Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Orv Hetil ; 159(24): 959-964, 2018 Jun.
Artigo em Húngaro | MEDLINE | ID: mdl-29888660

RESUMO

L. J. Thénard and J. L. Gay-Lussac discovered hydrogen peroxide in 1818. Later, Thénard noticed that animal and plant tissues decompose hydrogen peroxide. The substance which is responsible for this reaction was named as catalase by O. Loew in 1900. The catalase enzyme was regarded as a diagnostic and a tumour marker in the late years of the 19th century and in the early years of the 20th century. Acatalasemia, an inherited deficiency of enzyme catalase, was studied in Japan, Switzerland and Hungary. The recent findings on catalase are focusing on the effects of reactive oxygen species and on the association of acatalasemia and diabetes mellitus. Orv Hetil. 2018; 159(24): 959-964.


Assuntos
Acatalasia/história , Pesquisa Biomédica/história , Catalase/história , Peróxido de Hidrogênio/história , Animais , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Hungria , Japão , Suíça
2.
Biochim Biophys Acta ; 1862(4): 647-650, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26723540

RESUMO

BACKGROUND: Alloxan induces oxidative stress and hyperglycemia in animal models. Acatalasemic (catalase deficiency) mice are susceptible to alloxan-induced hyperglycemia. As the incidence of hyperglycemia induced by alloxan was reportedly improved when mice were fed a vitamin E supplemented diet, this protective effect was examined. METHODS: Acatalasemic and normal mice fed a vitamin E supplemented diet were treated with alloxan. The pancreas were examined with microscopy. We also isolated pancreatic islets of normal mice treated with alloxan. The glucose stimulated insulin secretion was examined. RESULTS: Vitamin E powerfully ameliorated the increase in apoptosis. Vitamin E increases insulin amounts secreted from pancreatic cells, but does not ameliorate the regulation of the glucose stimulated insulin secretion. CONCLUSIONS: It is suggested that the difference in the mice fed vitamin E supplemented diet is due to an increase of insulin secretion and that vitamin E supplementation may have a role in helping to slow the stages of diabetes mellitus.


Assuntos
Aloxano/toxicidade , Apoptose/efeitos dos fármacos , Hiperglicemia/prevenção & controle , Insulina/metabolismo , Pâncreas/metabolismo , Vitamina E/farmacologia , Acatalasia/genética , Acatalasia/metabolismo , Acatalasia/patologia , Animais , Apoptose/genética , Hiperglicemia/induzido quimicamente , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Insulina/genética , Masculino , Camundongos , Pâncreas/patologia
3.
Int J Med Microbiol ; 307(8): 431-434, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29089242

RESUMO

We have screened 2568 healthy individuals (mostly children) for Staphylococcus aureus and Streptococcus pneumoniae nasal carriage between 2010 and 2012. Out of the isolated 751 S. aureus strains, we found one methicillin-sensitive catalase-negative S. aureus (CNSA). Our CNSA isolate possessed a novel nonsense point mutation in the katA gene leading to early truncation of the protein product. The strain was resistant to penicillin and erythromycin, but sensitive to all other tested antibiotics and carried the enterotoxin A gene. It belonged to sequence type 5 (ST5), which is a successful, worldwide spread, usually MRSA clone. Catalase has been described as a virulence factor strictly required for nasal colonisation, and this is the first case contradicting this theory, as all previous CNSA isolates derived from infections. This is the first report of a CNSA from a symptomless carrier as well as the first occurrence in Hungary.


Assuntos
Acatalasia , Portador Sadio/microbiologia , Códon sem Sentido , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Hungria , Masculino , Testes de Sensibilidade Microbiana , Tipagem Molecular , Cavidade Nasal/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação , Adulto Jovem
4.
Toxicol Appl Pharmacol ; 287(3): 232-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26074427

RESUMO

Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat(b)/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug=GD 1), exposed for 24h to 2 or 4mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p<0.001). Maternal pretreatment of C57BL/6 WT dams with 50kU/kg PEG-catalase (PEG-cat) 8h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p<0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p<0.01), and trends for reduced anterior neuropore closure, turning and crown-rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p<0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies.


Assuntos
Anormalidades Induzidas por Medicamentos/prevenção & controle , Acatalasia/enzimologia , Catalase/metabolismo , Embrião de Mamíferos/efeitos dos fármacos , Etanol/toxicidade , Anormalidades Induzidas por Medicamentos/embriologia , Anormalidades Induzidas por Medicamentos/enzimologia , Anormalidades Induzidas por Medicamentos/genética , Acatalasia/embriologia , Acatalasia/genética , Animais , Catalase/genética , Catalase/farmacologia , Dano ao DNA , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Técnicas de Cultura Embrionária , Embrião de Mamíferos/enzimologia , Embrião de Mamíferos/patologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Idade Gestacional , Humanos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Estresse Oxidativo , Polietilenoglicóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo
5.
Orv Hetil ; 156(10): 393-8, 2015 Mar 08.
Artigo em Húngaro | MEDLINE | ID: mdl-25726767

RESUMO

The catalase enzyme decomposes the toxic concentrations of hydrogen peroxide into oxygen and water. Hydrogen peroxide is a highly reactive small molecule and its excessive concentration may cause significant damages to proteins, deoxyribonucleic acid, ribonucleic acid and lipids. Acatalasemia refers to inherited deficiency of the catalase enzyme. In this review the authors discuss the possible role of the human catalase enzyme, the metabolism of hydrogen peroxide, and the phenomenon of hydrogen peroxide paradox. In addition, they review data obtained from Hungarian acatalasemic patients indicating an increased frequency of type 2 diabetes mellitus, especially in female patients, and an early onset of type 2 diabetes in these patients. There are 10 catalase gene variants which appear to be responsible for decreased blood catalase activity in acatalasemic patients with type 2 diabetes. It is assumed that low levels of blood catalase may cause an increased concentration of hydrogen peroxide which may contribute to the pathogenesis of type 2 diabetes mellitus.


Assuntos
Acatalasia/metabolismo , Catalase/metabolismo , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/etiologia , Peróxido de Hidrogênio/metabolismo , Mutação , Acatalasia/complicações , Acatalasia/genética , Catalase/genética , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/genética , Variação Genética , Heterozigoto , Humanos , Hungria/epidemiologia , Estresse Oxidativo , Fatores Sexuais
6.
Arch Oral Biol ; 167: 106054, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39079473

RESUMO

OBJECTIVES: Acatalasemia is a very rare disorder characterized by gangrenous oral ulcerations and is caused by biallelic variants in the CAT gene which encodes the catalase enzyme that decomposes the hydrogen peroxide molecules to remove their toxic effect. We report two siblings from a consanguineous Egyptian family presenting with joint hyperlaxity, loose dentitions with gangrenous periodontitis, and early loss of teeth. STUDY DESIGN: The patients were clinically suspected to have the periodontal type of Ehlers-Danlos syndrome and thus genetic testing of C1S and C1R causative genes was carried out first by Sanger sequencing then exome sequencing (ES) was considered. RESULTS: No pathogenic variants were detected in C1S and C1R genes then ES revealed a new homozygous missense variant in the CAT gene segregating in the family, c .635 T > G (p.Met212Arg). CONCLUSION: We describe the first Egyptian cases with acatalasemia and expand the mutational spectrum of this rare disorder. Premature loss of teeth is an emerging finding in our cases and addresses the hazardous systemic manifestations associated with the disorder. The rarity of inherited orodental diseases renders the accurate diagnosis difficult and complicates the symptoms. Therefore, the use of advanced molecular technologies is highly advisable for early diagnosis and management of patients.


Assuntos
Acatalasia , Catalase , Mutação de Sentido Incorreto , Linhagem , Periodontite , Adolescente , Criança , Feminino , Humanos , Masculino , Acatalasia/complicações , Acatalasia/genética , Catalase/genética , Consanguinidade , Egito , Sequenciamento do Exoma , Gangrena/genética , Úlceras Orais/genética , Periodontite/complicações , Periodontite/genética
7.
Mutat Res ; 753(2): 147-154, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24025477

RESUMO

Hydrogen peroxide was - and is still - considered toxic for a wide range of living organisms. Oxidative stress occurs when there is an excess of pro-oxidants over antioxidants and it has been implicated in several diseases. Catalase is involved in hydrogen peroxide catabolism and is important in defense against oxidative stress. Acatalasemia means the inherited near-total deficiency of catalase activity, usually in reference to red cell catalase. Acatalasemia was thought at first to be an asymptotic disorder. In the absence of catalase, neither the Japanese, or Hungarian acatalasemics nor acatalasemic mice had significantly increased blood glutathione peroxidase activity. In animal models, catalase deficient tissues show much slower rates of removal of extracellular hydrogen peroxide. In catalase knock-out mice, a decreased hydrogen peroxide removing capacity and increased reactive oxygen species formation were reported. Hydrogen peroxide may cause methemoglobinemia in patients with catalase deficiency. During anesthesia for a Japanese acatalasemic patient the disinfection with hydrogen peroxide solution caused severe methemoglobinemia. Patients with inherited catalase deficiency, who are treated with uric acid oxidase (rasburicase) may experience very high concentrations of hydrogen peroxide and may suffer from methemoglobinemia and hemolysis. The high (18.5%) prevalence of diabetes mellitus in inherited catalase deficient individuals and the earlier (10 years) manifestation of the disease may be attributed to the oxidative damage of oxidant sensitive, insulin producing pancreatic beta-cells. Ninety-seven of 114 acatalasemics had diseases related to oxidative stress and aging. The oxidative stress due to catalase deficiency could contribute to the manifestation of diabetes while for the other diseases it may be one of the factors in their causations. In summary, inherited catalase deficiency is associated with clinical features, pathologic laboratory test results, age and oxidative stress related disorders. Rather than considering it a benign condition, it should be considered as a complicating condition for aging and oxidative stress.


Assuntos
Acatalasia/etiologia , Catalase/sangue , Acatalasia/genética , Envelhecimento , Animais , Diabetes Gestacional/enzimologia , Modelos Animais de Doenças , Feminino , Heterozigoto , Homozigoto , Humanos , Peróxido de Hidrogênio/sangue , Camundongos , Camundongos Knockout , Mutação , Estresse Oxidativo , Gravidez , Vitiligo/enzimologia
8.
Arch Biochem Biophys ; 525(2): 195-200, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22365890

RESUMO

The enzyme catalase catalyzes the breakdown of hydrogen peroxide into oxygen and water. It is the main regulator of hydrogen peroxide metabolism. Hydrogen peroxide is a highly reactive small molecule formed as a natural byproducts of energy metabolism. Excessive concentrations may cause significant damages to protein, DNA, RNA and lipids. Low levels in muscle cells, facilitate insulin signaling. Acatalasemia is a result of the homozygous mutations in the catalase gene, has a worldwide distribution with 12 known mutations. Increased hydrogen peroxide, due to catalase deficiency, plays a role in the pathogenesis of several diseases such as diabetes mellitus. Diabetes mellitus is a disorder caused by multiple genetic and environmental factors. Examination of Hungarian diabetic and acatalasemic patients showed that an increased frequency of catalase gene mutations exists among diabetes patients. Inherited catalase deficiency may increase the risk of type 2 diabetes mellitus, especially for females. Early onset of type 2 diabetes occurs with inherited catalase deficiency. Low levels of SOD and glutathione peroxidase could contribute to complications caused by increased oxidative stress.


Assuntos
Acatalasia/genética , Diabetes Mellitus/enzimologia , Acatalasia/complicações , Complicações do Diabetes/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus Tipo 2/metabolismo , Éxons , Feminino , Glutationa Peroxidase/metabolismo , Homozigoto , Humanos , Peróxido de Hidrogênio/química , Insulina/metabolismo , Masculino , Mutação , Estresse Oxidativo , Oxigênio/química , Espécies Reativas de Oxigênio , Risco , Fatores Sexuais , Transdução de Sinais , Superóxido Dismutase/metabolismo
9.
FASEB J ; 25(7): 2188-200, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21478259

RESUMO

Oxidative stress and reactive oxygen species (ROS) such as hydrogen peroxide (H(2)O(2)), which is detoxified by catalase, are implicated in fetal death and birth defects. However, embryonic levels of catalase are only ∼ 5% of adult activity, and its protective role is not understood completely. Herein, we used mutant catalase-deficient mice [acatalasemic (aCat)] and transgenic mice expressing human catalase (hCat), which, respectively, exhibited 40-50% reductions and 2-fold elevations in the activities of embryonic and fetal brain catalase, to show that embryonic catalase protects the embryo from both physiological oxidative stress and the ROS-initiating antiepileptic drug phenytoin. Compared to wild-type (WT) catalase-normal controls, both untreated and phenytoin-exposed aCat mice exhibited a 30% increase in embryonic DNA oxidation and a >2-fold increase in embryopathies, both of which were completely blocked by protein therapy with exogenous catalase. Conversely, compared to WT controls, untreated and, to a lesser extent, phenytoin-exposed hCat mice were protected, with untreated hCat embryos exhibiting a 40% decrease in embryonic DNA oxidation and up to a 67% decrease in embryopathies. Embryonic catalase accordingly plays an important protective role, and both physiological and phenytoin-enhanced oxidative stress can be embryopathic.


Assuntos
Catalase/metabolismo , DNA/metabolismo , Embrião de Mamíferos/enzimologia , Fenitoína/toxicidade , Anormalidades Induzidas por Medicamentos/enzimologia , Anormalidades Induzidas por Medicamentos/genética , Anormalidades Induzidas por Medicamentos/mortalidade , Acatalasia/enzimologia , Acatalasia/genética , Acatalasia/mortalidade , Animais , Anticonvulsivantes/metabolismo , Anticonvulsivantes/toxicidade , Encéfalo/anormalidades , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Catalase/genética , Relação Dose-Resposta a Droga , Embrião de Mamíferos/anormalidades , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Oxirredução/efeitos dos fármacos , Fenitoína/metabolismo , Gravidez , Taxa de Sobrevida
10.
Mol Biol Rep ; 39(4): 4787-95, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21947853

RESUMO

Catalase is the main regulator of hydrogen peroxide metabolism. In vitiligo patients there are conflicting data on its activity and no data on the effect of -262C>T polymorphism in the catalase gene. Blood catalase activity, -262C>T polymorphism and acatalasemia mutations were examined in 75 vitiligo patients and in 162 controls, in Hungary. We measured blood catalase activity and conducted analyses with PCR-SSCP, polyacrylamide gel electrophoresis and silver staining in combination with RFLP and nucleotide sequencing. Comparison of the wild (CC) genotype and the mutant (TT) genotype in the vitiligo patients revealed a non significant (P > 0.19) increase in blood catalase. Male controls with the CT genotype had significantly (P < 0.04) lower blood catalase activity than CC genotype controls. Female vitiligo patients with CC genotype had lower (P < 0.04) blood catalase than female controls. The frequency of wild genotype (CC) and C alleles is significantly (P < 0.04) decreased in Hungarian controls when compared to controls in Slovenia, Morocco, UK, Greece, Turkey, USA, China. The detection of a novel acatalasemia mutation (37C>T in exon 9) and the 113G>A (exon 9) mutation in Hungary are further proofs of genetic heterogeneity origin of acatalasemia mutations. In conclusion, the -262 C>T polymorphism has a reverse effect on blood catalase in vitiligo patients and in controls. In controls the mutant genotypes and alleles are more frequent in Hungary than in several other populations. The new acatalasemia mutations are further examples of heterogeneity of acatalasemia.


Assuntos
Acatalasia/genética , Catalase/genética , Predisposição Genética para Doença , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Vitiligo/genética , Acatalasia/sangue , Acatalasia/complicações , Acatalasia/enzimologia , Adolescente , Adulto , Idoso , Sequência de Bases , Estudos de Casos e Controles , Catalase/sangue , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Frequência do Gene/genética , Humanos , Hungria , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Razão de Chances , Linhagem , Polimorfismo de Fragmento de Restrição/genética , Polimorfismo Conformacional de Fita Simples/genética , Vitiligo/sangue , Vitiligo/complicações , Vitiligo/enzimologia , Adulto Jovem
11.
BMC Nephrol ; 13: 14, 2012 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-22443450

RESUMO

BACKGROUND: Catalase is an important antioxidant enzyme that regulates the level of intracellular hydrogen peroxide and hydroxyl radicals. The effects of catalase deficiency on albuminuria and progressive glomerulosclerosis have not yet been fully elucidated. The adriamycin (ADR) nephropathy model is considered to be an experimental model of focal segmental glomerulosclerosis. A functional catalase deficiency was hypothesized to exacerbate albuminuria and the progression of glomerulosclerosis in this model. METHODS: ADR was intravenously administered to both homozygous acatalasemic mutant mice (C3H/AnLCs(b)Cs(b)) and control wild-type mice (C3H/AnLCs(a)Cs(a)). The functional and morphological alterations of the kidneys, including albuminuria, renal function, podocytic, glomerular and tubulointerstitial injuries, and the activities of catalase were then compared between the two groups up to 8 weeks after disease induction. Moreover, the presence of a mutation of the toll-like receptor 4 (tlr4) gene, which was previously reported in the C3H/HeJ strain, was investigated in both groups. RESULTS: The ADR-treated mice developed significant albuminuria and glomerulosclerosis, and the degree of these conditions in the ADR-treated acatalasemic mice was higher than that in the wild-type mice. ADR induced progressive renal fibrosis, renal atrophy and lipid peroxide accumulation only in the acatalasemic mice. In addition, the level of catalase activity was significantly lower in the kidneys of the acatalasemic mice than in the wild-type mice during the experimental period. The catalase activity increased after ADR injection in wild-type mice, but the acatalasemic mice did not have the ability to increase their catalase activity under oxidative stress. The C3H/AnL strain was found to be negative for the tlr4 gene mutation. CONCLUSIONS: These data indicate that catalase deficiency plays an important role in the progression of renal injury in the ADR nephropathy model.


Assuntos
Acatalasia/fisiopatologia , Albuminúria/induzido quimicamente , Albuminúria/fisiopatologia , Catalase/metabolismo , Doxorrubicina , Nefropatias/induzido quimicamente , Nefropatias/fisiopatologia , Acatalasia/complicações , Animais , Suscetibilidade a Doenças , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout
12.
Trends Biochem Sci ; 32(1): 44-50, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17158050

RESUMO

Mammalian catalase has been the subject of many classic biochemical studies. Despite our detailed knowledge of its functional mechanisms and its three-dimensional structure, however, several unexpected features of mammalian catalase have been recently discovered. For example, some mammalian catalases seem to have oxidase activity and produce reactive oxygen species when exposed to UVB light. In addition, bovine catalase uses unbound NAD(P)H to prevent substrate inactivation without displacing catalase-bound NADP(+). Coupled with the earlier discovery of catalase-bound NADPH, these developments indicate that serendipity and new investigative approaches can reveal unexpected features, even for an enzyme that has been studied for over 100 years.


Assuntos
Catalase , Acatalasia/fisiopatologia , Animais , Catalase/metabolismo , Catalase/efeitos da radiação , Catalase/ultraestrutura , Humanos , Peróxido de Hidrogênio/metabolismo , Modelos Moleculares , NADP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta
13.
J Biol Chem ; 285(4): 2665-75, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19933270

RESUMO

Reactive oxygen species are known to participate in the regulation of intracellular signaling pathways, including activation of NF-kappaB. Recent studies have indicated that increases in intracellular concentrations of hydrogen peroxide (H(2)O(2)) have anti-inflammatory effects in neutrophils, including inhibition of the degradation of I kappaB alpha after TLR4 engagement. In the present experiments, we found that culture of lipopolysaccharide-stimulated neutrophils and HEK 293 cells with H(2)O(2) resulted in diminished ubiquitination of I kappaB alpha and decreased SCF(beta-TrCP) ubiquitin ligase activity. Exposure of neutrophils or HEK 293 cells to H(2)O(2) was associated with reduced binding between phosphorylated I kappaB alpha and SCF(beta-TrCP) but no change in the composition of the SCF(beta-TrCP) complex. Lipopolysaccharide-induced SCF(beta-TrCP) ubiquitin ligase activity as well as binding of beta-TrCP to phosphorylated I kappaB alpha was decreased in the lungs of acatalasemic mice and mice treated with the catalase inhibitor aminotriazole, situations in which intracellular concentrations of H(2)O(2) are increased. Exposure to H(2)O(2) resulted in oxidative modification of cysteine residues in beta-TrCP. Cysteine 308 in Blade 1 of the beta-TrCP beta-propeller region was found to be required for maximal binding between beta-TrCP and phosphorylated I kappaB alpha. These findings suggest that the anti-inflammatory effects of H(2)O(2) may result from its ability to decrease ubiquitination as well as subsequent degradation of I kappaB alpha through inhibiting the association between I kappaB alpha and SCF(beta-TrCP).


