imaging techniques has yet to be established. This work outlines the ways in which fibrosis shows up in abdominal organs and has listed the most relevant imaging technologies employed for its detection. New imaging technologies and developments are discussed along with their promising applications in the early detection of organ fibrosis.


Assuntos
Abdome , Fibrose , Humanos , Abdome/diagnóstico por imagem , Abdome/patologia
2.
Magn Reson Med ; 91(5): 2153-2161, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38193310

RESUMO

PURPOSE: Improving the quality and maintaining the fidelity of large coverage abdominal hyperpolarized (HP) 13 C MRI studies with a patch based global-local higher-order singular value decomposition (GL-HOVSD) spatiotemporal denoising approach. METHODS: Denoising performance was first evaluated using the simulated [1-13 C]pyruvate dynamics at different noise levels to determine optimal kglobal and klocal parameters. The GL-HOSVD spatiotemporal denoising method with the optimized parameters was then applied to two HP [1-13 C]pyruvate EPI abdominal human cohorts (n = 7 healthy volunteers and n = 8 pancreatic cancer patients). RESULTS: The parameterization of kglobal = 0.2 and klocal = 0.9 denoises abdominal HP data while retaining image fidelity when evaluated by RMSE. The kPX (conversion rate of pyruvate-to-metabolite, X = lactate or alanine) difference was shown to be <20% with respect to ground-truth metabolic conversion rates when there is adequate SNR (SNRAUC > 5) for downstream metabolites. In both human cohorts, there was a greater than nine-fold gain in peak [1-13 C]pyruvate, [1-13 C]lactate, and [1-13 C]alanine apparent SNRAUC . The improvement in metabolite SNR enabled a more robust quantification of kPL and kPA . After denoising, we observed a 2.1 ± 0.4 and 4.8 ± 2.5-fold increase in the number of voxels reliably fit across abdominal FOVs for kPL and kPA quantification maps. CONCLUSION: Spatiotemporal denoising greatly improves visualization of low SNR metabolites particularly [1-13 C]alanine and quantification of [1-13 C]pyruvate metabolism in large FOV HP 13 C MRI studies of the human abdomen.


Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico , Humanos , Ácido Pirúvico/metabolismo , Abdome/diagnóstico por imagem , Lactatos , Alanina , Isótopos de Carbono/metabolismo
3.
Magn Reson Med ; 92(4): 1670-1682, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38703021

RESUMO

PURPOSE: This study aims to investigate a multiparametric exchange proton approach using CEST and Z-spectrum analysis protons (ZAP) in human abdominal organs, focusing on tissue differentiation for a potential early biomarker of abnormality. Prior to human studies, CEST and ZAP effects were studied in phantoms containing exchange protons. METHODS: Phantoms composed of iopamidol and iohexol solutions with varying pH levels, along with 12 human subjects, were scanned on a clinical 3T MR scanner. Subsequent ZAP analyses employed a two-Lorentzian pool model to provide free and restricted apparent T 2 f , r ex $$ {\mathrm{T}}_{2\ \mathrm{f},\mathrm{r}}^{\mathrm{ex}} $$ , and their fractions for data acquired across a wide range of offset frequencies (±100 kHz or ± 800 ppm), while a narrower range (±7 ppm or ± 900 Hz) was used for CEST analysis to estimate magnetization transfer ratio asymmetry (MTRAsym) for exchange protons like hydroxyl (-OH), amine (-NH2), and amide (-NH), resonating ˜1, 2, and 3.5 ppm, respectively. Differences in ZAP metrics across various organs were statistically analyzed using one-way analysis of variance (ANOVA). RESULTS: The phantom study differentiated contrast agents based on resonance peaks detected from CEST analysis, while ZAP metrics showed sensitivity to pH variations. In human, ZAP metrics revealed significant differences in abdominal organs, with a subgroup study indicating changes in ZAP metrics due to the presence of gallstones. CONCLUSION: CEST and ZAP techniques demonstrated promise in specific CEST protons and wide range ZAP protons and identifying tissue-specific characteristics. The preliminary findings underscore the necessity for more extensive study involving a broader subject pool to potentially establish biomarkers for diseased states.


Assuntos
Abdome , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Prótons , Humanos , Imageamento por Ressonância Magnética/métodos , Abdome/diagnóstico por imagem , Masculino , Adulto , Feminino , Concentração de Íons de Hidrogênio , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Adulto Jovem , Meios de Contraste/química
4.
Magn Reson Med ; 92(2): 586-604, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38688875

RESUMO

PURPOSE: Abdominal imaging is frequently performed with breath holds or respiratory triggering to reduce the effects of respiratory motion. Diffusion weighted sequences provide a useful clinical contrast but have prolonged scan times due to low signal-to-noise ratio (SNR), and cannot be completed in a single breath hold. Echo-planar imaging (EPI) is the most commonly used trajectory for diffusion weighted imaging but it is susceptible to off-resonance artifacts. A respiratory resolved, three-dimensional (3D) diffusion prepared sequence that obtains distortionless diffusion weighted images during free-breathing is presented. Techniques to address the myriad of challenges including: 3D shot-to-shot phase correction, respiratory binning, diffusion encoding during free-breathing, and robustness to off-resonance are described. METHODS: A twice-refocused, M1-nulled diffusion preparation was combined with an RF-spoiled gradient echo readout and respiratory resolved reconstruction to obtain free-breathing diffusion weighted images in the abdomen. Cartesian sampling permits a sampling density that enables 3D shot-to-shot phase navigation and reduction of transient fat artifacts. Theoretical properties of a region-based shot rejection are described. The region-based shot rejection method was evaluated with free-breathing (normal and exaggerated breathing), and respiratory triggering. The proposed sequence was compared in vivo with multishot DW-EPI. RESULTS: The proposed sequence exhibits no evident distortion in vivo when compared to multishot DW-EPI, robustness to B0 and B1 field inhomogeneities, and robustness to motion from different respiratory patterns. CONCLUSION: Acquisition of distortionless, diffusion weighted images is feasible during free-breathing with a b-value of 500 s/mm2, scan time of 6 min, and a clinically viable reconstruction time.


Assuntos
Abdome , Artefatos , Imagem de Difusão por Ressonância Magnética , Imageamento Tridimensional , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Abdome/diagnóstico por imagem , Imageamento Tridimensional/métodos , Respiração , Algoritmos , Razão Sinal-Ruído , Reprodutibilidade dos Testes , Interpretação de Imagem Assistida por Computador/métodos
5.
Magn Reson Med ; 92(2): 519-531, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38623901

RESUMO

PURPOSE: Diffusion-weighted (DW) imaging provides a useful clinical contrast, but is susceptible to motion-induced dephasing caused by the application of strong diffusion gradients. Phase navigators are commonly used to resolve shot-to-shot motion-induced phase in multishot reconstructions, but poor phase estimates result in signal dropout and Apparent Diffusion Coefficient (ADC) overestimation. These artifacts are prominent in the abdomen, a region prone to involuntary cardiac and respiratory motion. To improve the robustness of DW imaging in the abdomen, region-based shot rejection schemes that selectively weight regions where the shot-to-shot phase is poorly estimated were evaluated. METHODS: Spatially varying weights for each shot, reflecting both the accuracy of the estimated phase and the degree of subvoxel dephasing, were estimated from the phase navigator magnitude images. The weighting was integrated into a multishot reconstruction using different formulations and phase navigator resolutions and tested with different phase navigator resolutions in multishot DW-echo Planar Imaging acquisitions of the liver and pancreas, using conventional monopolar and velocity-compensated diffusion encoding. Reconstructed images and ADC estimates were compared qualitatively. RESULTS: The proposed region-based shot rejection reduces banding and signal dropout artifacts caused by physiological motion in the liver and pancreas. Shot rejection allows conventional monopolar diffusion encoding to achieve median ADCs in the pancreas comparable to motion-compensated diffusion encoding, albeit with a greater spread of ADCs. CONCLUSION: Region-based shot rejection is a linear reconstruction that improves the motion robustness of multi-shot DWI and requires no sequence modifications.


Assuntos
Abdome , Algoritmos , Artefatos , Imagem de Difusão por Ressonância Magnética , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Abdome/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Pâncreas/diagnóstico por imagem , Fígado/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Movimento (Física) , Imagem Ecoplanar/métodos , Aumento da Imagem/métodos , Adulto
6.
J Anat ; 245(1): 84-96, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38419134

RESUMO

The vertebral column, a defining trait of all vertebrates, is organized as a concatenated chain of vertebrae, and therefore its support to the body depends on individual vertebral morphology. Consequently, studying the morphology of the vertebral centrum is of anatomical and clinical importance. Grass carp (GC) is a member of the infraclass Teleostei (teleost fish), which accounts for the majority of all vertebrate species; thus, its vertebral anatomical structure can help us understand vertebrate development and vertebral morphology. In this study, we have investigated the morphology and symmetry of the grass carp vertebral centrum using high-resolution micro-CT scans. To this end, three abdominal vertebrae (V9, V10, & V11) from eight grass carp were micro-CT scanned and then segmented using Dragonfly (ORS Inc.). Grass carp vertebral centrum conformed to the basic teleost pattern and demonstrated an amphicoelous shape (biconcave hourglass). The centrum's cranial endplate was smaller, less circular, and shallower compared to the caudal endplate. While the vertebral centrum demonstrated bilateral symmetry along the sagittal plane (left/right), the centrum focus was shifted dorsally and cranially, breaking dorsoventral and craniocaudal symmetry. The sum of these findings implies that the caudal aspect of grass carp vertebral centrum is bigger and more robust. Currently, we have no information whether this is due to nature, for example, differences in gene expression, or nurture, for example, environmental effect. As the vertebral parapophyses and spinous processes are slanted caudally, the direction of muscle action during swimming may create a gradient of stresses from cranial to caudal, resulting in a more robust caudal aspect of the vertebral centrum. Expanding our study to include additional quadrupedal and bipedal (i.e., human) vertebrae, as well as testing if these morphological aspects of the vertebrae are indeed plastic and can be affected by environmental factors (i.e., temperature or other stressors) may help answer this question.


Assuntos
Carpas , Microtomografia por Raio-X , Animais , Carpas/anatomia & histologia , Microtomografia por Raio-X/métodos , Corpo Vertebral/diagnóstico por imagem , Corpo Vertebral/anatomia & histologia , Abdome/anatomia & histologia , Abdome/diagnóstico por imagem
7.
NMR Biomed ; 37(1): e5032, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37654051

RESUMO

Parallel transmit MRI at 7 T has increasingly been adopted in research projects and provides increased signal-to-noise ratios and novel contrasts. However, the interactions of fields in the body need to be carefully considered to ensure safe scanning. Recent advances in physically flexible body coils have allowed for high-field abdominal imaging, but the effects of increased variability on energy deposition need further exploration. The aim of this study was to assess the impact of subject geometry, respiration phase and coil positioning on the specific absorption rate (SAR). Ten healthy subjects (body mass index [BMI] = 25 ± 5 kg m-2 ) were scanned (at 3 T) during exhale breath-hold and images used to generate body models. Seven of these subjects were also scanned during inhale. Simplifications of the coil and body models were first explored, and then finite-difference time-domain simulations were run with a typical eight-channel parallel transmit coil positioned over the abdomen. Simulations were used to generate 10 g averaged SAR (SAR10g ) maps across 100,000 phase settings, and the worst-case scenario 10 g averaged SAR (wocSAR10g ) was identified using trigonometric maximisation. The average maximum SAR10g across the 10 subjects with 1 W input power per channel was 1.77 W kg-1 . Hotspots were always close to the body surface near the muscle wall boundary. The wocSAR10g across the 10 subjects ranged from 2.3 to 3.2 W kg-1 and was inversely correlated to fat volume percentage (R = 8) and BMI (R = 0.6). The coefficient of variation values in SAR10g due to variations in subject geometry, respiration phase and realistic coil repositioning were 12%, 4% and 12%, respectively. This study found that the variability due to realistic coil repositioning was similar to the variability due to differing healthy subject geometries for abdominal imaging. This is important as it suggests that population-based modelling is likely to be more useful than individual modelling in setting safe thresholds for abdominal imaging.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Humanos , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Abdome/diagnóstico por imagem , Respiração
8.
NMR Biomed ; 37(8): e5134, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38459747

RESUMO

Free-breathing abdominal chemical exchange saturation transfer (CEST) has great potential for clinical application, but its technical implementation remains challenging. This study aimed to propose and evaluate a free-breathing abdominal CEST sequence. The proposed sequence employed respiratory gating (ResGat) to synchronize the data acquisition with respiratory motion and performed a water presaturation module before the CEST saturation to abolish the influence of respiration-induced repetition time variation. In vivo experiments were performed to compare different respiratory motion-control strategies and B0 offset correction methods, and to evaluate the effectiveness and necessity of the quasi-steady-state (QUASS) approach for correcting the influence of the water presaturation module on CEST signal. ResGat with a target expiratory phase of 0.5 resulted in a higher structural similarity index and a lower coefficient of variation on consecutively acquired CEST S0 images than breath-holding (BH) and respiratory triggering (all p < 0.05). B0 maps derived from the abdominal CEST dataset itself were more stable for B0 correction, compared with the separately acquired B0 maps by a dual-echo time scan and B0 maps derived from the water saturation shift referencing approach. Compared with BH, ResGat yielded more homogeneous magnetization transfer ratio asymmetry maps at 3.5 ppm (standard deviation: 3.96% vs. 3.19%, p = 0.036) and a lower mean squared difference between scan and rescan (27.52‱ vs. 16.82‱, p = 0.004). The QUASS approach could correct the water presaturation-induced CEST signal change, but its necessity for in vivo scanning needs further verification. The proposed free-breathing abdominal CEST sequence using ResGat had an acquisition efficiency of approximately four times that using BH. In conclusion, the proposed free-breathing abdominal CEST sequence using ResGat and water presaturation has a higher acquisition efficiency and image quality than abdominal CEST using BH.


Assuntos
Abdome , Imageamento por Ressonância Magnética , Respiração , Técnicas de Imagem de Sincronização Respiratória , Água , Abdome/diagnóstico por imagem , Humanos , Água/química , Técnicas de Imagem de Sincronização Respiratória/métodos , Masculino , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino
9.
J Gen Intern Med ; 39(10): 1803-1810, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38609706

RESUMO

BACKGROUND: The worldwide COVID-19 pandemic has initiated a change in medical education and the development of new teaching concepts has become inevitable to maintain adequate training. OBJECTIVE: This pilot study aims to compare teledidactic teaching with traditional face-to-face teaching for abdominal, thoracic, and thyroid ultrasound. DESIGN: Concurrently, a teledidactic and a face-to-face ultrasound course were held. The students completed seven 90-min modules using mobile ultrasound probes (Butterfly IQ). Each module consisted of a lecture, a demonstration of probe guidance, and independent training. PARTICIPANTS: A total of thirty medical students took part in the study and were randomly assigned to a teledidactic and a face-to-face group. MAIN MEASURES: An objective structured assessment of ultrasound skills (OSAUS) was performed as a pre-test and as the final exam and ultrasound images obtained during the exam were evaluated using the brightness mode quality ultrasound imaging examination (B-QUIET) scale. KEY RESULTS: No significant difference between the two cohorts on the OSAUS final exam was shown (p > 0.05 in all modules). There was a significant difference in the assessment of the images in the focused assessment with sonography for trauma (FAST) (p 0.015) and aorta (p 0.017) modules. Students in the teledidactic group performed better in both modules, scoring 33.59 (± 2.61) out of 44 in the module FAST (face-to-face group 30.95 (± 1.76)) and aortic images averaged 35.41 (± 2.61) points (face-to-face group 32.35 (± 3.08)). CONCLUSIONS: A teledidactic course for abdominal and thoracic ultrasound examinations is equally effective to traditional face-to-face teaching in this pilot study. Digital implementation with a portable ultrasound machine could be a great opportunity to promote ultrasound education worldwide and over great distances.


Assuntos
COVID-19 , Ultrassonografia , Humanos , Projetos Piloto , Ultrassonografia/métodos , COVID-19/diagnóstico por imagem , Masculino , Glândula Tireoide/diagnóstico por imagem , Feminino , Abdome/diagnóstico por imagem , Educação a Distância/métodos , Competência Clínica , Adulto , Tórax/diagnóstico por imagem , Educação Médica/métodos
10.
Calcif Tissue Int ; 114(5): 468-479, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38530406

RESUMO

This study evaluated the performance of a vertebral fracture detection algorithm (HealthVCF) in a real-life setting and assessed the impact on treatment and diagnostic workflow. HealthVCF was used to identify moderate and severe vertebral compression fractures (VCF) at a Danish hospital. Around 10,000 CT scans were processed by the HealthVCF and CT scans positive for VCF formed both the baseline and 6-months follow-up cohort. To determine performance of the algorithm 1000 CT scans were evaluated by specialized radiographers to determine performance of the algorithm. Sensitivity was 0.68 (CI 0.581-0.776) and specificity 0.91 (CI 0.89-0.928). At 6-months follow-up, 18% of the 538 patients in the retrospective cohort were dead, 78 patients had been referred for a DXA scan, while 25 patients had been diagnosed with osteoporosis. A higher mortality rate was seen in patients not known with osteoporosis at baseline compared to patients known with osteoporosis at baseline, 12.8% versus 22.6% (p = 0.003). Patients receiving bisphosphonates had a lower mortality rate (9.6%) compared to the rest of the population (20.9%) (p = 0.003). HealthVCF demonstrated a poorer performance than expected, and the tested version is not generalizable to the Danish population. Based on its specificity, the HealthVCF can be used as a tool to prioritize resources in opportunistic identification of VCF's. Implementing such a tool on its own only resulted in a small number of new diagnoses of osteoporosis and referrals to DXA scans during a 6-month follow-up period. To increase efficiency, the HealthVCF should be integrated with Fracture Liaison Services (FLS).


Assuntos
Algoritmos , Fraturas por Compressão , Fraturas da Coluna Vertebral , Tomografia Computadorizada por Raios X , Humanos , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas por Compressão/diagnóstico por imagem , Feminino , Masculino , Idoso , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Osteoporose/complicações , Osteoporose/diagnóstico por imagem , Abdome/diagnóstico por imagem
11.
J Magn Reson Imaging ; 59(4): 1170-1178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37334872

RESUMO

BACKGROUND: Simultaneous multi-slice diffusion-weighted imaging (SMS-DWI) can shorten acquisition time in abdominal imaging. PURPOSE: To investigate the agreement and reproducibility of apparent diffusion coefficient (ADC) from abdominal SMS-DWI acquired with different vendors and different breathing schemes. STUDY TYPE: Prospective. SUBJECTS: Twenty volunteers and 10 patients. FIELD STRENGTH/SEQUENCE: 3.0 T, SMS-DWI with a diffusion-weighted echo-planar imaging sequence. ASSESSMENT: SMS-DWI was acquired using breath-hold and free-breathing techniques in scanners from two vendors, yielding four scans in each participant. Average ADC values were measured in the liver, pancreas, spleen, and both kidneys. Non-normalized ADC and ADCs normalized to the spleen were compared between vendors and breathing schemes. STATISTICAL TESTS: Paired t-test or Wilcoxon signed rank test; intraclass correlation coefficient (ICC); Bland-Altman method; coefficient of variation (CV) analysis; significance level: P < 0.05. RESULTS: Non-normalized ADCs from the four SMS-DWI scans did not differ significantly in the spleen (P = 0.262, 0.330, 0.166, 0.122), right kidney (P = 0.167, 0.538, 0.957, 0.086), and left kidney (P = 0.182, 0.281, 0.504, 0.405), but there were significant differences in the liver and pancreas. For normalized ADCs, there were no significant differences in the liver (P = 0.315, 0.915, 0.198, 0.799), spleen (P = 0.815, 0.689, 0.347, 0.423), pancreas (P = 0.165, 0.336, 0.304, 0.584), right kidney (P = 0.165, 0.336, 0.304, 0.584), and left kidney (P = 0.496, 0.304, 0.443, 0.371). Inter-reader agreements of non-normalized ADCs were good to excellent (ICCs ranged from 0.861 to 0.983), and agreement and reproducibility were good to excellent depending on anatomic location (CVs ranged from 3.55% to 13.98%). Overall CVs for abdominal ADCs from the four scans were 6.25%, 7.62%, 7.08, and 7.60%. DATA CONCLUSION: The normalized ADCs from abdominal SMS-DWI may be comparable between different vendors and breathing schemes, showing good agreement and reproducibility. ADC changes above approximately 8% may potentially be considered as a reliable quantitative biomarker to assess disease or treatment-related changes. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.


Assuntos
Abdome , Pâncreas , Humanos , Reprodutibilidade dos Testes , Estudos Prospectivos , Abdome/diagnóstico por imagem , Pâncreas/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Imagem Ecoplanar
12.
J Magn Reson Imaging ; 59(1): 58-69, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37144673

RESUMO

Abbreviated MRI (AMRI) protocols rely on the acquisition of a limited number of sequences tailored to a specific question. The main objective of AMRI protocols is to reduce exam duration and costs, while maintaining an acceptable diagnostic performance. AMRI is of increasing interest in the radiology community; however, challenges limiting clinical adoption remain. In this review, we will address main abdominal and pelvic applications of AMRI in the liver, pancreas, kidney, and prostate, including diagnostic performance, pitfalls, limitations, and cost effectiveness will also be discussed. Level of Evidence: 3 Technical Efficacy Stage: 3.


Assuntos
Neoplasias Hepáticas , Imageamento por Ressonância Magnética , Masculino , Humanos , Imageamento por Ressonância Magnética/métodos , Abdome/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico , Pelve/diagnóstico por imagem
13.
Anesthesiology ; 140(3): 417-429, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064713

RESUMO

BACKGROUND: Postoperative pulmonary complications after major abdominal surgery are frequent and carry high morbidity and mortality. Early identification of patients at risk of pulmonary complications by lung ultrasound may allow the implementation of preemptive strategies. The authors hypothesized that lung ultrasound score would be associated with pulmonary postoperative complications. The main objective of the study was to evaluate the performance of lung ultrasound score on postoperative day 1 in predicting pulmonary complications after major abdominal surgery. Secondary objectives included the evaluation of other related measures for their potential prediction accuracy. METHODS: A total of 149 patients scheduled for major abdominal surgery were enrolled in a bicenter observational study. Lung ultrasound score was performed before the surgery and on days 1, 4, and 7 after surgery. Pulmonary complications occurring before postoperative day 10 were recorded. RESULTS: Lung ultrasound score on postoperative day 1 was higher in patients developing pulmonary complications before day 10 (median, 13; interquartile range, 8.25 to 18; vs. median, 10; interquartile range, 6.5 to 12; Mann-Whitney P = 0.002). The area under the curve for predicting postoperative pulmonary complications before day 10 was 0.65 (95% CI, 0.55 to 0.75; P = 0.003). Lung ultrasound score greater than 12 had a sensitivity of 0.54 (95% CI, 0.40 to 0.67), specificity of 0.77 (95% CI, 0.67 to 0.85), and negative predictive value of 0.74 (95% CI, 0.65 to 0.83). Lung ultrasound score greater than 17 had sensitivity of 0.33 (95% CI, 0.21 to 0.47), specificity of 0.95 (95% CI, 0.88 to 0.98), and positive predictive value of 0.78 (95% CI, 0.56 to 0.93). Anterolateral lung ultrasound score and composite scores using lung ultrasound score and other patient characteristics showed similar predictive accuracies. CONCLUSIONS: An elevated lung ultrasound score on postoperative day 1 is associated with the occurrence of pulmonary complications within the first 10 days after major abdominal surgery.


Assuntos
Pulmão , Tórax , Humanos , Estudos Prospectivos , Pulmão/diagnóstico por imagem , Abdome/diagnóstico por imagem , Abdome/cirurgia , Complicações Pós-Operatórias/diagnóstico por imagem , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia
14.
Eur Radiol ; 34(4): 2364-2373, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37707549

RESUMO

OBJECTIVE: To assess success and safety of CT-guided procedures with narrow window access for biopsy. METHODS: Three hundred ninety-six consecutive patients undergoing abdominal or pelvic CT-guided biopsy or fiducial placement between 01/2015 and 12/2018 were included (183 women, mean age 63 ±â€¯14 years). Procedures were classified into "wide window" (width of the needle path between structures > 15 mm) and "narrow window" (≤ 15 mm) based on intraprocedural images. Clinical information, complications, technical and clinical success, and outcomes were collected. The blunt needle approach is preferred by our interventional radiology team for narrow window access. RESULTS: There were 323 (81.5%) wide window procedures and 73 (18.5%) narrow window procedures with blunt needle approach. The median depth for the narrow window group was greater (97 mm, interquartile range (IQR) 82-113 mm) compared to the wide window group (84 mm, IQR 60-106 mm); p = 0.0017. Technical success was reached in 100% (73/73) of the narrow window and 99.7% (322/323) of the wide window procedures. There was no difference in clinical success rate between the two groups (narrow: 86.4%, 57/66; wide: 89.5%, 265/296; p = 0.46). There was no difference in immediate complication rate (narrow: 1.3%, 1/73; wide: 1.2%, 4/323; p = 0.73) or delayed complication rate (narrow: 1.3%, 1/73; wide: 0.6%, 1/323; p = 0.50). CONCLUSION: Narrow window (< 15 mm) access biopsy and fiducial placement with blunt needle approach under CT guidance is safe and successful. CLINICAL RELEVANCE STATEMENT: CT-guided biopsy and fiducial placement can be performed through narrow window access of less than 15 mm utilizing the blunt-tip technique. KEY POINTS: • A narrow window for CT-guided abdominal and pelvic biopsies and fiducial placements was considered when width of the needle path between vital structures was ≤ 15 mm. • Seventy-three biopsies and fiducial placements performed through a narrow window with blunt needle approach had a similar rate of technical and clinical success and complications compared to 323 procedures performed through a wide window approach, with traditional approach (> 15 mm). • This study confirmed the safety of the CT-guided percutaneous procedures through < 15 mm window with blunt-tip technique.


Assuntos
Abdome , Biópsia Guiada por Imagem , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Biópsia Guiada por Imagem/métodos , Abdome/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Pelve/diagnóstico por imagem
15.
Radiographics ; 44(8): e230173, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38990776

RESUMO

T1-weighted (T1W) pulse sequences are an indispensable component of clinical protocols in abdominal MRI but usually require multiple breath holds (BHs) during the examination, which not all patients can sustain. Patient motion can affect the quality of T1W imaging so that key diagnostic information, such as intrinsic signal intensity and contrast enhancement image patterns, cannot be determined. Patient motion also has a negative impact on examination efficiency, as multiple acquisition attempts prolong the duration of the examination and often remain noncontributory. Techniques for mitigation of motion-related artifacts at T1W imaging include multiple arterial acquisitions within one BH; free breathing with respiratory gating or respiratory triggering; and radial imaging acquisition techniques, such as golden-angle radial k-space acquisition (stack-of-stars). While each of these techniques has inherent strengths and limitations, the selection of a specific motion-mitigation technique is based on several factors, including the clinical task under investigation, downstream technical ramifications, patient condition, and user preference. The authors review the technical principles of free-breathing motion mitigation techniques in abdominal MRI with T1W sequences, offer an overview of the established clinical applications, and outline the existing limitations of these techniques. In addition, practical guidance for abdominal MRI protocol strategies commonly encountered in clinical scenarios involving patients with limited BH abilities is rendered. Future prospects of free-breathing T1W imaging in abdominal MRI are also discussed. ©RSNA, 2024 See the invited commentary by Fraum and An in this issue.


Assuntos
Abdome , Artefatos , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Abdome/diagnóstico por imagem , Movimento (Física) , Aumento da Imagem/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos
16.
Surg Endosc ; 38(7): 3758-3772, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789623

RESUMO

BACKGROUND: Hyperspectral imaging (HSI), combined with machine learning, can help to identify characteristic tissue signatures enabling automatic tissue recognition during surgery. This study aims to develop the first HSI-based automatic abdominal tissue recognition with human data in a prospective bi-center setting. METHODS: Data were collected from patients undergoing elective open abdominal surgery at two international tertiary referral hospitals from September 2020 to June 2021. HS images were captured at various time points throughout the surgical procedure. Resulting RGB images were annotated with 13 distinct organ labels. Convolutional Neural Networks (CNNs) were employed for the analysis, with both external and internal validation settings utilized. RESULTS: A total of 169 patients were included, 73 (43.2%) from Strasbourg and 96 (56.8%) from Verona. The internal validation within centers combined patients from both centers into a single cohort, randomly allocated to the training (127 patients, 75.1%, 585 images) and test sets (42 patients, 24.9%, 181 images). This validation setting showed the best performance. The highest true positive rate was achieved for the skin (100%) and the liver (97%). Misclassifications included tissues with a similar embryological origin (omentum and mesentery: 32%) or with overlaying boundaries (liver and hepatic ligament: 22%). The median DICE score for ten tissue classes exceeded 80%. CONCLUSION: To improve automatic surgical scene segmentation and to drive clinical translation, multicenter accurate HSI datasets are essential, but further work is needed to quantify the clinical value of HSI. HSI might be included in a new omics science, namely surgical optomics, which uses light to extract quantifiable tissue features during surgery.


Assuntos
Aprendizado Profundo , Imageamento Hiperespectral , Humanos , Estudos Prospectivos , Imageamento Hiperespectral/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Abdome/cirurgia , Abdome/diagnóstico por imagem , Cirurgia Assistida por Computador/métodos
17.
Eur J Pediatr ; 183(5): 2059-2069, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38459132

RESUMO

A spectrum of critical abdominal pathological conditions that might occur in neonates and children warrants real-time point-of-care abdominal ultrasound (abdominal POCUS) assessment. Abdominal radiographs have limited value with low sensitivity and specificity in many cases and have no value in assessing abdominal organ perfusion and microcirculation (Rehan et al. in Clin Pediatr (Phila) 38(11):637-643, 1999). The advantages of abdominal POCUS include that it is non-invasive, easily available, can provide information in real-time, and can guide therapeutic intervention (such as paracentesis and urinary bladder catheterization), making it a crucial tool for use in pediatric and neonatal abdominal emergencies (Martínez Biarge et al. in J Perinat Med 32(2):190-194, 2004) and (Alexander et al. in Arch Dis Child Fetal Neonatal Ed 106(1):F96-103, 2021).  Conclusion: Abdominal POCUS is a dynamic assessment with many ultrasound markers of gut injury by two dimensions (2-D) and color Doppler (CD) compared to the abdominal X-ray; the current evidence supports the superiority of abdominal POCUS over an abdominal X-ray in emergency situations. However, it should still be considered an adjunct rather than replacing abdominal X-rays due to its limitations and operator constraints (Alexander et al. in Arch Dis Child Fetal Neonatal Ed 106(1):F96-103, 2021). What is Known: • Ultrasound is an important modality for the assessment of abdominal pathologies. What is New: • The evidence supports the superiority of abdominal POCUS over an abdominal X-ray in emergency abdominal situations in the neonatal and pediatric intensive care units.


Assuntos
Abdome , Unidades de Terapia Intensiva Neonatal , Sistemas Automatizados de Assistência Junto ao Leito , Ultrassonografia , Humanos , Recém-Nascido , Ultrassonografia/métodos , Abdome/diagnóstico por imagem , Unidades de Terapia Intensiva Pediátrica , Lactente , Criança
18.
BMC Med Imaging ; 24(1): 49, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395772

RESUMO

PURPOSE: Unenhanced abdominal CT constitutes the diagnostic standard of care in suspected urolithiasis. Aiming to identify potential for radiation dose reduction in this frequent imaging task, this experimental study compares the effect of spectral shaping and tube voltage modulation on image quality. METHODS: Using a third-generation dual-source CT, eight cadaveric specimens were scanned with varying tube voltage settings with and without tin filter application (Sn 150, Sn 100, 120, 100, and 80 kVp) at three dose levels (3 mGy: standard; 1 mGy: low; 0.5 mGy: ultralow). Image quality was assessed quantitatively by calculation of signal-to-noise ratios (SNR) for various tissues (spleen, kidney, trabecular bone, fat) and subjectively by three independent radiologists based on a seven-point rating scale (7 = excellent; 1 = very poor). RESULTS: Irrespective of dose level, Sn 100 kVp resulted in the highest SNR of all tube voltage settings. In direct comparison to Sn 150 kVp, superior SNR was ascertained for spleen (p ≤ 0.004) and kidney tissue (p ≤ 0.009). In ultralow-dose scans, subjective image quality of Sn 100 kVp (median score 3; interquartile range 3-3) was higher compared with conventional imaging at 120 kVp (2; 2-2), 100 kVp (1; 1-2), and 80 kVp (1; 1-1) (all p < 0.001). Indicated by an intraclass correlation coefficient of 0.945 (95% confidence interval: 0.927-0.960), interrater reliability was excellent. CONCLUSIONS: In abdominal CT with maximised dose reduction, tin prefiltration at 100 kVp allows for superior image quality over Sn 150 kVp and conventional imaging without spectral shaping.


Assuntos
Estanho , Tomografia Computadorizada por Raios X , Humanos , Reprodutibilidade dos Testes , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Abdome/diagnóstico por imagem
19.
J Ultrasound Med ; 43(2): 355-360, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37916293

RESUMO

OBJECTIVE: Telemedicine can offer services to remote patients regardless of the distance. Fifth-generation (5G) mobile networks may make telemedicine practical because of their low latency. This study aimed to evaluate the feasibility and safety of a novel 5G robot-assisted remote abdominal ultrasound (AUS) telemedicine technology in clinical applications in distant locations. METHODS: We performed 5G-based telerobotic AUS in patients who were located more than 100 km away from the physicians. RESULTS: The telerobotic AUS had a longer examination time than the conditional bedside AUS; however, the complete examination rate was not inferior. None of the volunteers experienced discomfort during the examination and the examination time was acceptable for all. CONCLUSION: Our findings confirm the feasibility and safety of 5G-based telerobotic AUS in clinical practice.


Assuntos
Robótica , Telemedicina , Humanos , Estudos de Viabilidade , Abdome/diagnóstico por imagem , Ultrassonografia
20.
J Ultrasound Med ; 43(9): 1661-1672, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38822195

RESUMO

PURPOSE: To develop a deep neural network system for the automatic segmentation and risk stratification prediction of gastrointestinal stromal tumors (GISTs). METHODS: A total of 980 ultrasound (US) images from 245 GIST patients were retrospectively collected. These images were randomly divided (6:2:2) into a training set, a validation set, and an internal test set. Additionally, 188 US images from 47 prospective GIST patients were collected to evaluate the segmentation and diagnostic performance of the model. Five deep learning-based segmentation networks, namely, UNet, FCN, DeepLabV3+, Swin Transformer, and SegNeXt, were employed, along with the ResNet 18 classification network, to select the most suitable network combination. The performance of the segmentation models was evaluated using metrics such as the intersection over union (IoU), Dice similarity coefficient (DSC), recall, and precision. The classification performance was assessed based on accuracy and the area under the receiver operating characteristic curve (AUROC). RESULTS: Among the compared models, SegNeXt-ResNet18 exhibited the best segmentation and classification performance. On the internal test set, the proposed model achieved IoU, DSC, precision, and recall values of 82.1, 90.2, 91.7, and 88.8%, respectively. The accuracy and AUC for GIST risk prediction were 87.4 and 92.0%, respectively. On the external test set, the segmentation models exhibited IoU, DSC, precision, and recall values of 81.0, 89.5, 92.8, and 86.4%, respectively. The accuracy and AUC for GIST risk prediction were 86.7 and 92.5%, respectively. CONCLUSION: This two-stage SegNeXt-ResNet18 model achieves automatic segmentation and risk stratification prediction for GISTs and demonstrates excellent segmentation and classification performance.


Assuntos
Aprendizado Profundo , Tumores do Estroma Gastrointestinal , Ultrassonografia , Tumores do Estroma Gastrointestinal/diagnóstico por imagem , Humanos , Feminino , Masculino , Medição de Risco/métodos , Pessoa de Meia-Idade , Estudos Retrospectivos , Ultrassonografia/métodos , Idoso , Adulto , Neoplasias Gastrointestinais/diagnóstico por imagem , Reprodutibilidade dos Testes , Estudos Prospectivos , Abdome/diagnóstico por imagem , Idoso de 80 Anos ou mais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa