RESUMO
Rosemary (Salvia rosmarinus) is considered a sacred plant because of its special fragrance and is commonly used in cooking and traditional medicine. Here, we report a high-quality chromosome-level assembly of the S. rosmarinus genome of 1.11 Gb in size; the genome has a scaffold N50 value of 95.5 Mb and contains 40 701 protein-coding genes. In contrast to other diploid Labiataceae, an independent whole-genome duplication event occurred in S. rosmarinus at approximately 15 million years ago. Transcriptomic comparison of two S. rosmarinus cultivars with contrasting carnosic acid (CA) content revealed 842 genes significantly positively associated with CA biosynthesis in S. rosmarinus. Many of these genes have been reported to be involved in CA biosynthesis previously, such as genes involved in the mevalonate/methylerythritol phosphate pathways and CYP71-coding genes. Based on the genomes and these genes, we propose a model of CA biosynthesis in S. rosmarinus. Further, comparative genome analysis of the congeneric species revealed the species-specific evolution of CA biosynthesis genes. The genes encoding diterpene synthase and the cytochrome P450 (CYP450) family of CA synthesis-associated genes form a biosynthetic gene cluster (CPSs-KSLs-CYP76AHs) responsible for the synthesis of leaf and root diterpenoids, which are located on S. rosmarinus chromosomes 1 and 2, respectively. Such clustering is also observed in other sage (Salvia) plants, thus suggesting that genes involved in diterpenoid synthesis are conserved in the Labiataceae family. These findings provide new insights into the synthesis of aromatic terpenoids and their regulation.
Assuntos
Diterpenos , Rosmarinus , Salvia , Rosmarinus/genética , Rosmarinus/metabolismo , Salvia/genética , Salvia/metabolismo , Abietanos/metabolismo , Diterpenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , CromossomosRESUMO
BACKGROUND: In the past two decades, the impacts of Helium-Neon (He-Ne) laser on stress resistance and secondary metabolism in plants have been studied, but the signaling pathway which by laser regulates this process remains unclear. Therefore, the current study sought to explore the role of RBOH-dependent signaling in He-Ne laser-induced salt tolerance and elicitation of secondary metabolism in Salvia officinalis. Seeds were primed with He-Ne laser (6 J cm- 2) and peroxide hydrogen (H2O2, 5 mM) and 15-old-day plants were exposed to two salinity levels (0, 75 mM NaCl). RESULTS: Salt stress reduced growth parameters, chlorophyll content and relative water content (RWC) and increased malodialdehyde (MDA) and H2O2 contents in leaves of 45-old-day plants. After 48 h of salt exposure, higher transcription levels of RBOH (encoding NADPH oxidase), PAL (phenylalanine ammonia-lyase), and RAS (rosmarinic acid synthase) were recorded in leaves of plants grown from seeds primed with He-Ne laser and/or H2O2. Despite laser up-regulated RBOH gene in the early hours of exposing to salinity, H2O2 and MDA contents were lower in leaves of these plants after 30 days. Seed pretreatment with He-Ne laser and/or H2O2 augmented the accumulation of anthocyanins, total phenol, carnasol, and rosmarinic acid and increased total antioxidant capacity under non-saline and more extensively at saline conditions. Indeed, these treatments improved RWC, and K+/Na+ ratio, enhanced the activities of superoxide dismutase and ascorbate peroxidase and proline accumulation, and significantly decreased membrane injury and H2O2 content in leaves of 45-old-day plants under salt stress. However, applying diphenylene iodonium (DPI as an inhibitor of NADPH oxidase) and N, N-dimethyl thiourea (DMTU as a H2O2 scavenger) after laser priming reversed the aforementioned effects which in turn resulted in the loss of laser-induced salt tolerance and secondary metabolism. CONCLUSIONS: These findings for the first time deciphered that laser can induce a transient RBOH-dependent H2O2 burst, which might act as a downstream signal to promote secondary metabolism and salt stress alleviation in S. officinalis plants.
Assuntos
Cinamatos , Depsídeos , Ácido Rosmarínico , Tolerância ao Sal , Salvia officinalis , Transdução de Sinais , Salvia officinalis/metabolismo , Salvia officinalis/fisiologia , Salvia officinalis/efeitos dos fármacos , Salvia officinalis/genética , Depsídeos/metabolismo , Cinamatos/metabolismo , Abietanos/metabolismo , Peróxido de Hidrogênio/metabolismo , Lasers , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Regulação da Expressão Gênica de PlantasRESUMO
KEY MESSAGE: Overexpression and antisense expression of Sm4CL2 re-directed the biosynthesis of salvianolic acids and tanshinones in Salvia miltiorrhiza hairy roots. Danshen (Salvia miltiorrhiza Bunge) is a widely used traditional Chinese medicine and its main active ingredients are water-soluble phenolic acids and lipophilic diterpenoids which are produced through the phenylpropanoid pathway and terpenoid pathway, respectively. 4-Coumaric acid: Coenzyme A ligase (4CL) is a key enzyme in the phenylpropanoid metabolism. We had obtained Sm4CL2-overexpressing (Sm4CL2-OE) and antisense Sm4CL2-expressing (anti-Sm4CL2) danshen hairy roots over ten years ago. In the follow-up study, we found that total salvianolic acids in Sm4CL2-OE-4 hairy roots increased to 1.35 times of the control-3, and that in anti-Sm4CL2-1 hairy roots decreased to 37.32% of the control-3, but tanshinones in anti-Sm4CL2-1 was accumulated to 1.77 ± 0.16 mg/g of dry weight, compared to undetectable in Sm4CL2-OE-4 and the control-3 hairy roots. Interestingly, Sm4CL2-OE-4 hairy roots contained more lignin, 1.36 times of the control-3, and enhanced cell wall and xylem lignification. Transcriptomic analysis revealed that overexpression of Sm4CL2 caused the upregulation of other phenylpropanoid pathway genes and antisense Sm4CL2 expression resulted in the downregulation of other phenylpropanoid pathway genes but activated the expression of terpenoid pathway genes like SmCYP76AK5, SmGPPS.SSUII.1 and SmDXS2. Protein-protein interaction analysis suggested that Sm4CL2 might interact with PAL, PAL4, CSE, CCoAOMT and SmCYP84A60, and appeared to play a key role in the interaction network. The tracking work in this study proved that Sm4CL2 could redirect both salvianolic acids and tanshinones biosynthesis possibly through synergistically regulating other pathway genes. It also indicated that genetic modification of plant secondary metabolism with biosynthetic gene might cause other responses through protein-protein interactions.
Assuntos
Diterpenos , Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Seguimentos , Abietanos/metabolismo , Diterpenos/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
KEY MESSAGE: CYP72D19, the first functional gene of the CYP72D subfamily, catalyzes the C-2 hydroxylation of abietane-type diterpenoids. The abietane-type diterpenoids, e.g., triptolide, tripdiolide, and 2-epitripdiolide, are the main natural products for the anti-tumor, anti-inflammatory, and immunosuppressive activities of Tripterygium wilfordii, while their biosynthetic pathways are not resolved. Here, we cloned and characterized the CYP72D19-catalyzed C-2 hydroxylation of dehydroabietic acid, a compound that has been proven to be a biosynthetic intermediate in triptolide biosynthesis. Through molecular docking and site-directed mutagenesis, L386, L387, and I493 near the active pocket were found to have an important effect on the enzyme activity, which also indicates that steric hindrance of residues plays an important role in function. In addition, CYP72D19 also catalyzed a variety of abietane-type diterpenoids with benzene ring, presumably because the benzene ring of the substrate molecule stabilized the C-ring, allowing the protein and the substrate to form a relatively stable spatial structure. This is the first demonstration of CYP72D subfamily gene function. Our research provides important genetic elements for the structural modification of active ingredients and the heterologous production of other 2-hydroxyl abietane-type natural products.
Assuntos
Produtos Biológicos , Diterpenos , Abietanos/metabolismo , Tripterygium/genética , Hidroxilação , Benzeno/metabolismo , Simulação de Acoplamento Molecular , Diterpenos/química , Diterpenos/metabolismo , Produtos Biológicos/metabolismoRESUMO
Abietic acid (AA), dehydroabietic acid (DHA) and triptoquinones (TQs) are bioactive abietane-type diterpenoids, which are present in many edible vegetables and medicinal herbs with health-promoting properties. Evidence suggests that beneficial effects of diterpenes operate, at least in part, through effects on cells in the immune system. Dendritic cells (DCs) are a key type of leukocyte involved in the initiation and regulation of the immune/inflammatory response and natural or synthetic compounds that modulate DC functions could be potential anti-inflammatory/immunomodulatory agents. Herein, we report the screening of 23 known semisynthetic AA and DHA derivatives, and TQs, synthesized previously by us, in a multi-analyte DC-based assay that detects inhibition of pro-inflammatory cytokine production. Based on the magnitude of the inhibitory effect observed and the number of cytokines inhibited, a variety of activities among compounds were observed, ranging from inactive/weak to very potent inhibitors. Structurally, either alcohol or methyl ester substituents on ring A along with the introduction of aromaticity and oxidation in ring C in the abietane skeleton were found in compounds with higher inhibitory properties. Two DHA derivatives and two TQs exhibited a significant inhibition in all pro-inflammatory cytokines tested and were further investigated. The results confirmed their ability to inhibit, dose dependently, LPS-stimulated expression of the co-stimulatory molecules CD40 and/or CD86 and the production of the pro-inflammatory cytokines IL-1ß, IL-6, IL-12 and TNFα. Our results demonstrate that DC maturation process can be targeted by semisynthetic DHA derivatives and TQ epimers and indicate the potential of these compounds as optimizable anti-inflammatory/immunomodulatory agents.
Assuntos
Abietanos , Fator de Necrose Tumoral alfa , Abietanos/metabolismo , Abietanos/farmacologia , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Células Dendríticas , Ésteres/farmacologia , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The G-quadruplex (G4) DNA, which has been developed as a potential anticancer target in drug screening and design, plays a crucial role in the oncogene transcription and translation. Tanshinone IIA derivatives with a planar heterocycle structure may function as G4 stabilizers. We present an innovative case of imidazole-based tanshinone IIA derivatives (1-8) especially compound 4 that improve the selectivity and the binding affinity with G4 DNA and enhance the target tumor inhibition. Cellular and in vivo experiments indicate that the tanshinone IIA derivative 4 inhibits the growth, metastasis, and angiogenesis of triple-negative breast cancer cells possibly through the stabilization of multiple G4 DNAs (e.g., c-myc, K-ras, and VEGF) to induce DNA damage. Further investigation of the intermolecular interaction and the molecular docking indicates that tanshinone IIA derivatives have better selective binding capability to various G4 DNAs than to double-stranded DNA. These findings provide guidance in modifying the molecular structures of tanshinone IIA derivatives and reveal their potential to function as specific G4 stabilizers.
Assuntos
Abietanos/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , DNA/efeitos dos fármacos , Quadruplex G/efeitos dos fármacos , Imidazóis/uso terapêutico , Abietanos/síntese química , Abietanos/metabolismo , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/metabolismo , Inibidores da Angiogênese/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , DNA/genética , DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/síntese química , Imidazóis/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Metástase Neoplásica/prevenção & controle , Regiões Promotoras Genéticas , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Relação Estrutura-Atividade , Peixe-ZebraRESUMO
The effect of spontaneous fermentation by lactic acid bacteria on the extraction yield of bioactive compounds and antioxidant activity from rosemary leaf extracts was investigated using high-performance thin-layer chromatography (HPTLC). Brining and spontaneous fermentation with lactic acid bacteria more than doubled extraction of polyphenolics and antioxidants from the rosemary leaves. The results show that lactic acid fermentation enhances antioxidant activity in extracts by increasing the total phenolic content but does not increase extraction of phytosterols. Increased extraction of phenolic oxidants during fermentation assisted extraction, results from the in situ generated natural eutectic solvent from the plant sample. ATR-FTIR spectra from the bioactive bands suggests that this increased antioxidant activity is associated with increased extraction of rosmarinic acid, depolymerised lignin, abietane diterpenoids and 15-hydroxy-7-oxodehydroabietic acid.
Assuntos
Antioxidantes/química , Antioxidantes/metabolismo , Lactobacillales/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Rosmarinus/química , Rosmarinus/metabolismo , Abietanos/química , Abietanos/metabolismo , Cromatografia em Camada Fina , Cinamatos/química , Cinamatos/metabolismo , Depsídeos/química , Depsídeos/metabolismo , Fermentação , Humanos , Lignina/química , Lignina/metabolismo , Fenóis/química , Fenóis/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Ácido RosmarínicoRESUMO
KEY MESSAGE: MIR396b had been cloned and overexpressed in Salvia miltiorrhiza hairy roots. MiR396b targets SmGRFs, SmHDT1, and SmMYB37/4 to regulate cell growth and secondary metabolism in S. miltiorrhiza hairy roots. Danshen (Salvia miltiorrhiza Bunge) is a valuable medicinal herb with two kinds of clinically used natural products, salvianolic acids and tanshinones. miR396 is a conserved microRNA and plays extensive roles in plants. However, it is still unclear how miR396 works in S. miltiorrhiza. In this study, an smi-MIR396b has been cloned from S. miltiorrhiza. Overexpression of miR396b in danshen hairy roots inhibited hairy root growth, reduced salvianolic acid concentration, but enhanced tanshinone accumulation, resulting in the biomass and total salvianolic acids respectively reduced to 55.5 and 72.1% of the control and total tanshinones increased up to 1.91-fold of the control. Applied degradome sequencing, 5'RLM-RACE, and qRT-PCR, 13 targets for miR396b were identified including seven conserved SmGRF1-7 and six novel ones. Comparative transcriptomics and microRNomics analysis together with qRT-PCR results confirmed that miR396b targets SmGRFs, SmHDT1, and SmMYB37/4 to mediate the phytohormone, especially gibberellin signaling pathways and consequentially resulted in the phenotype variation of miR396b-OE hairy roots. Furthermore, miR396b could be activated by methyl jasmonate, abscisic acid, gibberellin, salt, and drought stresses. The findings in this study indicated that smi-miR396b acts as an upstream and central regulator in cell growth and the biosynthesis of tanshinones and salvianolic acids, shedding light on the coordinated regulation of plant growth and biosynthesis of active ingredients in S. miltiorrhiza.
Assuntos
MicroRNAs/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/genética , Salvia miltiorrhiza/citologia , Salvia miltiorrhiza/genética , Abietanos/metabolismo , Ácido Abscísico/farmacologia , Acetatos/farmacologia , Alcenos/metabolismo , Antocianinas/metabolismo , Sítios de Ligação , Biomassa , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Ciclopentanos/farmacologia , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Redes Reguladoras de Genes/efeitos dos fármacos , Giberelinas/farmacologia , MicroRNAs/genética , Oxilipinas/farmacologia , Filogenia , Proteínas de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Polifenóis/metabolismo , Propanóis/metabolismo , Estabilidade de RNA/genética , Estresse Salino/efeitos dos fármacos , Estresse Salino/genética , Salvia miltiorrhiza/efeitos dos fármacos , Metabolismo Secundário/efeitos dos fármacos , Terpenos/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/genéticaRESUMO
The uptake and accumulation of cadmium (Cd) in Salvia miltiorrhiza (Bge.) negatively affects the quality of its harvested roots, and seriously threatens human health. This study investigates the effect of a microbial inoculant (MI) and garbage enzyme (GE) on Cd uptake, the accumulation of bioactive compounds, and the community composition of microbes in the rhizosphere soil of S. miltiorrhiza under Cd stress. S. miltiorrhiza seedlings were transplanted to Cd-contaminated pots and irrigated with an MI, GE, a combination of an MI and GE (MIGE) or water (control). The results indicated that treatments with an MI, GE or MIGE can reduce Cd uptake in S. miltiorrhiza. The MIGE treatment had greater efficiency in reducing Cd uptake than the control (reduction by 37.90%), followed by the GE (25.31%) and MI (5.84%) treatments. Treatments with an MI, GE and MIGE had no significant impact on fresh and dry root biomass. Relative to the control, the MI treatment had the highest efficiency in increasing the accumulation of total tanshinones (an increase of 40.45%), followed by the GE treatment (40.08%), with the MIGE treatment (9.90%) treatment not having a more favorable effect than the separate application of an MI or GE. The salvianolic acid content for all groups was higher than the standard prescribed by Chinese pharmacopoeia, notwithstanding a slightly lower level in the treated groups relative to the control. In addition, metagenomic analysis indicated changes in the relative abundance of soil microbes associated with the bioremediation of heavy metals. The relative abundances of Brevundimonas, Microbacterium, Cupriavidus and Aspergillus were significantly greater in the treated groups than in the Control. These results suggest that using MI and GE, either separately or together, may not only improve the quality of S. miltiorrhiza but may also facilitate the microbial remediation of soil contaminated with Cd.
Assuntos
Cádmio/toxicidade , Salvia miltiorrhiza/efeitos dos fármacos , Salvia miltiorrhiza/metabolismo , Poluentes do Solo/toxicidade , Abietanos/metabolismo , Alcenos/análise , Biodegradação Ambiental , Biomassa , Cádmio/farmacocinética , Raízes de Plantas/efeitos dos fármacos , Polifenóis/análise , Rizosfera , Salvia miltiorrhiza/química , Microbiologia do SoloRESUMO
Tanshinones are important diterpenoid secondary metabolites from Salvia miltiorrhiza, widely used as cardiovascular and cerebrovascular medicines. CYP76AH1 is a membrane-associated cytochrome P450 enzyme and plays a critical role in the biosynthetic pathway of tanshinones. To clarify the relationship between structure and function of CYP76AH1, we recently constructed the expression vector of CYP76AH1 and purified the enzyme. The engineered CYP76AH1 was expressed in E. coli Trans-blue cells and exhibited enhanced expression and solubility. The proper folding of the engineered CYP76AH1 was assessed by CO difference spectrum assay. Functional identification of the recombinant enzyme was performed by conducting enzymatic reaction with the purified CYP76AH1 in presence of substrate, the co-factor NADPH and the purified SmCPR1 (cytochrome P450 reductase from Salvia miltiorrhiza), and by subsequently analyzing the reaction extract through GC-MS. X-ray crystal complex structure of CYP76AH1 with inhibitor 4-phenylimmidazole (4-PI) was determined at the resolution of 2.6â¯Å. In the ligand-binding cavity of 4-PI bound CYP76AH1, the inhibitor 4-PI forms a hydrogen bound with a water molecule which coordinates with heme at the sixth coordination position. There are two open channels which substrate and product site may access and leave the active site. In the CYP76AH1/4-PI complex structure, the imidazole ring of 4-PI is parallel to helix I instead of perpendicular to helies I in most P450s bound imidazole. 4-PI may be work in the stability of CYP76AH1 crystal structure. These studies provide information on functional expression and purification of CYP76AH1, and overall structure of CYP76AH1 complexed with 4-PI.
Assuntos
Sistema Enzimático do Citocromo P-450/química , Proteínas de Plantas/química , Salvia miltiorrhiza/química , Abietanos/metabolismo , Hidrocarboneto de Aril Hidroxilases , Domínio Catalítico , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/metabolismo , Imidazóis/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Plantas/metabolismo , Conformação Proteica , Salvia miltiorrhiza/metabolismoRESUMO
Phenolic acids are important secondary metabolites produced in the Chinese medicinal plant Salvia miltiorrhiza, but little is known about the transcription factors involved in the regulation of tanshinone and phenolic acid biosynthesis. Here, a novel AP2/ERF transcription factor SmERF115 was isolated and functionally characterized. SmERF115 was most responsive to methyl jasmonate (MeJA) treatment and was localized in the nucleus. The phenolic acid production was increased in SmERF115-overexpressing hairy roots, but with a decrease in tanshinone content. In contrast, silencing of SmERF115 reduced the phenolic acid level, but increased tanshinone content. The expression of the key biosynthetic gene SmRAS1 was up-regulated in SmERF115 overexpression lines but was down-regulated in SmERF115-RNAi lines. Yeast one-hybrid (Y1H) assay and EMSA showed that SmERF115 directly binds to the promoter of SmRAS1, while dual-luciferase assays showed that SmERF115 could activate expression of SmRAS1 in vivo. Furthermore, global transcriptomic analysis by RNA sequencing revealed that expression of other genes such as PAL3, 4CL5, TAT3, and RAS4 was also increased in the overexpression line, implying that they were potentially involved in the SmERF115-mediated pathway. Our data show that SmERF115 is a positive regulator of phenolic acid biosynthesis, and may be a potential target for further metabolic engineering of phenolic acid biosynthesis in S. miltiorrhiza.
Assuntos
Abietanos/metabolismo , Acetatos/metabolismo , Ciclopentanos/metabolismo , Hidroxibenzoatos/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Salvia miltiorrhiza/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Tanshinone I (TSI) is a lipophilic diterpene in Salvia miltiorrhiza with versatile pharmacological activities. However, metabolic pathway of TSI in human is unknown. In this study, we determined major metabolites of TSI using a preparation of human liver microsomes (HLMs) by HPLC-UV and Q-Trap mass spectrometer. A total of 6 metabolites were detected, which indicated the presence of hydroxylation, reduction as well as glucuronidation. Selective chemical inhibition and purified cytochrome P450 (CYP450) isoform screening experiments revealed that CYP2A6 was primarily responsible for TSI Phase I metabolism. Part of generated hydroxylated TSI was glucuronidated via several glucuronosyltransferase (UGT) isoforms including UGT1A1, UGT1A3, UGT1A7, UGT1A9, as well as extrahepatic expressed isoforms UGT1A8 and UGT1A10. TSI could be reduced to a relatively unstable hydroquinone intermediate by NAD(P)H: quinone oxidoreductase 1 (NQO1), and then immediately conjugated with glucuronic acid by a panel of UGTs, especially UGT1A9, UGT1A1 and UGT1A8. Additionally, NQO1 could also reduce hydroxylated TSI to a hydroquinone intermediate, which was immediately glucuronidated by UGT1A1. The study demonstrated that hydroxylation, reduction as well as glucuronidation were the major pathways for TSI biotransformation, and six metabolites generated by CYPs, NQO1 and UGTs were found in HLMs and S9 subcellular fractions.
Assuntos
Abietanos/metabolismo , Microssomos Hepáticos/metabolismo , Abietanos/farmacocinética , Biotransformação , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP2A6/metabolismo , Citocromo P-450 CYP2A6/fisiologia , Glucuronosiltransferase/metabolismo , Humanos , Hidroxilação , Espectrometria de Massas , Redes e Vias Metabólicas , NAD(P)H Desidrogenase (Quinona)/metabolismo , NADP/metabolismo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Frações Subcelulares/metabolismoRESUMO
BACKGROUND The aim of this study was to explore the effect and mechanism of tanshinone II A on proliferation, apoptosis, and migration of human colon cancer cells. MATERIAL AND METHODS CCK-8 approach was carried out to evaluate proliferation after applying various levels of tanshinone II A to SW620 colon carcinoma cells. Flow cytometry (FC) was used to assess apoptosis. Transwell assay was performed to assess invasion in vitro, and the wound-healing assay was applied to assess migration. Western blot analysis was performed to evaluate translation of mTOR, while RT-PCR was carried out to assess transcription of VEGF. RESULTS CCK-8 assay showed that tanshinone II A inhibited SW620 proliferation in comparison to the control group subsequent to 24 h, 48 h, and 72 h (P<0.001). FC revealed that tanshinone II A promoted SW620 apoptosis (P<0.001). The cell migration test revealed that the migration index of cells receiving tanshinone II A decreased. mTOR translation as well as VEGE transcription in cells receiving tanshinone II A was noticeably prohibited compared to control group (P<0.001). CONCLUSIONS Tanshinone II A is able to inhibit proliferation and migration of human colon cancer SW620 cells and promoted cell death. Its mechanism may be by downregulation of mTOR protein and VEGF mRNA.
Assuntos
Abietanos/farmacologia , Neoplasias do Colo/metabolismo , Abietanos/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND Lung cancer is one of the leading causes of cancer-related mortalities worldwide and majority of these deaths result from non-small cell lung cancer (NSCLC). The primary objective of this research was to determine the anticancer potential of carnosic acid, a plant derived abietane diterpene, against human lung cancer cells, as well as to determine its effects on cell migration and invasion, apoptosis, and the PI3K/AKT/m-TOR signaling pathway. MATERIAL AND METHODS Cell viability was evaluated by Cell Counting Kit-8 (CCK-8) assay; fluorescence microscopy using acridine orange/ethidium bromide stain and Comet assay were used to study cellular apoptosis. In vitro wound healing assay was used to study effects on cell migration; Transwell assay was used to study cell invasion after drug treatment. Western blot assay was used to study effects of carnosic acid on the PI3K/AKT/m-TOR signaling pathway. RESULTS It was shown that carnosic acid could inhibit the growth of A-549 human non-small cell lung carcinoma cells dose-dependently showing an IC50 value of 12.5 µM. This growth inhibition of A-549 cells was mediated via apoptotic cell death as observed by fluorescence microscopy showing nuclear fragmentation and chromatin condensation. Carnosic acid, dose-dependently, also inhibited cell migration and invasion. Finally, western blot assay revealed that carnosic acid also led to inhibition of the PI3K/AKT/m-TOR signaling pathway. CONCLUSIONS In conclusion, our results showed that Carnosic acid has the potential to inhibit cancer cell growth in A-549 lung cancer cells by activating apoptotic death, inhibiting cell migration and invasion and suppressing PI3K/AKT/m-TOR signaling pathway.
Assuntos
Abietanos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Abietanos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , China , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Invasividade Neoplásica/fisiopatologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismoRESUMO
BACKGROUND Thyroid cancer causes considerable mortality and morbidity across the globe. Owing to the unavailability of biomarkers and the adverse effects of existing drugs, there is an urgent need to develop efficient chemotherapy for the treatment of thyroid cancers. Plants have served as exceptional source of drugs for the treatment of lethal diseases. The purpose of this study was to evaluate the anticancer effects of ferruginol against thyroid cancer cells. MATERIAL AND METHODS We monitored the cell proliferation rate using 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected using 4',6-diamidino-2-phenylindole (DAPI), acridine orange/ethidium bromide (AO/EB), and annexin V/propidium iodide (PI) staining. Reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) levels were examined by fluorescence microscopy. Protein expressed was examined by western blotting. RESULTS We found that ferruginol exerted potent antiproliferative action against thyroid cancer cells, and an IC50 of 12 µM was observed for ferruginol against the MDA-T32 cell line. The toxic effects of ferruginol were less pronounced against normal cells. The anticancer effects of ferruginol were likely due to the induction of apoptosis which was also associated with upregulation of Bax and downregulation of Bcl-2. Ferruginol also caused ROS mediated alterations in the MMP of MDA-T32 cells. In MDA-T32 cells, ferruginol might also block the MAPK and PI3K/AKT signaling pathway, which is believed to be an important therapeutic target of anticancer drugs. CONCLUSIONS In conclusion, in view of the results of this study, it might be suggested that ferruginol might serve as an essential lead molecule for the treatment of thyroid cancer provided further in-depth studies especially studying ferruginol toxicological as well as in vivo studies are needed.
Assuntos
Abietanos/farmacologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Abietanos/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , China , Diterpenos/metabolismo , Diterpenos/farmacologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacosRESUMO
Abietane diterpenoids, containing a quinone moiety, are synthesized in the roots of several Salvia species. Promising cytotoxicity and antiproliferative activities have been reported for these compounds in various cell and animal models. We have recently shown that aethiopinone, an o-naphto-quinone diterpene, produced in the roots of different Salvia species, is selectively cytotoxic against the A375 melanoma cell line. To enhance the synthesis of this abietane diterpenoid, we have engineered the plastidial 2-C-methyl-D-erythritol 4-phosphate-derived isoprenoid pathway in Salvia sclarea hairy roots by ectopic expression and plastid targeting of cyanobacterial genes encoding the 1-deoxy-D-xylulose 5-phosphate synthase or 1-deoxy-D-xylulose-5-phosphate reductoisomerase gene, the first two enzymatic steps of the plastidial MEP pathway, from which plant diterpenes primarily derive. Plastid-targeted expression of 1-deoxy-D-xylulose 5-phosphate synthase and 1-deoxy-D-xylulose-5-phosphate reductoisomerase proteins significantly enhanced the yield of aethiopinone by a 3-fold and about 6-fold increase, respectively. The accumulation of other abietane-type diterpenes (ferruginol, salvipisone, and carnosic acid), with interesting antiproliferative activity, was also increased. Compared to our previous data obtained by overexpressing the plant orthologous 1-deoxy-D-xylulose 5-phosphate synthase and 1-deoxy-D-xylulose-5-phosphate reductoisomerase genes in S. sclarea hairy roots, the results presented here confirm that the bacterial 1-deoxy-D-xylulose-5-phosphate reductoisomerase enzyme plays a major role than the DXS enzyme in the biosynthetic pathway of this class of compounds and that its ectopic expression does not conflict with active hairy root growth, resulting in a balanced trade-off between the transgenic hairy root final biomass and the increased content of o-naphto-quinone diterpenes, with interesting biological activities.
Assuntos
Abietanos/metabolismo , Cianobactérias/genética , Genes Bacterianos/genética , Raízes de Plantas/metabolismo , Salvia/metabolismo , Abietanos/análise , Western Blotting , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/química , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Salvia/química , Salvia/genéticaRESUMO
Tanshinone I (TSI) is one of the bioactive compound obtained from the root of Salvia miltiorrhiza which is a well-known traditional Chinese medicine (TCM) used for the treatment of various diseases. Although TSI possesses several pharmacological effects, it has poor water solubility, blood-brain barrier (BBB) permeability and brain bioavailability. Therefore, in the present study, we developed TSI nanoemulsion (TSI-NE) modified with a brain targeting ligand (Lactoferrin (Lf)) to improve the BBB permeability. Pseudo-ternary phase diagrams were used to optimize the formulation. The optimal TSI-NE and TSI-Lf-NE were prepared and characterized. Finally, the uptake of TSI-Lf-NE by mouse brain microvascular endothelial cell line (bEnd.3 cells) was assessed using Coumarin-6 as a fluorescent probe. The results of the study showed that the stable optimal formulation of O/W nanoemulsion was successfully developed and modified with Lf. The cellular uptake study has shown that the fluorescence intensity (FI) increased with time over the incubation period. The FI at all time intervals increased in the following order: Coumarin-6-Solutionï¼Coumarin-6-NEï¼Coumarin-6-Lf-NE. The results suggest that the BBB permeability of Coumarin-6-Lf-NE was better than those of Coumarin-6-NE and Coumarin-6 solution. Lf modified nanoemulsion has great potential for improving the brain delivery of TSI.
Assuntos
Abietanos/química , Abietanos/metabolismo , Encéfalo/metabolismo , Emulsões/química , Lactoferrina/química , Nanopartículas/química , Animais , Disponibilidade Biológica , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Cumarínicos/química , Cumarínicos/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Emulsões/metabolismo , Lactoferrina/metabolismo , Camundongos , Nanopartículas/metabolismo , Tamanho da Partícula , Permeabilidade/efeitos dos fármacos , Polietilenoglicóis/química , Solubilidade , Tiazóis/química , Tiazóis/metabolismo , Distribuição Tecidual/efeitos dos fármacosRESUMO
Tripterygium wilfordii (Celastraceae) is a medicinal plant with anti-inflammatory and immunosuppressive properties. Identification of a vast array of unusual sesquiterpenoids, diterpenoids and triterpenoids in T. wilfordii has spurred investigations of their pharmacological properties. The tri-epoxide lactone triptolide was the first of many diterpenoids identified, attracting interest due to the spectrum of bioactivities. To probe the genetic underpinning of diterpenoid diversity, an expansion of the class II diterpene synthase (diTPS) family was recently identified in a leaf transcriptome. Following detection of triptolide and simple diterpene scaffolds in the root, we sequenced and mined the root transcriptome. This allowed identification of the root-specific complement of TPSs and an expansion in the class I diTPS family. Functional characterization of the class II diTPSs established their activities in the formation of four C-20 diphosphate intermediates, precursors of both generalized and specialized metabolism and a novel scaffold for Celastraceae. Functional pairs of the class I and II enzymes resulted in formation of three scaffolds, accounting for some of the terpenoid diversity found in T. wilfordii. The absence of activity-forming abietane-type diterpenes encouraged further testing of TPSs outside the canonical class I diTPS family. TwTPS27, close relative of mono-TPSs, was found to couple with TwTPS9, converting normal-copalyl diphosphate to miltiradiene. The phylogenetic distance to established diTPSs indicates neo-functionalization of TwTPS27 into a diTPS, a function not previously observed in the TPS-b subfamily. This example of evolutionary convergence expands the functionality of TPSs in the TPS-b family and may contribute miltiradiene to the diterpenoids of T. wilfordii.
Assuntos
Alquil e Aril Transferases/genética , Liases Intramoleculares/genética , Proteínas de Plantas/genética , Tripterygium/genética , Abietanos/química , Abietanos/metabolismo , Alquil e Aril Transferases/classificação , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Diterpenos/química , Diterpenos/metabolismo , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Perfilação da Expressão Gênica/métodos , Liases Intramoleculares/metabolismo , Estrutura Molecular , Monoterpenos/química , Monoterpenos/metabolismo , Família Multigênica , Fenantrenos/química , Fenantrenos/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Homologia de Sequência de Aminoácidos , Tripterygium/enzimologiaRESUMO
Jasmonates (JAs) are important plant hormones that regulate a variety of plant development and defense processes, including biosynthesis of secondary metabolites. The JASMONATE ZIM DOMAIN (JAZ) proteins act as negative regulators in the JA signaling pathways of plants. We first verified that methyl jasmonate (MeJA) enhanced the accumulation of both salvianolic acids and tanshinones in Salvia miltiorrhiza (Danshen) hairy roots by inducing the expression of their biosynthetic pathway genes. Nine JAZ genes were cloned from Danshen and their expression levels in hairy roots were all increased by treatment with MeJA. When analyzed in detail, however, SmJAZ8 showed the strongest expression in the induced hairy roots. Overexpression or RNAi of SmJAZ8 deregulated or up-regulated the yields of salvianolic acids and tanshinones in the MeJA-induced transgenic hairy roots, respectively, and transcription factors and biosynthetic pathway genes showed an expression pattern that mirrored the production of the compounds. Genetic transformation of SmJAZ8 altered the expression of other SmJAZ genes, suggesting evidence of crosstalk occurring in JAZ-regulated secondary metabolism. Furthermore, the transcriptome analysis revealed a primary-secondary metabolism balance regulated by SmJAZ8. Altogether, we propose a novel role for SmJAZ8 as a negative feedback loop controller in the JA-induced biosynthesis of salvianolic acids and tanshinones.
Assuntos
Abietanos/metabolismo , Alcenos/metabolismo , Proteínas Correpressoras/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Polifenóis/metabolismo , Salvia/genética , Proteínas Correpressoras/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Salvia/metabolismoRESUMO
BACKGROUND: Forskolin is a high-value diterpenoid produced exclusively by the Lamiaceae plant Coleus forskohlii. Today forskolin is used pharmaceutically for its adenyl-cyclase activating properties. The limited availability of pure forskolin is currently hindering its full utilization, thus a new environmentally friendly, scalable and sustainable strategy is needed for forskolin production. Recently, the entire biosynthetic pathway leading to forskolin was elucidated. The key steps of the pathway are catalyzed by cytochrome P450 enzymes (CYPs), which have been shown to be the limiting steps of the pathway. Here we study whether protein engineering of the substrate recognition sites (SRSs) of CYPs can improve their efficiency towards forskolin biosynthesis in yeast. RESULTS: As a proof of concept, we engineered the enzyme responsible for the first putative oxygenation step of the forskolin pathway: the conversion of 13R-manoyl oxide to 11-oxo-13R-manoyl oxide, catalyzed by the CYP76AH15. Four CYP76AH15 variants-engineered in the SRS regions-yielded at least a twofold increase of 11-oxo-13R-manoyl oxide when expressed in yeast cells grown in microtiter plates. The highest titers (5.6-fold increase) were observed with the variant A99I, mutated in the SRS1 region. Double or triple CYP76AH15 mutant variants resulted in additional enzymes with optimized performances. Moreover, in planta CYP76AH15 can synthesize ferruginol from miltiradiene. In this work, we showed that the mutants affecting 11-oxo-13R-manoyl oxide synthesis, do not affect ferruginol production, and vice versa. The best performing variant, A99I, was utilized to reconstruct the forskolin biosynthetic pathway in yeast cells. Although these strains showed increased 11-oxo-manoyl oxide production and higher accumulation of other pathway intermediates compared to the native CYP76AH15, lower production of forskolin was observed. CONCLUSIONS: As demonstrated for CYP76AH15, site-directed mutagenesis of SRS regions of plant CYPs may be an efficient and targeted approach to increase the performance of these enzymes. Although in this work we have managed to achieve higher efficiency and specificity of the first CYP of the pathway, further work is necessary in order to increase the overall production of forskolin in yeast cells.