Assuntos
Acatalasia/metabolismo , Lesão Pulmonar Aguda/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteínas I-kappa B/metabolismo , Oxidantes/farmacologia , Proteínas Ligases SKP Culina F-Box/metabolismo , Acatalasia/induzido quimicamente , Acatalasia/genética , Lesão Pulmonar Aguda/induzido quimicamente , Amitrol (Herbicida)/farmacologia , Animais , Catalase/antagonistas & inibidores , Catalase/metabolismo , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Humanos , Rim/citologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Inibidor de NF-kappaB alfa , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Ligases SKP Culina F-Box/genética , Ubiquitinação
14.
J Biol Chem ; 285(43): 33154-33164, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20729205

RESUMO

Although metabolic conditions associated with an increased AMP/ATP ratio are primary factors in the activation of 5'-adenosine monophosphate-activated protein kinase (AMPK), a number of recent studies have shown that increased intracellular levels of reactive oxygen species can stimulate AMPK activity, even without a decrease in cellular levels of ATP. We found that exposure of recombinant AMPKαßγ complex or HEK 293 cells to H(2)O(2) was associated with increased kinase activity and also resulted in oxidative modification of AMPK, including S-glutathionylation of the AMPKα and AMPKß subunits. In experiments using C-terminal truncation mutants of AMPKα (amino acids 1-312), we found that mutation of cysteine 299 to alanine diminished the ability of H(2)O(2) to induce kinase activation, and mutation of cysteine 304 to alanine totally abrogated the enhancing effect of H(2)O(2) on kinase activity. Similar to the results obtained with H(2)O(2)-treated HEK 293 cells, activation and S-glutathionylation of the AMPKα subunit were present in the lungs of acatalasemic mice or mice treated with the catalase inhibitor aminotriazole, conditions in which intracellular steady state levels of H(2)O(2) are increased. These results demonstrate that physiologically relevant concentrations of H(2)O(2) can activate AMPK through oxidative modification of the AMPKα subunit. The present findings also imply that AMPK activation, in addition to being a response to alterations in intracellular metabolic pathways, is directly influenced by cellular redox status.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Peróxido de Hidrogênio/farmacologia , Oxidantes/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/genética , Acatalasia/genética , Acatalasia/metabolismo , Amitrol (Herbicida)/farmacologia , Animais , Catalase/antagonistas & inibidores , Catalase/genética , Catalase/metabolismo , Domínio Catalítico , Linhagem Celular , Indução Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glutationa/metabolismo , Humanos , Camundongos , Mutação , Oxirredução/efeitos dos fármacos
15.
Biochim Biophys Acta ; 1802(2): 240-6, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19883754

RESUMO

Human acatalasemia may be a risk factor for the development of diabetes mellitus. However, the mechanism by which diabetes is induced is still poorly understood. The impact of catalase deficiency on the onset of diabetes has been studied in homozygous acatalasemic mutant mice or control wild-type mice by intraperitoneal injection of diabetogenic alloxan. The incidence of diabetes was higher in acatalasemic mice treated with a high dose (180 mg/kg body weight) of alloxan. A higher dose of alloxan accelerated severe atrophy of pancreatic islets and induced pancreatic beta cell apoptosis in acatalasemic mice in comparison to wild-type mice. Catalase activity remained low in the acatalasemic pancreas without the significant compensatory up-regulation of glutathione peroxidase or superoxide dismutase. Furthermore, daily intraperitoneal injection of angiotensin II type 1 (AT1) receptor antagonist telmisartan (0.1 mg/kg body weight) prevented the development of alloxan-induced hyperglycemia in acatalasemic mice. This study suggests that catalase plays a crucial role in the defense against oxidative-stress-mediated pancreatic beta cell death in an alloxan-induced diabetes mouse model. Treatment with telmisartan may prevent the onset of alloxan-induced diabetes even under acatalasemic conditions.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Acatalasia/metabolismo , Aloxano , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Animais , Apoptose , Benzimidazóis/uso terapêutico , Benzoatos/uso terapêutico , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Peso Corporal , Catalase/metabolismo , Morte Celular , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/prevenção & controle , Glutationa Peroxidase/metabolismo , Homozigoto , Hiperglicemia/enzimologia , Hiperglicemia/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Camundongos Mutantes , Superóxido Dismutase/metabolismo , Telmisartan
16.
Toxicol Appl Pharmacol ; 252(1): 55-61, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21295602

RESUMO

The mechanisms underlying the teratogenicity of methanol (MeOH) in rodents, unlike its acute toxicity in humans, are unclear, but may involve reactive oxygen species (ROS). Embryonic catalase, although expressed at about 5% of maternal activity, may protect the embryo by detoxifying ROS. This hypothesis was investigated in whole embryo culture to remove confounding maternal factors, including metabolism of MeOH by maternal catalase. C57BL/6 (C57) mouse embryos expressing human catalase (hCat) or their wild-type (C57 WT) controls, and C3Ga.Cg-Catb/J acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug=GD 1), exposed for 24 h to 4 mg/ml MeOH or vehicle, and evaluated for functional and morphological changes. hCat and C57 WT vehicle-exposed embryos developed normally. MeOH was embryopathic in C57 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed and turning, whereas hCat embryos were protected. Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to C3H WT controls, suggesting that endogenous ROS are embryopathic. MeOH was more embryopathic in aCat embryos than WT controls, with reduced anterior neuropore closure and head length only in catalase-deficient embryos. These data suggest that ROS may be involved in the embryopathic mechanism of methanol, and that embryonic catalase activity may be a determinant of teratological risk.


Assuntos
Catalase/biossíntese , Doenças Fetais/enzimologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Metanol/toxicidade , Mutação/genética , Acatalasia/enzimologia , Acatalasia/genética , Animais , Catalase/genética , Embrião de Mamíferos , Feminino , Doenças Fetais/induzido quimicamente , Humanos , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez
17.
Food Chem Toxicol ; 156: 112509, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34390818

RESUMO

Acatalasemia is caused by genetic defect in the catalase gene. Human achatalasemia patients are able to scavenge physiological hydrogen peroxide but are vulnerable to exogenous oxidative stress. In the present study, we used an acetaminophen-induced hepatotoxicity model in acatalasemic mice to explore this vulnerability. Interestingly, the acetaminophen-induced decrease in total glutathione levels was more prolonged in acatalasemic mice. While the subunits of glutamate-cysteine ligase, a glutathione synthase enzyme, were increased by acetaminophen in the liver of wild-type mice, their expression was lower and was further reduced by acetaminophen in acatalasemic mice. This feature was also observed in immortalized hepatocytes derived from the livers of these mice. However, when catalase was knocked down in HepG2 cells, a cultured human liver cell line, the expression of glutamate-cysteine ligase subunits was increased, suggesting that the low expression of glutamate-cysteine ligase subunits in acatalasemia may be due to other mechanism than catalase deficiency. Therefore, when other factors were investigated, it was found that transforming growth factor-ß1 was up-regulated by acetaminophen in the liver of acatalasemic mice, which may inhibit the expression of glutamate-cysteine ligase subunits. The results of this study suggest a new toxic mechanism of acetaminophen-induced liver injury in patients with acatalasemia.


Assuntos
Acatalasia/genética , Acetaminofen/toxicidade , Catalase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Glutationa/metabolismo , Animais , Catalase/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Predisposição Genética para Doença , Glutationa/genética , Células Hep G2 , Humanos , Masculino , Camundongos
18.
Am J Respir Crit Care Med ; 179(8): 694-704, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19151196

RESUMO

RATIONALE: Although reactive oxygen species (ROS) are generally considered to be proinflammatory and to contribute to cellular and organ dysfunction when present in excessive amounts, there is evidence that specific ROS, particularly hydrogen peroxide (H(2)O(2)), may have antiinflammatory properties. OBJECTIVES: To address the role that increases in intracellular H(2)O(2) may play in acute inflammatory processes, we examined the effects of catalase inhibition or the absence of catalase on LPS-induced inflammatory responses. METHODS: Neutrophils from control or acatalasemic mice, or control neutrophils incubated with the catalase inhibitor aminotriazole, were treated with LPS, and levels of reactive oxygen species, proteasomal activity, NF-kappaB activation, and proinflammatory cytokine expression were measured. Acute lung injury (ALI) was produced by intratracheal injection of LPS into control, acatalasemic-, or aminotriazole-treated mice. MEASUREMENTS AND MAIN RESULTS: Intracellular levels of H(2)O(2) were increased in acatalasemic neutrophils and in neutrophils exposed to aminotriazole. Compared with LPS-stimulated neutrophils from control mice, neutrophils from acatalasemic mice or neutrophils treated with aminotriazole demonstrated reduced 20S and 26S proteasomal activity, IkappaB-alpha degradation, NF-kappaB nuclear accumulation, and production of the proinflammatory cytokines TNF-alpha and macrophage inhibitory protein (MIP)-2. The severity of LPS-induced ALI was less in acatalasemic mice and in mice treated with aminotriazole as compared with that found in control mice. CONCLUSIONS: These results indicate that H(2)O(2) has antiinflammatory effects on neutrophil activation and inflammatory processes, such as ALI, in which activated neutrophils play a major role.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Peróxido de Hidrogênio/metabolismo , Ativação de Neutrófilo/fisiologia , Acatalasia/imunologia , Acatalasia/metabolismo , Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/imunologia , Amitrol (Herbicida)/farmacologia , Animais , Catalase/antagonistas & inibidores , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Peróxido de Hidrogênio/imunologia , Proteínas I-kappa B/imunologia , Proteínas I-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Inibidor de NF-kappaB alfa , NF-kappa B/imunologia , NF-kappa B/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo
19.
Aging (Albany NY) ; 12(6): 5195-5208, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32186522

RESUMO

Peroxisomes are small, membrane-enclosed eukaryotic organelles that house various enzymes with metabolic functions. One important feature in both Hutchinson-Gilford Progeria Syndrome (HGPS) and normal aging is the elevated levels of Reactive Oxygen Species (ROS), which are generated from metabolic pathways with the capacity to cause oxidative damage to macromolecules within the cells. Although peroxisomal bioreactions can generate free radicals as their byproducts, many metabolic enzymes within the peroxisomes play critical roles as ROS scavengers, in particular, catalase. Here, we observed impaired peroxisomes-targeting protein trafficking, which suggested that the poorly assembled peroxisomes might cause high oxidative stress, contributing to the premature senescent phenotype in HGPS. We then investigated the ROS clearance efficiency by peroxisomal enzymes and found a significantly decreased expression of catalase in HGPS. Furthermore, we evaluated the effects of two promising HGPS-treatment drugs Methylene Blue and RAD001 (Everolimus, a rapamycin analog) on catalase in HGPS fibroblasts. We found that both drugs effectively reduced cellular ROS levels. MB, as a well-known antioxidant, did not affect catalase expression or activity. Interestingly, RAD001 treatment significantly upregulated catalase activity in HGPS cells. Our study presents the first characterization of peroxisomal function in HGPS and provides new insights into the cellular aspects of HGPS and the ongoing clinical trial.


Assuntos
Acatalasia/metabolismo , Peroxissomos/metabolismo , Progéria/metabolismo , Linhagem Celular , Senescência Celular , Inibidores Enzimáticos/farmacologia , Everolimo/farmacologia , Fibroblastos/metabolismo , Humanos , Lamina Tipo A , Azul de Metileno/farmacologia , Mutação , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
20.
J Hepatol ; 50(6): 1184-91, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19398231

RESUMO

BACKGROUND/AIMS: Oxidative stress via generation of reactive oxygen species is suggested to be the major mechanism of alcohol-induced liver injury. We investigated the effects of glutathione peroxidase-1 and catalase double deficiency (Gpx-1(-/-)/Cat(-/-)) on liver injury and changes in the sulfur amino acid metabolism induced by binge ethanol administration. METHODS: Ethanol (5 g/kg) was administered orally to the wild-type and the Gpx-1(-/-)/Cat(-/-) mice every 12 h for a total of three doses. Mice were sacrificed 6 h after the final dose. RESULTS: The Gpx-1/Cat deficiency alone increased malondialdehyde levels in liver significantly. Hepatic methionine adenosyltransferase (MAT) activity and S-adenosylmethionine levels were decreased, however, glutathione contents were not changed. Ethanol administration to the Gpx-1(-/-)/Cat(-/-) mice increased the elevation of serum alanine aminotransferase activity, plasma homocysteine levels, hepatic fat accumulation and lipid peroxidation compared with the wild-type animals challenged with ethanol. Also the reduction of MAT activity and S-adenosylmethionine levels was enhanced, but MATI/III expression was increased significantly. CONCLUSIONS: The results indicate that Gpx-1 and Cat have critical roles in the protection of liver against binge ethanol exposure. Augmentation of ethanol-induced oxidative stress may be responsible for the impairment of the transsulfuration reactions and the aggravation of acute liver injury in the Gpx-1(-/-)/Cat(-/-) mice.


Assuntos
Acatalasia/metabolismo , Aminoácidos Sulfúricos/metabolismo , Etanol/toxicidade , Glutationa Peroxidase/deficiência , Fígado/efeitos dos fármacos , Fígado/metabolismo , Acatalasia/genética , Animais , Catalase/genética , Catalase/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Glutationa Peroxidase/genética , Fígado/lesões , Fígado/patologia , Masculino , Metabolômica , Metionina Adenosiltransferase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Glutationa Peroxidase GPX1
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa