Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
1.
J Bacteriol ; 206(3): e0033323, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38411059

RESUMO

Although bacterial peptidoglycan (PG) is highly conserved, some natural variations in PG biosynthesis and structure have evolved. Understanding the mechanisms and limits of such variation will inform our understanding of antibiotic resistance, innate immunity, and the evolution of bacteria. We have explored the constraints on PG evolution by blocking essential steps in PG biosynthesis in Vibrio fischeri and then selecting mutants with restored prototrophy. Here, we attempted to select prototrophic suppressors of a D-glutamate auxotrophic murI racD mutant. No suppressors were isolated on unsupplemented lysogeny broth salts (LBS), despite plating >1011 cells, nor were any suppressors generated through mutagenesis with ethyl methanesulfonate. A single suppressor was isolated on LBS supplemented with iso-D-gln, although the iso-D-gln subsequently appeared irrelevant. This suppressor has a genomic amplification formed by the creation of a novel junction that fuses proB to a gene encoding a putative broad-spectrum racemase of V. fischeri, bsrF. An engineered bsrF allele lacking the putative secretion signal (ΔSS-bsrF) also suppressed D-glu auxotrophy, resulting in PG that was indistinguishable from the wild type. The ΔSS-bsrF allele similarly suppressed the D-alanine auxotrophy of an alr mutant and restored prototrophy to a murI alr double mutant auxotrophic for both D-ala and D-glu. The ΔSS-bsrF allele increased resistance to D-cycloserine but had no effect on sensitivity to PG-targeting antibiotics penicillin, ampicillin, or vancomycin. Our work helps define constraints on PG evolution and reveals a periplasmic broad-spectrum racemase in V. fischeri that can be co-opted for PG biosynthesis, with concomitant D-cycloserine resistance. IMPORTANCE: D-Amino acids are used and produced by organisms across all domains of life, but often, their origins and roles are not well understood. In bacteria, D-ala and D-glu are structural components of the canonical peptidoglycan cell wall and are generated by dedicated racemases Alr and MurI, respectively. The more recent discovery of additional bacterial racemases is broadening our view and deepening our understanding of D-amino acid metabolism. Here, while exploring alternative PG biosynthetic pathways in Vibrio fischeri, we unexpectedly shed light on an unusual racemase, BsrF. Our results illustrate a novel mechanism for the evolution of antibiotic resistance and provide a new avenue for exploring the roles of non-canonical racemases and D-amino acids in bacteria.


Assuntos
Alanina Racemase , Ácido Glutâmico , Ácido Glutâmico/metabolismo , Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Racemases e Epimerases/metabolismo , Ciclosserina , Peptidoglicano/metabolismo , Aminoácidos/metabolismo , Alanina Racemase/metabolismo
2.
Microbiology (Reading) ; 170(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39115544

RESUMO

Synergistic interactions between chemical inhibitors, whilst informative, can be difficult to interpret, as chemical inhibitors can often have multiple targets, many of which can be unknown. Here, using multiplexed transcriptional repression, we have validated that the simultaneous repression of glutamate racemase and alanine racemase has a synergistic interaction in Mycobacterium tuberculosis. This confirms prior observations from chemical interaction studies and highlights the potential of targeting multiple enzymes involved in mycobacterial cell wall synthesis.


Assuntos
Alanina Racemase , Isomerases de Aminoácido , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Isomerases de Aminoácido/genética , Isomerases de Aminoácido/metabolismo , Alanina Racemase/genética , Alanina Racemase/metabolismo , Regulação Bacteriana da Expressão Gênica , Transcrição Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/farmacologia , Parede Celular/metabolismo , Parede Celular/genética
3.
Drug Dev Res ; 84(5): 999-1007, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37129190

RESUMO

Given the ever-present threat of antibacterial resistance, there is an urgent need to identify new antibacterial drugs and targets. One such target is alanine racemase (Alr), an enzyme required for bacterial cell-wall biosynthesis. Alr is an attractive drug target because it is essential for bacterial survival but is absent in humans. Existing drugs targeting Alr lack specificity and have severe side effects. We here investigate alternative mechanisms of Alr inhibition. Alr functions exclusively as an obligate homodimer, so we probed seven conserved interactions on the dimer interface, distant from the enzymatic active site, to identify possible allosteric influences on activity. Using the Alr from Mycobacterium tuberculosis (MT) as a model, we found that the Lys261/Asp135 salt bridge is critical for catalytic activity. The Lys261Ala mutation completely inactivated the enzyme, and the Asp135Ala mutation reduced catalytic activity eight-fold. Further investigation suggested a potential drug-binding site near the Lys261/Asp135 salt bridge that may be useful for allosteric drug discovery.


Assuntos
Alanina Racemase , Mycobacterium tuberculosis , Humanos , Antibacterianos/farmacologia , Alanina Racemase/genética , Alanina Racemase/química , Alanina Racemase/metabolismo , Domínio Catalítico , Mycobacterium tuberculosis/genética , Farmacorresistência Bacteriana
4.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003334

RESUMO

Brucella, a zoonotic facultative intracellular pathogenic bacterium, poses a significant threat both to human health and to the development of the livestock industry. Alanine racemase (Alr), the enzyme responsible for alanine racemization, plays a pivotal role in regulating virulence in this bacterium. Moreover, Brucella mutants with alr gene deletions (Δalr) exhibit potential as vaccine candidates. However, the mechanisms that underlie the detrimental effects of alr knockouts on Brucella pathogenicity remain elusive. Here, initially, we conducted a bioinformatics analysis of Alr, which demonstrated a high degree of conservation of the protein within Brucella spp. Subsequent metabolomics studies unveiled alterations in amino acid pathways following deletion of the alr gene. Furthermore, alr deletion in Brucella suis S2 induced decreased resistance to stress, antibiotics, and other factors. Transmission electron microscopy of simulated macrophage intracellular infection revealed damage to the cell wall in the Δalr strain, whereas propidium iodide staining and alkaline phosphatase and lactate dehydrogenase assays demonstrated alterations in cell membrane permeability. Changes in cell wall properties were revealed by measurements of cell surface hydrophobicity and zeta potential. Finally, the diminished adhesion capacity of the Δalr strain was shown by immunofluorescence and bacterial enumeration assays. In summary, our findings indicate that the alr gene that regulates amino acid metabolism in Brucella influences the properties of the cell wall, which modulates bacterial adherence capability. This study is the first demonstration that Alr impacts virulence by modulating bacterial metabolism, thereby providing novel insights into the pathogenic mechanisms of Brucella spp.


Assuntos
Alanina Racemase , Brucella , Brucelose , Humanos , Alanina Racemase/genética , Alanina Racemase/química , Alanina Racemase/metabolismo , Brucella/metabolismo , Antibacterianos , Parede Celular/metabolismo , Aminoácidos
5.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445922

RESUMO

Brucella suis, the causative agent of brucellosis, poses a significant public health and animal husbandry threat. However, the role of the alanine racemase (alr) gene, which encodes alanine racemase in Brucella, remains unclear. Here, we analyzed an alr deletion mutant and a complemented strain of Brucella suis S2. The knockout strain displayed an unaltered, smooth phenotype in acriflavine agglutination tests but lacked the core polysaccharide portion of lipopolysaccharide (LPS). Genes involved in the LPS synthesis were significantly upregulated in the deletion mutant. The alr deletion strain exhibited reduced intracellular viability in the macrophages, increased macrophage-mediated killing, and upregulation of the apoptosis markers. Bcl2, an anti-apoptotic protein, was downregulated, while the pro-apoptotic proteins, Bax, Caspase-9, and Caspase-3, were upregulated in the macrophages infected with the deletion strain. The infected macrophages showed increased mitochondrial membrane permeability, Cytochrome C release, and reactive oxygen species, activating the mitochondrial apoptosis pathway. These findings revealed that alanine racemase was dispensable in B. suis S2 but influenced the strain's rough features and triggered the mitochondrial apoptosis pathway during macrophage invasion. The deletion of the alr gene reduced the intracellular survival and virulence. This study enhances our understanding of the molecular mechanism underlying Brucella's survival and virulence and, specifically, how alr gene affects host immune evasion by regulating bacterial LPS biosynthesis.


Assuntos
Alanina Racemase , Brucella suis , Brucelose , Animais , Brucella suis/genética , Lipopolissacarídeos , Virulência/genética , Brucelose/microbiologia
6.
Nat Chem Biol ; 16(6): 686-694, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32203411

RESUMO

The broad-spectrum antibiotic D-cycloserine (DCS) is a key component of regimens used to treat multi- and extensively drug-resistant tuberculosis. DCS, a structural analog of D-alanine, binds to and inactivates two essential enzymes involved in peptidoglycan biosynthesis, alanine racemase (Alr) and D-Ala:D-Ala ligase. Inactivation of Alr is thought to proceed via a mechanism-based irreversible route, forming an adduct with the pyridoxal 5'-phosphate cofactor, leading to bacterial death. Inconsistent with this hypothesis, Mycobacterium tuberculosis Alr activity can be detected after exposure to clinically relevant DCS concentrations. To address this paradox, we investigated the chemical mechanism of Alr inhibition by DCS. Inhibition of M. tuberculosis Alr and other Alrs is reversible, mechanistically revealed by a previously unidentified DCS-adduct hydrolysis. Dissociation and subsequent rearrangement to a stable substituted oxime explains Alr reactivation in the cellular milieu. This knowledge provides a novel route for discovery of improved Alr inhibitors against M. tuberculosis and other bacteria.


Assuntos
Alanina Racemase/metabolismo , Antibióticos Antituberculose/química , Ciclosserina/química , Proteínas Recombinantes/metabolismo , Alanina/química , Alanina/metabolismo , Alanina Racemase/genética , Sequência de Aminoácidos , Antibióticos Antituberculose/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Ciclosserina/metabolismo , Escherichia coli , Isoxazóis/química , Ligases/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Oximas/química , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/genética
7.
Biosci Biotechnol Biochem ; 85(11): 2221-2223, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34427628

RESUMO

An enzymatic assay system of d-Ala, which is reported to affect the taste, was constructed using alanine racemase and l-alanine dehydrogenase. d-Ala is converted to l-Ala by alanine racemase and then deaminated by l-alanine dehydrogenase with the reduction of NAD+ to NADH, which is determined with water-soluble tetrazolium. Using the assay system, the d-Ala contents of 7 crustaceans were determined.


Assuntos
Alanina Racemase
8.
Molecules ; 25(6)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183087

RESUMO

In clinical culture media inoculated with patient samples, selective inhibition of commensal bacteria is essential for accurate diagnosis and effective treatment, as they can mask the presence of pathogenic bacteria. The alanine analogue, 1-aminoethyltetrazole was investigated as a potential alanine racemase inhibitor. For effective uptake and enhanced and selective antibacterial activity, a library of C-terminal 1-aminoethyltetrazole containing di- and oligopeptides were synthesized by solid phase peptide coupling techniques. The investigation of the antimicrobial activity of the synthesised compounds identified several clinically applicable selective inhibitors. These enabled differentiation between the closely related bacteria, Salmonella and Escherichia coli, which can be difficult to discriminate between in a clinical setting. In addition, differentiation between enterococci and other Gram-positive cocci was also seen.


Assuntos
Alanina Racemase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Tetrazóis/química , Alanina Racemase/metabolismo , Inibidores Enzimáticos/química , Testes de Sensibilidade Microbiana , Oligopeptídeos/síntese química , Técnicas de Síntese em Fase Sólida
9.
Mol Microbiol ; 107(3): 416-427, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29205552

RESUMO

Enterococcus faecalis is an opportunistic multidrug-resistant human pathogen causing severe nosocomial infections. Previous investigations revealed that the CroRS two-component regulatory pathway likely displays a pleiotropic role in E. faecalis, involved in virulence, macrophage survival, oxidative stress response as well as antibiotic resistance. Therefore, CroRS represents an attractive potential new target for antibiotherapy. In this report, we further explored CroRS cellular functions by characterizing the CroR regulon: the 'domain swapping' method was applied and a CroR chimera protein was generated by fusing the receiver domain from NisR to the output domain from CroR. After demonstrating that the chimera CroR complements a croR gene deletion in E. faecalis (stress response, virulence), we conducted a global gene expression analysis using RNA-Seq and identified 50 potential CroR targets involved in multiple cellular functions such as cell envelope homeostasis, substrate transport, cell metabolism, gene expression regulation, stress response, virulence and antibiotic resistance. For validation, CroR direct binding to several candidate targets was demonstrated by EMSA. Further, this work identified alr, the gene encoding the alanine racemase enzyme involved in E. faecalis resistance to D-cycloserine, a promising antimicrobial drug to treat enterococcal infections, as a member of the CroR regulon.


Assuntos
Alanina Racemase/genética , Enterococcus faecalis/metabolismo , Transativadores/metabolismo , Alanina Racemase/metabolismo , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Ciclosserina , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/genética , Testes de Sensibilidade Microbiana , Virulência
10.
Mol Microbiol ; 107(2): 198-213, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29134701

RESUMO

Glutamate racemase (MurI) has been proposed as a target for anti-tuberculosis drug development based on the inability of ΔmurI mutants of Mycobacterium smegmatis to grow in the absence of d-glutamate. In this communication, we identify ΔmurI suppressor mutants that are detected during prolonged incubation. Whole genome sequencing of these ΔmurI suppressor mutants identified the presence of a SNP, located in the promoter region of MSMEG_5795. RT-qPCR and transcriptional fusion analyses revealed that the ΔmurI suppressor mutant overexpressed MSMEG_5795 14-fold compared to the isogenic wild-type. MSMEG_5795, which is annotated as 4-amino-4-deoxychorismate lyase (ADCL) but which also has homology to d-amino acid transaminase (d-AAT), was expressed, purified and found to have d-AAT activity and to be capable of producing d-glutamate from d-alanine. Consistent with its d-amino acid transaminase function, overexpressed MSMEG_5795 is able to complement both ΔmurI deletion mutants and alanine racemase (Δalr) deletion mutants, thus confirming a multifunctional role for this enzyme in M. smegmatis.


Assuntos
Isomerases de Aminoácido/metabolismo , D-Alanina Transaminase/metabolismo , Mycobacterium smegmatis/enzimologia , Oxo-Ácido-Liases/metabolismo , Alanina/metabolismo , Alanina Racemase/genética , Alanina Racemase/metabolismo , Isomerases de Aminoácido/genética , Sequência de Bases/genética , D-Alanina Transaminase/química , D-Alanina Transaminase/genética , Deleção de Genes , Ácido Glutâmico/metabolismo , Mycobacterium smegmatis/genética , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/genética , Regiões Promotoras Genéticas , Supressão Genética , Sequenciamento Completo do Genoma
11.
BMC Microbiol ; 19(1): 72, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940083

RESUMO

BACKGROUND: Aeromonas hydrophila is an opportunistic pathogen of poikilothermic and homoeothermic animals, including humans. In the present study, we described the role of Alanine racemase (alr-2) in the virulence of A. hydrophila using an alr-2 knockout mutant (A.H.Δalr). RESULTS: In mouse and common carp models, the survival of animals challenged with A.H.Δalr was significantly increased compared with the wild-type (WT), and the mutant was also impaired in its ability to replicate in the organs and blood of infected mice and fish. The A.H.Δalr significantly increased phagocytosis by macrophages of the mice and fish. These attenuation effects of alr-2 could be complemented by the addition of D-alanine to the A.H.Δalr strain. The histopathology results indicated that the extent of tissue injury in the WT-infected animals was more severe than in the A.H.Δalr-infected groups. The expression of 9 virulence genes was significantly down-regulated, and 3 outer membrane genes were significantly up-regulated in A.H.Δalr. CONCLUSIONS: Our data suggest that alr-2 is essential for the virulence of A. hydrophila. Our findings suggested alanine racemase could be applied in the development of new antibiotics against A. hydrophila.


Assuntos
Aeromonas hydrophila/genética , Aeromonas hydrophila/patogenicidade , Alanina Racemase/genética , Técnicas de Inativação de Genes , Fatores de Virulência/genética , Aeromonas hydrophila/enzimologia , Animais , Proteínas de Bactérias/genética , Carpas/microbiologia , Feminino , Infecções por Bactérias Gram-Negativas/microbiologia , Camundongos Endogâmicos BALB C , Mutação , Virulência/genética
12.
Amino Acids ; 51(2): 331-343, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30377839

RESUMO

We expressed a histidine racemase from Leuconostoc mesenteroides subsp. sake NBRC 102480 (Lm-HisR) successively in a soluble fraction of Escherichia coli BL21 (DE3) and then highly purified it from the cell-free extract. Lm-HisR showed amino acid racemase activity on histidine specifically. This is the first example of an amino acid racemase specifically acting on histidine. Phylogenetic analysis of Lm-HisR showed that Lm-HisR was located far from the cluster of alanine racemases reported thus far and only in lactic acid bacteria of the genus Leuconostoc. Alignment of the primary structure of Lm-HisR with those of lysine and alanine racemases and alanine racemase homologs previously reported revealed that the PLP-binding lysine and catalytic tyrosine were completely conserved, and some residues that are unique to the phylogenetic branch of Lm-HisR, Phe44, Ser45, Thr174, Thr206, His286, Ser287, Phe292, Gly312, Val357, and Ala358 were identified. We determined the crystal structure of Lm-HisR complexed with PLP at a 2.1-Å resolution. The crystal structure contained four molecules (two dimers) in the asymmetric unit. When comparing the 3D structure of Lm-HisR with those of racemases from Geobacillus stearothermophilus and Oenococcus oeni, Met315 was completely conserved, but Val357 was not. In addition, two significant differences were observed between Lm-HisR and G. stearothermophilus alanine racemase. Phe44 and His286 in Lm-HisR corresponded to Tyr43 and Tyr284 in G. stearothermophilus alanine racemase, respectively. Based on the structural analysis, comparison with alanine racemase, and docking simulation, three significant residues, Phe44, His286, and Val357, were identified that may control the substrate specificity of Lm-HisR.


Assuntos
Isomerases de Aminoácido/química , Isomerases de Aminoácido/isolamento & purificação , Histidina/química , Leuconostoc mesenteroides/enzimologia , Alanina Racemase/química , Isomerases de Aminoácido/genética , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/enzimologia , Geobacillus stearothermophilus/enzimologia , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Acoplamento Molecular , Filogenia , Estrutura Secundária de Proteína , Fosfato de Piridoxal/química
13.
Org Biomol Chem ; 17(17): 4350-4358, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30977502

RESUMO

Pyridoxal 5'-phosphate (PLP) is a versatile cofactor involved in a large variety of enzymatic processes. Most of PLP-catalysed reactions, such as those of alanine racemases (AlaRs), present a common resting state in which the PLP is covalently bound to an active-site lysine to form an internal aldimine. The crystal structure of BsAlaR grown in the presence of Tris lacks this covalent linkage and the PLP cofactor appears deformylated. However, loss of activity in a Tris buffer only occurred after the solution was frozen prior to carrying out the enzymatic assay. This evidence strongly suggests that Tris can access the active site at subzero temperatures and behave as an alternate racemase substrate leading to mechanism-based enzyme inactivation, a hypothesis that is supported by additional X-ray structures and theoretical results from QM/MM calculations. Taken together, our findings highlight a possibly underappreciated role for a common buffer component widely used in biochemical and biophysical experiments.


Assuntos
Alanina Racemase/metabolismo , Bacillus subtilis/enzimologia , Temperatura Baixa , Iminas/metabolismo , Alanina Racemase/química , Alanina Racemase/isolamento & purificação , Iminas/química , Modelos Moleculares , Estrutura Molecular , Teoria Quântica
14.
J Biol Chem ; 292(25): 10735-10742, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28487371

RESUMO

Clostridium difficile has become one of the most common bacterial pathogens in hospital-acquired infections in the United States. Although C. difficile is strictly anaerobic, it survives in aerobic environments and transmits between hosts via spores. C. difficile spore germination is triggered in response to certain bile acids and glycine. Although glycine is the most effective co-germinant, other amino acids can substitute with varying efficiencies. Of these, l-alanine is an effective co-germinant and is also a germinant for most bacterial spores. Many endospore-forming bacteria embed alanine racemases into their spore coats, and these enzymes are thought to convert the l-alanine germinant into d-alanine, a spore germination inhibitor. Although the C. difficile Alr2 racemase is the sixth most highly expressed gene during C. difficile spore formation, a previous study reported that Alr2 has little to no role in germination of C. difficile spores in rich medium. Here, we hypothesized that Alr2 could affect C. difficile l-alanine-induced spore germination in a defined medium. We found that alr2 mutant spores more readily germinate in response to l-alanine as a co-germinant. Surprisingly, d-alanine also functioned as a co-germinant. Moreover, we found that Alr2 could interconvert l- and d-serine and that Alr2 bound to l- and d-serine with ∼2-fold weaker affinity to that of l- and d-alanine. Finally, we demonstrate that l- and d-serine are also co-germinants for C. difficile spores. These results suggest that C. difficile spores can respond to a diverse set of amino acid co-germinants and reveal that Alr2 can accommodate serine as a substrate.


Assuntos
Alanina Racemase/metabolismo , Proteínas de Bactérias/metabolismo , Clostridioides difficile/enzimologia , Esporos Bacterianos/enzimologia , Alanina/metabolismo , Alanina Racemase/genética , Proteínas de Bactérias/genética , Clostridioides difficile/genética , Serina/metabolismo , Esporos Bacterianos/genética
15.
Biochem Biophys Res Commun ; 503(4): 2319-2325, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-29964014

RESUMO

Alanine racemase is a pyridoxal-5'-phosphate (PLP)-dependent enzyme that reversibly catalyzes the conversion of l-alanine to d-alanine. d-alanine is an essential constituent in many prokaryotic cell structures. Inhibition of alanine racemase is lethal to prokaryotes, creating an attractive target for designing antibacterial drugs. Here we report the crystal structure of biosynthetic alanine racemase (Alr) from a pathogenic bacteria Pseudomonas aeruginosa PAO1. Structural studies showed that P. aeruginosa Alr (PaAlr) adopts a conserved homodimer structure. A guest substrate d-lysine was observed in the active site and refined to dual-conformation. Two buffer ions, malonate and acetate, were bound in the proximity to d-lysine. Biochemical characterization revealed the optimal reaction conditions for PaAlr.


Assuntos
Alanina Racemase/química , Pseudomonas aeruginosa/enzimologia , Ácido Acético , Alanina Racemase/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Dimerização , Lisina , Malonatos , Ligação Proteica
16.
Biochem Biophys Res Commun ; 497(1): 139-145, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29427660

RESUMO

Alanine racemase (Alr) is a pyridoxal-5'-phosphate-dependent (PLP) enzyme that catalyzes a reversible racemization between the enantiomers of alanine. d-Alanine is an indispensable constituent in the biosynthesis of bacterial cell-wall peptidoglycan, and its inhibition is lethal to prokaryotes, which makes it an attractive target for designing antibacterial drugs. In this study, the molecular structure of alanine racemase from Bacillus pseudofirmus OF4 (DadXOF4) was determined by X-ray crystallography to a resolution of 1.8 Å. The comparison of DadXOF4 with alanine racemases from other bacteria demonstrated a conserved overall fold. Enzyme kinetics analysis showed that the conserved residues at the substrate entryway and the salt bridge at the dimer interface are critical for enzyme activity. These structural and biochemical findings provide a template for future structure-based drug-development efforts targeting alanine racemases.


Assuntos
Alanina Racemase/química , Alanina Racemase/metabolismo , Alanina/química , Bacillus/enzimologia , Modelos Químicos , Modelos Moleculares , Alanina Racemase/ultraestrutura , Sequência de Aminoácidos , Bacillus/classificação , Sítios de Ligação , Catálise , Simulação por Computador , Sequência Conservada , Ativação Enzimática , Estabilidade Enzimática , Cinética , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Especificidade da Espécie , Especificidade por Substrato
17.
J Proteome Res ; 16(3): 1270-1279, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28121156

RESUMO

In mycobacteria, d-alanine is an essential precursor for peptidoglycan biosynthesis. The only confirmed enzymatic pathway to form d-alanine is through the racemization of l-alanine by alanine racemase (Alr, EC 5.1.1.1). Nevertheless, the essentiality of Alr in Mycobacterium tuberculosis and Mycobacterium smegmatis for cell survivability in the absence of d-alanine has been a point of controversy with contradictory results reported in the literature. To address this issue, we examined the effects of alr inactivation on the cellular metabolism of M. smegmatis. The M. smegmatis alr insertion mutant TAM23 exhibited essentially identical growth to wild-type mc2155 in the absence of d-alanine. NMR metabolomics revealed drastically distinct phenotypes between mc2155 and TAM23. A metabolic switch was observed for TAM23 as a function of supplemented d-alanine. In the absence of d-alanine, the metabolic response directed carbon through an unidentified transaminase to provide the essential d-alanine required for survival. The process is reversed when d-alanine is available, in which the d-alanine is directed to peptidoglycan biosynthesis. Our results provide further support for the hypothesis that Alr is not an essential function of M. smegmatis and that specific Alr inhibitors will have no bactericidal action.


Assuntos
Alanina/biossíntese , Redes e Vias Metabólicas , Mycobacterium smegmatis/metabolismo , Alanina/metabolismo , Alanina Racemase/metabolismo , Proteínas de Bactérias/metabolismo , Mutação , Mycobacterium smegmatis/genética , Peptidoglicano/biossíntese , Transaminases/metabolismo
18.
J Biol Chem ; 291(38): 19873-87, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27474741

RESUMO

Enzymes that utilize the cofactor pyridoxal 5'-phosphate play essential roles in amino acid metabolism in all organisms. The cofactor is used by proteins that adopt at least five different folds, which raises questions about the evolutionary processes that might explain the observed distribution of functions among folds. In this study, we show that a representative of fold type III, the Escherichia coli alanine racemase (ALR), is a promiscuous cystathionine ß-lyase (CBL). Furthermore, E. coli CBL (fold type I) is a promiscuous alanine racemase. A single round of error-prone PCR and selection yielded variant ALR(Y274F), which catalyzes cystathionine ß-elimination with a near-native Michaelis constant (Km = 3.3 mm) but a poor turnover number (kcat ≈10 h(-1)). In contrast, directed evolution also yielded CBL(P113S), which catalyzes l-alanine racemization with a poor Km (58 mm) but a high kcat (22 s(-1)). The structures of both variants were solved in the presence and absence of the l-alanine analogue, (R)-1-aminoethylphosphonic acid. As expected, the ALR active site was enlarged by the Y274F substitution, allowing better access for cystathionine. More surprisingly, the favorable kinetic parameters of CBL(P113S) appear to result from optimizing the pKa of Tyr-111, which acts as the catalytic acid during l-alanine racemization. Our data emphasize the short mutational routes between the functions of pyridoxal 5'-phosphate-dependent enzymes, regardless of whether or not they share the same fold. Thus, they confound the prevailing model of enzyme evolution, which predicts that overlapping patterns of promiscuity result from sharing a common multifunctional ancestor.


Assuntos
Alanina Racemase/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Evolução Molecular , Liases/química , Mutação de Sentido Incorreto , Alanina Racemase/genética , Alanina Racemase/metabolismo , Substituição de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Liases/genética , Liases/metabolismo , Fosfato de Piridoxal/química , Fosfato de Piridoxal/genética , Fosfato de Piridoxal/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-28971867

RESUMO

A screening of more than 1,500 drug-resistant strains of Mycobacterium tuberculosis revealed evolutionary patterns characteristic of positive selection for three alanine racemase (Alr) mutations. We investigated these mutations using molecular modeling, in vitro MIC testing, as well as direct measurements of enzymatic activity, which demonstrated that these mutations likely confer resistance to d-cycloserine.


Assuntos
Alanina Racemase/genética , Proteínas de Bactérias/genética , Ciclosserina/farmacologia , Farmacorresistência Bacteriana/genética , Mutação , Mycobacterium tuberculosis/genética , Alanina Racemase/metabolismo , Antibióticos Antituberculose/farmacologia , Proteínas de Bactérias/metabolismo , Evolução Molecular , Expressão Gênica , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Filogenia , Seleção Genética
20.
Biochem Biophys Res Commun ; 483(1): 122-128, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28042035

RESUMO

The conversion of l-alanine (L-Ala) into d-alanine (D-Ala) in bacteria is performed by pyridoxal phosphate-dependent enzymes called alanine racemases. D-Ala is an essential component of the bacterial peptidoglycan and hence required for survival. The Gram-positive bacterium Streptomyces coelicolor has at least one alanine racemase encoded by alr. Here, we describe an alr deletion mutant of S. coelicolor which depends on D-Ala for growth and shows increased sensitivity to the antibiotic d-cycloserine (DCS). The crystal structure of the alanine racemase (Alr) was solved with and without the inhibitors DCS or propionate, at 1.64 Å and 1.51 Å resolution, respectively. The crystal structures revealed that Alr is a homodimer with residues from both monomers contributing to the active site. The dimeric state of the enzyme in solution was confirmed by gel filtration chromatography, with and without L-Ala or d-cycloserine. The activity of the enzyme was 66 ± 3 U mg-1 for the racemization of L- to D-Ala, and 104 ± 7 U mg-1 for the opposite direction. Comparison of Alr from S. coelicolor with orthologous enzymes from other bacteria, including the closely related d-cycloserine-resistant Alr from S. lavendulae, strongly suggests that structural features such as the hinge angle or the surface area between the monomers do not contribute to d-cycloserine resistance, and the molecular basis for resistance therefore remains elusive.


Assuntos
Alanina Racemase/química , Alanina Racemase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Streptomyces coelicolor/enzimologia , Alanina Racemase/genética , Sequência de Aminoácidos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Ciclosserina/farmacologia , Farmacorresistência Bacteriana , Deleção de Genes , Genes Bacterianos , Cinética , Modelos Moleculares , Estrutura Quaternária de Proteína , Homologia de Sequência de Aminoácidos , Streptomyces coelicolor/efeitos dos fármacos , Streptomyces coelicolor/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa