Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 324(2): C377-C394, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36571440

RESUMO

Osteoarthritis (OA) is among the most frequent diseases of the musculoskeletal system. Degradation of cartilage extracellular matrix (ECM) is a hallmark of OA. During the degradation process, intact/full-length proteins and proteolytic fragments are released which then might induce different downstream responses via diverse receptors, therefore leading to different biological consequences. Collagen type II and the proteoglycan aggrecan are the most abundant components of the cartilage ECM. However, over the last decades, a large number of minor components have been identified and for some of those, a role in the manifold processes associated with OA has already been demonstrated. To date, there is still no therapy able to halt or cure OA. A better understanding of the matrikine landscape occurring with or even preceding obvious degenerative changes in joint tissues is needed and might help to identify molecules that could serve as biomarkers, druggable targets, or even be blueprints for disease modifying drug OA drugs. For this narrative review, we screened PubMed for relevant literature in the English language and summarized the current knowledge regarding the function of selected ECM molecules and the derived matrikines in the context of cartilage and OA.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Cartilagem Articular/metabolismo , Osteoartrite/metabolismo , Matriz Extracelular/metabolismo , Agrecanas/metabolismo , Agrecanas/uso terapêutico , Proteínas da Matriz Extracelular/metabolismo , Condrócitos/metabolismo
2.
Front Endocrinol (Lausanne) ; 13: 1060721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531454

RESUMO

Background: Osteoarthritis (OA) is a common aging-related degenerative joint disease with chronic inflammation as its possible pathogenesis. Oroxin B (OB), a flavonoid isolated from traditional Chinese herbal medicine, possesses anti-inflammation properties which may be involved in regulating the pathogenesis of OA, but its mechanism has not been elucidated. Our study was the first to explore the potential chondroprotective effect and elucidate the underlying mechanism of OB in OA. Methods: In vitro, primary mice chondrocytes were stimulated with IL-1ß along with or without the administration of OB or autophagy inhibitor 3-methyladenine (3-MA). Cell viability assay was measured with a cell counting kit-8 (CCK-8). The phenotypes of anabolic-related (Aggrecan and Collagen II), catabolic-related (MMP3, MMP13, and ADAMTS5), inflammation-related (iNOS, COX-2, TNF-α, IL-6, and IL-1ß), and markers of related signaling pathways in chondrocytes with different treatment were detected through western blot, RT-qPCR, and immunofluorescent staining. In vivo, the destabilized medial meniscus (DMM) operation was performed to establish the OA mice model. After knee intra-articular injection with OB for 8 weeks, the mice's knee joints were obtained for subsequent histological staining and analysis. Results: OB reversed the expression level of anabolic-related proteins (Aggrecan and Collagen II) and catabolic-related (MMP3, MMP13, and ADAMTS5) in IL-1ß-induced chondrocytes. Mechanistically, OB suppressed the inflammatory response stimulated by IL-1ß, as the inflammation-related (iNOS, COX-2, TNF-α, IL-6, and IL-1ß) markers were downregulated after the administration of OB in IL-1ß-induced chondrocytes. Besides, the activation of PI3K/AKT/mTOR signaling pathway induced by IL-1ß could be inhibited by OB. Additionally, the autophagy process impaired by IL-1ß could be rescued by OB. What's more, the introduction of 3-MA to specifically inhibit the autophagic process impairs the protective effect of OB on cartilage. In vivo, histological staining revealed that intra-articular injection of OB attenuated the cartilage degradation, as well as reversed the expression level of anabolic and catabolic-related proteins such as Aggrecan, Collagen II, and MMP13 induced in DMM-induced OA models. Conclusions: The study verified that OB exhibited the chondroprotective effect by anti-inflammatory, inhibiting the PI3K/AKT/mTOR signaling pathway, and enhancing the autophagy process, indicating that OB might be a promising agent for the treatment of OA.


Assuntos
Osteoartrite , Fosfatidilinositol 3-Quinases , Camundongos , Animais , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/farmacologia , Metaloproteinase 3 da Matriz/uso terapêutico , Agrecanas/metabolismo , Agrecanas/farmacologia , Agrecanas/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/uso terapêutico , Osteoartrite/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Interleucina-6 , Condrócitos , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Anti-Inflamatórios/uso terapêutico , Autofagia/fisiologia , Colágeno/metabolismo
3.
Biomolecules ; 10(9)2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867198

RESUMO

This review examines aggrecan's roles in developmental embryonic tissues, in tissues undergoing morphogenetic transition and in mature weight-bearing tissues. Aggrecan is a remarkably versatile and capable proteoglycan (PG) with diverse tissue context-dependent functional attributes beyond its established role as a weight-bearing PG. The aggrecan core protein provides a template which can be variably decorated with a number of glycosaminoglycan (GAG) side chains including keratan sulphate (KS), human natural killer trisaccharide (HNK-1) and chondroitin sulphate (CS). These convey unique tissue-specific functional properties in water imbibition, space-filling, matrix stabilisation or embryonic cellular regulation. Aggrecan also interacts with morphogens and growth factors directing tissue morphogenesis, remodelling and metaplasia. HNK-1 aggrecan glycoforms direct neural crest cell migration in embryonic development and is neuroprotective in perineuronal nets in the brain. The ability of the aggrecan core protein to assemble CS and KS chains at high density equips cartilage aggrecan with its well-known water-imbibing and weight-bearing properties. The importance of specific arrangements of GAG chains on aggrecan in all its forms is also a primary morphogenetic functional determinant providing aggrecan with unique tissue context dependent regulatory properties. The versatility displayed by aggrecan in biodiverse contexts is a function of its GAG side chains.


Assuntos
Agrecanas/fisiologia , Neurogênese/fisiologia , Suporte de Carga , Agrecanas/química , Agrecanas/uso terapêutico , Animais , Biodiversidade , Antígenos CD57/fisiologia , Cartilagem/embriologia , Desenvolvimento Embrionário/fisiologia , Glicosaminoglicanos/química , Glicosaminoglicanos/fisiologia , Coração/embriologia , Coração/fisiologia , Humanos , Crista Neural/fisiologia , Relação Estrutura-Atividade
4.
FEBS J ; 277(19): 3904-23, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20840587

RESUMO

The expression of proteoglycans (PGs), essential macromolecules of the tumor microenvironment, is markedly altered during malignant transformation and tumor progression. Synthesis of stromal PGs is affected by factors secreted by cancer cells and the unique tumor-modified extracellular matrix may either facilitate or counteract the growth of solid tumors. The emerging theme is that this dual activity has intrinsic tissue specificity. Matrix-accumulated PGs, such as versican, perlecan and small leucine-rich PGs, affect cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Furthermore, expression of cell-surface-associated PGs, such as syndecans and glypicans, is also modulated in both tumor and stromal cells. Cell-surface-associated PGs bind various factors that are involved in cell signaling, thereby affecting cell proliferation, adhesion and motility. An important mechanism of action is offered by a proteolytic processing of cell-surface PGs known as ectodomain shedding of syndecans; this facilitates cancer and endothelial cell motility, protects matrix proteases and provides a chemotactic gradient of mitogens. However, syndecans on stromal cells may be important for stromal cell/cancer cell interplay and may promote stromal cell proliferation, migration and angiogenesis. Finally, abnormal PG expression in cancer and stromal cells may serve as a biomarker for tumor progression and patient survival. Enhanced understanding of the regulation of PG metabolism and the involvement of PGs in cancer may offer a novel approach to cancer therapy by targeting the tumor microenvironment. In this minireview, the implication of PGs in cancer development and progression, as well as their pharmacological targeting in malignancy, are presented and discussed.


Assuntos
Neoplasias/fisiopatologia , Proteoglicanas/fisiologia , Agrecanas/metabolismo , Agrecanas/uso terapêutico , Agrina/fisiologia , Biomarcadores , Brevicam , Cartilagem/patologia , Divisão Celular , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Decorina , Progressão da Doença , Proteínas da Matriz Extracelular/metabolismo , Glioma/patologia , Glioma/fisiopatologia , Humanos , Ácido Hialurônico/metabolismo , Inflamação/genética , Lectinas Tipo C/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Neovascularização Patológica/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Prognóstico , Proteoglicanas/efeitos dos fármacos , Proteoglicanas/genética , Proteoglicanas/metabolismo , Proteoglicanas/uso terapêutico , Versicanas/genética , Versicanas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa