RESUMO
Osteoporosis is a highly prevalent metabolic disease characterized by low systemic bone mass and deterioration of bone microarchitecture, resulting in reduced bone strength and increased fracture risk. Current treatment options for osteoporosis are limited by factors such as efficacy, cost, availability, side effects, and acceptability to patients. Gold nanoparticles show promise as an emerging osteoporosis therapy due to their osteogenic effects and ability to allow therapeutic delivery but have inherent constraints, such as low specificity and the potential for heavy metal accumulation in the body. This study reports the synthesis of ultrasmall gold particles almost reaching the Ångstrom (Ång) dimension. The antioxidant alpha-lipoic acid (LA) is used as a dispersant and stabilizer to coat Ångstrom-scale gold particles (AuÅPs). Alendronate (AL), an amino-bisphosphonate commonly used in drug therapy for osteoporosis, is conjugated through LA to the surface of AuÅPs, allowing targeted delivery to bone and enhancing antiresorptive therapeutic effects. In this study, alendronate-loaded Ångstrom-scale gold particles (AuÅPs-AL) were used for the first time to promote osteogenesis and alleviate bone loss through regulation of the WNT signaling pathway, as shown through in vitro tests. The in vivo therapeutic effects of AuÅPs-AL were demonstrated in an established osteoporosis mouse model. The results of Micro-computed Tomography, histology, and tartrate-resistant acid phosphatase staining indicated that AuÅPs-AL significantly improved bone density and prevented bone loss, with no evidence of nanoparticle-associated toxicity. These findings suggest the possible future application of AuÅPs-AL in osteoporosis therapy and point to the potential of developing new approaches for treating metabolic bone diseases using Ångstrom-scale gold particles.
Assuntos
Alendronato , Ouro , Nanopartículas Metálicas , Osteoporose , Ácido Tióctico , Animais , Alendronato/química , Alendronato/farmacologia , Ácido Tióctico/química , Ácido Tióctico/farmacologia , Ouro/química , Osteoporose/tratamento farmacológico , Camundongos , Nanopartículas Metálicas/química , Feminino , Osteogênese/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Conservadores da Densidade Óssea/química , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Tamanho da PartículaRESUMO
Vitamin D, an essential micronutrient crucial for skeletal integrity and various non-skeletal physiological functions, exhibits limited bioavailability and stability in vivo. This study is focused on the development of polyethylene glycol (PEG)-grafted phospholipid micellar nanostructures co-encapsulating vitamin D3 and conjugated with alendronic acid, aimed at active bone targeting. Furthermore, these nanostructures are rendered optically traceable in the UV-visible region of the electromagnetic spectrum via the simultaneous encapsulation of vitamin D3 with carbon dots, a newly emerging class of fluorescents, biocompatible nanoparticles characterized by their resistance to photobleaching and environmental friendliness, which hold promise for future in vitro bioimaging studies. A systematic investigation is conducted to optimize experimental parameters for the preparation of micellar nanostructures with an average hydrodynamic diameter below 200 nm, ensuring colloidal stability in physiological media while preserving the optical luminescent properties of the encapsulated carbon dots. Comprehensive chemical-physical characterization of these micellar nanostructures is performed employing optical and morphological techniques. Furthermore, their binding affinity for the principal inorganic constituent of bone tissue is assessed through a binding assay with hydroxyapatite nanoparticles, indicating significant potential for active bone-targeting. These formulated nanostructures hold promise for novel therapeutic interventions to address skeletal-related complications in cancer affected patients in the future.
Assuntos
Alendronato , Osso e Ossos , Colecalciferol , Micelas , Nanoestruturas , Colecalciferol/química , Nanoestruturas/química , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Alendronato/química , Polietilenoglicóis/química , Humanos , Sistemas de Liberação de Medicamentos , Luminescência , Nanopartículas/química , Portadores de Fármacos/química , Pontos Quânticos/químicaRESUMO
A computational methodology that couples the acidity (Ka) and density functional theory (DFT) calculations has been developed to explain the pH-dependent drug loading on and releasing from mesoporous silica nanoparticles. The model has been validated by investigating the pH-dependent loading and releasing of a bisphosphonate drug molecule, alendronate, on a propylamine-modified quartz surface (101), a model for functionalized mesoporous silica nanoparticles. The pH-dependent interacting molecular species are the neutral and anionic forms of the drug molecule, silanol group of quartz surface and the functional group in the case of functionalized quartz surface. The interaction energies of all the molecular species of alendronate with silica surface are calculated by using the DFT-based CASTEP method. Five molecular states of alendronate (D0, D-, D2-, D3- and D4-), two for silica surface (S0 and S-) and two for propylamine (P+ and P0) are considered. Ten possible combinations of interactions of alendronate with silica surface and twenty for alendronate and propylamine-functionalized silica surfaces are calculated. The relative probability of interaction of a particular pair of drug and surface combination at a particular pH is weighed by the product of their fractions, the latter is calculated by using the Handerson-Hasselbach equation. The total interaction energies at a particular pH are calculated by summing the possible individual interaction energies. The variation of total interaction energy with pH shows that the functional group of propylamine lowers the interaction energy at lower pH values (1-5), thus favouring adsorption or loading of the drug and increases the interaction energy at higher pH values (pH > 8) and thus favours desorption or release of the drug. This is in agreement with experimental results where it is shown that propylamine-functionalized mesoporous silica nanoparticles load alendronate in the pH range of 1-5 and release at pH = 8. This method can be used to predict the pH-dependent drug loading and releasing of a particular combination of drug and on a particular drug delivery system.
Assuntos
Alendronato/química , Propilaminas/química , Quartzo/química , Teoria da Densidade Funcional , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Modelos Químicos , Propriedades de Superfície , TermodinâmicaRESUMO
Glioblastoma multiforme (GBM) is an incurable aggressive brain cancer in which current treatment strategies have demonstrated limited survival benefit. In recent years, nitrogen-containing bisphosphonates (N-BPs) have demonstrated direct anticancer effects in a number of tumour types including GBM. In this study, a nano-formulation with the RALA peptide was used to complex the N-BP, alendronate (ALN) into nanoparticles (NPs) < 200 nm for optimal endocytic uptake. Fluorescently labelled AlexaFluor®647 Risedronate was used as a fluorescent analogue to visualise the intracellular delivery of N-BPs in both LN229 and T98G GBM cells. RALA NPs were effectively taken up by GBM where a dose-dependent response was evidenced with potentiation factors of 14.96 and 13.4 relative to ALN alone after 72 h in LN229 and T98G cells, respectively. Furthermore, RALA/ALN NPs at the IC50, significantly decreased colony formation, induced apoptosis and slowed spheroid growth in vitro. In addition, H-Ras membrane localisation was significantly reduced in the RALA/ALN groups compared to ALN or controls, indicative of prenylation inhibition. The RALA/ALN NPs were lyophilised to enhance stability without compromising the physiochemical properties necessary for functionality, highlighting the suitability of the NPs for scale-up and in vivo application. Collectively, these data show the significant potential of RALA/ALN NPs as novel therapeutics in the treatment of GBM.
Assuntos
Antineoplásicos/farmacologia , Difosfonatos/farmacologia , Glioblastoma/tratamento farmacológico , Nanomedicina/métodos , Nitrogênio/farmacologia , Alendronato/química , Alendronato/farmacologia , Alendronato/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Difosfonatos/química , Difosfonatos/uso terapêutico , Humanos , Nanopartículas/química , Tamanho da Partícula , PeptídeosRESUMO
Accurate and precise application of ion-selective electrodes (ISEs) in the quantification of environmental pollutants is a strenuous task. In this work, the electrochemical response of alendronate sodium trihydrate (ALN) was evaluated by the fabrication of two sensitive and delicate membrane electrodes, viz. polyvinyl chloride (PVC) and glassy carbon (GC) electrodes. A linear response was obtained at concentrations from 1 × 10-5 to 1 × 10-2 M for both electrodes. A Nernstian slope of 29 mV/decade over a pH range of 8-11 for the PVC and GC membrane electrodes was obtained. All assay settings were carefully adjusted to obtain the best electrochemical response. The proposed technique was effectively applied for the quantification of ALN in pure form and wastewater samples, acquired from manufacturing industries. The proposed electrodes were effectively used for the determination of ALN in real wastewater samples without any prior treatment. The current findings guarantee the applicability of the fabricated ISEs for the environmental monitoring of ALN.
Assuntos
Indústria Farmacêutica , Resíduos de Drogas/análise , Técnicas Eletroquímicas , Resíduos Industriais/análise , Membranas Artificiais , Osteoporose/tratamento farmacológico , Águas Residuárias/química , Alendronato/análise , Alendronato/química , Carbono/química , Eletrodos , Vidro/química , Concentração de Íons de Hidrogênio , Cloreto de Polivinila/química , Potenciometria , Reprodutibilidade dos TestesRESUMO
Osteomyelitis and orthopedic infections are major clinical problems, limited by a lack of antibiotics specialized for such applications. In this paper, we describe the design and synthesis of a novel bone-binding antibiotic (BBA-1) and its subsequent structural and functional characterization. The synthesis of BBA-1 was the result of a two-step chemical conjugation of cationic selective antimicrobial-90 (CSA-90) and the bisphosphonate alendronate (ALN) via a heterobifunctional linker. This was analytically confirmed by HPLC, FT-IR, MS and NMR spectroscopy. BBA-1 showed rapid binding and high affinity to bone mineral in an in vitro hydroxyapatite binding assay. Kirby-Baur assays confirmed that BBA-1 shows a potent antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus comparable to CSA-90. Differentiation of cultured osteoblasts in media supplemented with BBA-1 led to increased alkaline phosphatase expression, which is consistent with the pro-osteogenic activity of CSA-90. Bisphosphonates, such as ALN, are inhibitors of protein prenylation, however, the amine conjugation of ALN to CSA-90 disrupted this activity in an in vitro protein prenylation assay. Overall, these findings support the antimicrobial, bone-binding, and pro-osteogenic activities of BBA-1. The compound and related agents have the potential to ensure lasting activity against osteomyelitis after systemic delivery.
Assuntos
Alendronato/química , Antibacterianos/síntese química , Osteomielite/tratamento farmacológico , Pregnanos/química , Propilaminas/química , Células 3T3 , Alendronato/farmacologia , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Osso e Ossos/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Difosfonatos/química , Difosfonatos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Pregnanos/farmacologia , Propilaminas/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacosRESUMO
Metastatic (secondary) bone cancer is one of the major causes of death in patients with advanced cancer. A lack of options for the targeted delivery of a desired therapeutic payload to multiple tumour modules located in the bone is still one of the foremost hurdles in the treatment/prevention of metastatic bone cancer. Curcumin has a proven anticancer potential with known challenges for application as a pharmaceutical agent. We have previously shown that micellar formulations could overcome some of these challenges and enhances its anti-cancer activity. In this study, we have developed a targeted drug delivery system using bisphosphonate (alendronate) conjugated Pluronic F127 micelles that could efficiently target, and specifically deliver curcumin to the osteolytic tumour microenvironment in the bone. Characterization of the formulation of curcumin-encapsulated alendronate-conjugated micelles demonstrated that the micelles have nanoscale size (â¼27 nm) with a positive surface charge (+2.87 mV) and 4% drug loading. The alendronate-conjugated micelles showed significant bone-targeting potential. Rapid binding of the micelles to hydroxyapatite surface suggested that these nanoparticles are promising carriers for effective and targeted delivery of curcumin to osteolytic tumours in the bone.
Assuntos
Antineoplásicos/química , Neoplasias Ósseas/tratamento farmacológico , Curcumina/química , Difosfonatos/química , Alendronato/administração & dosagem , Alendronato/química , Antineoplásicos/administração & dosagem , Curcumina/administração & dosagem , Difosfonatos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Durapatita/química , Micelas , Nanopartículas/química , Tamanho da Partícula , Poloxâmero/química , Polímeros/química , Microambiente Tumoral/efeitos dos fármacosRESUMO
Metal-organic frameworks (MOFs) are emerging as leading candidates for nanoscale drug delivery, as a consequence of their high drug capacities, ease of functionality, and the ability to carefully engineer key physical properties. Despite many anticancer treatment regimens consisting of a cocktail of different drugs, examples of delivery of multiple drugs from one MOF are rare, potentially hampered by difficulties in postsynthetic loading of more than one cargo molecule. Herein, we report a new strategy, multivariate modulation, which allows incorporation of up to three drugs in the Zr MOF UiO-66 by defect-loading. The drugs are added to one-pot solvothermal synthesis and are distributed throughout the MOF at defect sites by coordination to the metal clusters. This tight binding comes with retention of crystallinity and porosity, allowing a fourth drug to be postsynthetically loaded into the MOFs to yield nanoparticles loaded with cocktails of drugs that show enhancements in selective anticancer cytotoxicity against MCF-7 breast cancer cells in vitro. We believe that multivariate modulation is a significant advance in the application of MOFs in biomedicine, and anticipate the protocol will also be adopted in other areas of MOF chemistry, to easily produce defective MOFs with arrays of highly functionalised pores for potential application in gas separations and catalysis.
Assuntos
Antineoplásicos/química , Estruturas Metalorgânicas/química , Nanocápsulas/química , Zircônio/química , Alendronato/química , Alendronato/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Catálise , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia , Ácido Dicloroacético/química , Ácido Dicloroacético/farmacologia , Composição de Medicamentos , Quimioterapia Combinada , Humanos , Ibuprofeno/química , Ibuprofeno/farmacologia , Células MCF-7 , PorosidadeRESUMO
Many drugs have intracellular or membrane-associated targets, thus understanding their interaction with the cell membrane is of value in drug development. Cell-free tools used to predict membrane interactions should replicate the molecular organization of the membrane. Microcavity array-supported lipid bilayer (MSLB) platforms are versatile biophysical models of the cell membrane that combine liposome-like membrane fluidity with stability and addressability. We used an MSLB herein to interrogate drug-membrane interactions across seven drugs from different classes, including nonsteroidal anti-inflammatories: ibuprofen (Ibu) and diclofenac (Dic); antibiotics: rifampicin (Rif), levofloxacin (Levo), and pefloxacin (Pef); and bisphosphonates: alendronate (Ale) and clodronate (Clo). Fluorescence lifetime correlation spectroscopy (FLCS) and electrochemical impedance spectroscopy (EIS) were used to evaluate the impact of drug on 1,2-dioleyl- sn-glycerophosphocholine and binary bilayers over physiologically relevant drug concentrations. Although FLCS data revealed Ibu, Levo, Pef, Ale, and Clo had no impact on lipid lateral mobility, EIS, which is more sensitive to membrane structural change, indicated modest but significant decreases to membrane resistivity consistent with adsorption but weak penetration of drugs at the membrane. Ale and Clo, evaluated at pH 5.25, did not impact the impedance of the membrane except at concentrations exceeding 4 mM. Conversely, Dic and Rif dramatically altered bilayer fluidity, suggesting their translocation through the bilayer, and EIS data showed that resistivity of the membrane decreased substantially with increasing drug concentration. Capacitance changes to the bilayer in most cases were insignificant. Using a Langmuir-Freundlich model to fit the EIS data, we propose Rsat as an empirical value that reflects permeation. Overall, the data indicate that Ibu, Levo, and Pef adsorb at the interface of the lipid membrane but Dic and Rif interact strongly, permeating the membrane core modifying the water/ion permeability of the bilayer structure. These observations are discussed in the context of previously reported data on drug permeability and log P.
Assuntos
Espectroscopia Dielétrica/métodos , Bicamadas Lipídicas/química , Espectrometria de Fluorescência/métodos , Alendronato/química , Ácido Clodrônico/química , Diclofenaco/química , Impedância Elétrica , Ibuprofeno/química , Levofloxacino/química , Pefloxacina/química , Rifampina/químicaRESUMO
A library of poly(2-oxazoline)s functionalized with controllable amounts of alendronate, hydroxyl, and carboxylic acid side groups was successfully synthesized to create novel polymers with tunable affinity for calcium cations. The affinity of alendronate-containing polymers for calcium cations was quantified using isothermal titration calorimetry. Thermodynamic measurements revealed that the Ca2+-binding affinity of these polymers increased linearly with the amount of alendronate functionalization, up to values (KCa2+ = 2.4 × 105 M-1) that were about 120-fold higher than those for previously reported polymers. The calcium-binding capacity of alendronate-functionalized poly(2-oxazoline)s was exploited to form robust hydrogel networks cross-linked using reversible physical bonds. Oscillatory rheology showed that these hydrogels recovered more than 100% of their initial storage modulus after severe network destruction. The versatile synthesis of alendronate-functionalized polymers and their strong and tunable affinity for calcium cations render these polymers promising candidates for various biomedical applications.
Assuntos
Alendronato/química , Materiais Biocompatíveis/química , Cálcio/química , Hidrogéis/química , Oxazóis/química , Polímeros/química , Alendronato/metabolismo , Materiais Biocompatíveis/metabolismo , Cálcio/metabolismo , Hidrogéis/metabolismo , Oxazóis/metabolismo , Polímeros/metabolismo , ReologiaRESUMO
BACKGROUND: Alendronate (AL), a drug for inhibiting osteoclast-mediated bone-resorption, was intercalated into an inorganic drug delivery nanovehicle, layered double hydroxide (LDH), to form a new nanohybrid, AL-LDH, with 1:1 heterostructure along the crystallographic C-axis. Based on the intercalation reaction strategy, the present AL-LDH drug delivery system (DDS) was realized with an enhanced drug efficacy of AL, which was confirmed by the improved proliferation and osteogenic differentiation of osteoblast-like cells (MG63). METHODS: The AL-LDH nanohybrid was synthesized by conventional ion-exchange reaction and characterized by powder X-ray diffraction (PXRD), high-resolution transmission electron microscopy (HR-TEM), and Fourier transform infrared (FT-IR) spectroscopy. Additionally, in vitro efficacy tests, such as cell proliferation and alkaline phosphatase (ALP) activity, were analyzed. RESULTS: The AL was successfully intercalated into LDH via ion-exchange reaction, and thus prepared AL-LDH DDS was X-ray single phasic and chemically well defined. The accumulated AL content in MG63 cells treated with the AL-LDH DDS nanoparticles was determined to be 10.6-fold higher than that within those treated with the intact AL after incubation for 1 hour, suggesting that intercellular permeation of AL was facilitated thanks to the hybridization with drug delivery vehicle, LDH. Furthermore, both in vitro proliferation level and ALP activity of MG63 treated with the present hybrid drug, AL-LDH, were found to be much more enhanced than those treated with the intact AL. This is surely due to the fact that LDH could deliver AL drug very efficiently, although LDH itself does not show any effect on proliferation and osteogenic differentiation of MG63 cells. CONCLUSION: The present AL-LDH could be considered as a promising DDS for improving efficacy of AL.
Assuntos
Alendronato/química , Diferenciação Celular , Argila/química , Nanoestruturas/química , Osteogênese , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Humanos , Nanoestruturas/toxicidade , Osteogênese/efeitos dos fármacos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de SuperfícieRESUMO
Many cancers, such as human breast cancer and lung cancer, easily metastasize to bones, leading to the formation of secondary tumors in advanced stages. On the basis of the CD44-targeted effect of oHA and the bone-targeted effect of ALN, we prepared a reduction-responsive, CD44 receptor-targeting and bone-targeting nanomicelle, called CUR-loaded ALN-oHA-S-S-CUR micelles. In this study, we aimed to evaluate the antitumor activity and bone-targeting ability of CUR-loaded ALN-oHA-S-S-CUR micelles. The in vivo experiment results showed that a larger number of micelles was gathered in the bone metastatic tumor tissue and reduced the bone destruction. The CUR-loaded ALN-oHA-S-S-CUR micelles markedly inhibited the tumor growth. So the CUR-loaded ALN-oHA-S-S-CUR micelles constitute a promising drug delivery system for bone tumor therapy.
Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Ósseas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Curcumina/administração & dosagem , Portadores de Fármacos/química , Alendronato/química , Animais , Antineoplásicos/farmacocinética , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Curcumina/farmacocinética , Liberação Controlada de Fármacos , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Nus , Micelas , Oxirredução , Tamanho da Partícula , Polímeros/química , Resultado do Tratamento , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Postmenopausal osteoporosis is a common disorder accompanied with estrogen deficiency in women. Plants containing phytoestrogens and amino acids have been used in the osteoporosis treatment. The present study aims to evaluate the estrogen-like activity of the Cicer arietinum extract (CAE) and its ability to inhibit osteoclastogenesis process. These achieved by investigating the binding of its active phytoestrogens (genistein, daidzein, formononetin and biochanin A) to the estrogen receptors (ER) α and ß of rats and human in silico. In addition, in vivo study on ovariectomized (OVX) rats is performed. For in vivo study, twenty four rats were divided into four groups (n= 6). Group I is the sham control rats which administered distilled water. Groups II, III, and IV are OVX groups which administered distilled water, CAE (500 mg/kg), and alendronate; respectively. The docking study revealed that the phytoestrogens docked into the protein active site with binding energies comparable with that of estrogens (estriol and ß-estradiol) which means the similarity between the estrogenic contents of CAE and the ensogenous ones. Additionally, in vivo study revealed that CAE reverse TRAP5b and RANKL levels that drastically increased in the untreated OVX group. But, it trigger upregulation of OPG, enhance the OPG/RANKL ratio and modulate the bone and uterus alterations of OVX group. Phytoestrogens and the bone-protective amino acids contents of CAE could be responsible for their estrogen-like effect and antiosteoporotic activity. These results concluded that CAE is an attractive candidate for developing a potential therapeutic cheap agent used as an alternative to the synthetic estrogen replacement therapy. Further, in vivo validation is required for its clinical application.
Assuntos
Cicer/química , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Fitoestrógenos/farmacologia , Fitoterapia , Alendronato/química , Alendronato/farmacologia , Animais , Conservadores da Densidade Óssea/química , Conservadores da Densidade Óssea/isolamento & purificação , Conservadores da Densidade Óssea/farmacologia , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Estradiol/química , Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/metabolismo , Feminino , Regulação da Expressão Gênica , Genisteína/química , Genisteína/isolamento & purificação , Genisteína/farmacologia , Humanos , Isoflavonas/química , Isoflavonas/isolamento & purificação , Isoflavonas/farmacologia , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Simulação de Acoplamento Molecular , Osteogênese/genética , Osteoporose/genética , Osteoporose/metabolismo , Osteoporose/patologia , Osteoprotegerina/agonistas , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ovariectomia , Fitoestrógenos/química , Fitoestrógenos/isolamento & purificação , Estrutura Secundária de Proteína , Ligante RANK/agonistas , Ligante RANK/genética , Ligante RANK/metabolismo , Ratos , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/antagonistas & inibidores , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismoRESUMO
Aseptic loosening is the most common complication of joint replacement. Previous studies showed that acrylic bone cement loaded with a commercially-available alendronate powder (APAC) had good promise against wear debris-mediated osteolysis for prevention of aseptic loosening. The purpose of the present study was to investigate the effect of adding alendronate powder to an acrylic bone cement on quasi-static mechanical properties (namely, compressive strength, compressive modulus, tensile strength, and flexural strength), fatigue life, porosity, and microstructure of the cement. The results showed that adding up to 1 wt./wt.% alendronate powder exerted no detrimental effect on any of the quasi-static mechanical properties. However, the fatigue life of APAC decreased by between ~17% and ~27 % and its porosity increased by between ~ 5-7 times compared with corresponding values for the control cement (no alendronate powder added). Fatigue life was negatively and significantly correlated with porosity. Considering that fatigue life of the cement plays a significant role in joint replacement survival, clinical use of APAC cannot be recommended.
Assuntos
Alendronato/química , Polimetil Metacrilato/química , Fadiga , Humanos , PorosidadeRESUMO
l-Phosphinothricin (glufosinate or 2-amino-4-((hydroxy(methyl) phosphinyl) butyric acid ammonium salt (AHPB)), which is a structural analog of glutamate, is a recognized herbicide that acts on weeds through inhibition of glutamine synthetase. Due to the structural similarity between phosphinothricin and some bisphosphonates (BPs), this study focuses on investigating the possibility of repurposing phosphinothricin as a bisphosphonate analogue, particularly in two medicine-related activities: image probing and as an anti-cancer drug. As BP is a competitive inhibitor of human farnesyl pyrophosphate synthase (HFPPS), in silico molecular docking and dynamic simulations studies were established to evaluate the binding and stability of phosphinothricin with HFPPS, while the results showed good binding and stability in the active site of the enzyme in relation to alendronate. For the purpose of inspecting bone-tissue accumulation of phosphinothricin, a technetium (99mTc)-phosphinothricin complex was developed and its stability and tissue distribution were scrutinized. The radioactive complex showed rapid, high and sustained uptake into bone tissues. Finally, the cytotoxic activity of phosphinothricin was tested against breast and lung cancer cells, with the results indicating cytotoxic activity in relation to alendronate. All the above results provide support for the use of phosphinothricin as a potential anti-cancer drug and of its technetium complex as an imaging probe.
Assuntos
Aminobutiratos/química , Antineoplásicos/química , Reposicionamento de Medicamentos , Compostos Radiofarmacêuticos/química , Tecnécio/química , Alendronato/química , Aminobutiratos/farmacologia , Animais , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diagnóstico por Imagem , Estabilidade de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Compostos Radiofarmacêuticos/farmacologia , Relação Estrutura-Atividade , Tecnécio/farmacologia , Distribuição TecidualRESUMO
Polymers having α,ß-unsaturated anhydrides as repeating units were synthesized by ring opening metathesis polymerization (ROMP). The anhydride moieties were ready-to-be-grafted with amines to form acid-labile cis-α,ß-unsaturated acid amide linkages. The pH-responsive reversible de-grafting can be controlled by changing the intramolecular accessibility between acid and amide groups. The alendronate-grafted ROMP polymers showed distinct pH-dependent cytotoxicity according to the anhydride structures.
Assuntos
Anidridos/química , Compostos Bicíclicos com Pontes/química , Polímeros/química , Alendronato/química , Amidas/química , Amidas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Polimerização , Polímeros/farmacologiaRESUMO
An autoimmune disease of rheumatoid arthritis (RA) causes severe inflammation on the synovial membrane, which results in the destruction of articular cartilage and bone. Here, Tocilizumab (TCZ)-Alendronate (ALD) conjugate is synthesized for the early intervention of RA. A humanized monoclonal antibody of TCZ shows an immunosuppressive effect, targeting interleukin-6 (IL-6) receptor in the RA pathogenesis. ALD is an anti-inflammatory bisphosphonate drug which can bind to the exposed bone surface. ALD is conjugated selectively to N-glycan on Fc region of TCZ using a chemical linker of 3-(2-pyridyldithio)propionyl hydrazide (PDPH)-poly(ethylene glycol)-N-hydroxysuccinimide (PDPH-PEG-NHS). The successful synthesis of TCZ-ALD conjugate is corroborated by 1H NMR, the purpald assay, mass spectrometry (MS), and high performance liquid chromatography (HPLC). In vitro binding affinity and cell viability tests confirmed the biological activity of TCZ-ALD conjugate. Furthermore, in vivo efficacy of TCZ-ALD conjugate is confirmed by microcomputed tomography (CT), histology, and Western blot analyses for the treatment of RA.
Assuntos
Alendronato/química , Anticorpos Monoclonais Humanizados/química , Artrite Reumatoide/tratamento farmacológico , Imunoconjugados/uso terapêutico , Animais , Conservadores da Densidade Óssea , Sobrevivência Celular/efeitos dos fármacos , Imunoconjugados/química , Interleucina-6/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos DBA , Células RAW 264.7 , Microtomografia por Raio-XRESUMO
Selective targeting of tumor site with chemotherapeutic agents appears to be one of the most effective methods to address many of the problems encountered with conventional chemotherapy. In this work, poly(oligoethylene glycol)methacrylate (POEGMA) based bone-targeting polymers bearing an antiangiogenic drug combretastatin A4 (CA4) were synthesized using free radical polymerization. Targeted and nontargeting copolymers were evaluated for their bone targeting efficiency, cytotoxicities against endothelial cells, namely, HUVECs and U2-OS and Saos-2 cancerous cell lines, as well as their antiangiogenic activity against endothelial cell tube formation by HUVECs. It is observed that the drug conjugated polymers conjugated with the bisphosphonate groups containing drug alendronate (ALN) have remarkably high affinity for bone mineral when compared to the polymer-drug conjugates devoid of the bisphosphonate groups. Both targeted and nontargeted polymer-drug conjugates show a sustained drug release in rat plasma with an overall release of 80-93% over 5 days. In vitro studies revealed high levels of cytotoxicity of the polymer-drug conjugates against HUVECs and U2-OS, and moderate cytotoxicity toward Saos-2. Importantly, the CA4 conjugated copolymers displayed excellent level of antiangiogenic activity as deduced from in vitro endothelial cell tube formation assay using HUVECs. Overall, a novel bone-targeting antiangiogenic polymer-drug conjugate that can be further elaborated to carry additional anticancer drugs is disclosed.
Assuntos
Alendronato/química , Bibenzilas/química , Polímeros/química , Antineoplásicos/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Metacrilatos/química , Polietilenoglicóis/químicaRESUMO
Pamidronate, alendronate, APHBP and neridronate are a group of drugs, known as second-generation bisphosphonates (2G-BPs), commonly used in the treatment of bone-resorption disorders, and recently their use has been related to some collateral side effects. The therapeutic activity of 2G-BPs is related to the inhibition of the human Farnesyl Pyrophosphate Synthase (hFPPS). Available inhibitory activity values show that 2G-BPs act time-dependently, showing big differences in their initial inhibitory activities but similar final IC50 values. However, there is a lack of information explaining this similar final inhibitory potency. Although different residues have been identified in the stabilization of the R2 side chain of 2G-BPs into the active site, similar free binding energies were obtained that highlighted a similar stability of the ternary complexes, which in turns justified the similar IC50 values reported. Free binding energy calculations also demonstrated that the union of 2G-BPs to the active site were 38 to 54 kcal mol-1 energetically more favourable than the union of the natural substrate, which is the basis of the inhibition potency of the hFPPS activity.
Assuntos
Conservadores da Densidade Óssea/química , Difosfonatos/química , Geraniltranstransferase/antagonistas & inibidores , Hemiterpenos/química , Simulação de Dinâmica Molecular , Compostos Organofosforados/química , Alendronato/química , Sítios de Ligação , Descoberta de Drogas , Geraniltranstransferase/química , Humanos , Pamidronato , Ligação Proteica , Relação Estrutura-Atividade , TermodinâmicaRESUMO
Bone is a favorable microenvironment for tumor growth and a frequent destination for metastatic cancer cells. Targeting cancers within the bone marrow remains a crucial oncologic challenge due to issues of drug availability and microenvironment-induced resistance. Herein, we engineered bone-homing polymeric nanoparticles (NPs) for spatiotemporally controlled delivery of therapeutics to bone, which diminish off-target effects and increase local drug concentrations. The NPs consist of poly(D,L-lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG), and bisphosphonate (or alendronate, a targeting ligand). The engineered NPs were formulated by blending varying ratios of the synthesized polymers: PLGA-b-PEG and alendronate-conjugated polymer PLGA-b-PEG-Ald, which ensured long circulation and targeting capabilities, respectively. The bone-binding ability of Ald-PEG-PLGA NPs was investigated by hydroxyapatite binding assays and ex vivo imaging of adherence to bone fragments. In vivo biodistribution of fluorescently labeled NPs showed higher retention, accumulation, and bone homing of targeted Ald-PEG-PLGA NPs, compared with nontargeted PEG-PLGA NPs. A library of bortezomib-loaded NPs (bone-targeted Ald-Bort-NPs and nontargeted Bort-NPs) were developed and screened for optimal physiochemical properties, drug loading, and release profiles. Ald-Bort-NPs were tested for efficacy in mouse models of multiple myeloma (MM). Results demonstrated significantly enhanced survival and decreased tumor burden in mice pretreated with Ald-Bort-NPs versus Ald-Empty-NPs (no drug) or the free drug. We also observed that bortezomib, as a pretreatment regimen, modified the bone microenvironment and enhanced bone strength and volume. Our findings suggest that NP-based anticancer therapies with bone-targeting specificity comprise a clinically relevant method of drug delivery that can inhibit tumor progression in MM.