Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 440
Filtrar
1.
Am J Pathol ; 194(7): 1317-1328, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38548269

RESUMO

Two major constituents of exfoliation material, fibrillin-1 and lysyl oxidase-like 1 (encoded by FBN1 and LOXL1), are implicated in exfoliation glaucoma, yet their individual contributions to ocular phenotype are minor. To test the hypothesis that a combination of FBN1 mutation and LOXL1 deficiency exacerbates ocular phenotypes, the pan-lysyl oxidase inhibitor ß-aminopropionitrile (BAPN) was used to treat adult wild-type (WT) mice and mice heterozygous for a missense mutation in Fbn1 (Fbn1C1041G/+) for 8 weeks and their eyes were examined. Although intraocular pressure did not change and exfoliation material was not detected in the eyes, BAPN treatment worsened optic nerve and axon expansion in Fbn1C1041G/+ mice, an early sign of axonal damage in rodent models of glaucoma. Disruption of elastic fibers was detected only in Fbn1C1041G/+ mice, which increased with BAPN treatment, as shown by histologic and immunohistochemical staining of the optic nerve pia mater. Transmission electron microscopy showed that Fbn1C1041G/+ mice had fewer microfibrils, smaller elastin cores, and a lower density of elastic fibers compared with WT mice in control groups. BAPN treatment led to elastin core expansion in both WT and Fbn1C1041G/+ mice, but an increase in the density of elastic fiber was confined to Fbn1C1041G/+ mice. LOX inhibition had a stronger effect on optic nerve and elastic fiber parameters in the context of Fbn1 mutation, indicating the Marfan mouse model with LOX inhibition warrants further investigation for exfoliation glaucoma pathogenesis.


Assuntos
Aminopropionitrilo , Modelos Animais de Doenças , Fibrilina-1 , Síndrome de Marfan , Nervo Óptico , Proteína-Lisina 6-Oxidase , Animais , Camundongos , Adipocinas , Aminoácido Oxirredutases/metabolismo , Aminoácido Oxirredutases/antagonistas & inibidores , Aminoácido Oxirredutases/genética , Aminopropionitrilo/farmacologia , Tecido Elástico/patologia , Tecido Elástico/metabolismo , Tecido Elástico/ultraestrutura , Fibrilina-1/genética , Fibrilinas/metabolismo , Glaucoma/patologia , Pressão Intraocular , Síndrome de Marfan/patologia , Síndrome de Marfan/complicações , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Nervo Óptico/patologia , Nervo Óptico/ultraestrutura , Nervo Óptico/efeitos dos fármacos , Proteína-Lisina 6-Oxidase/metabolismo , Proteína-Lisina 6-Oxidase/antagonistas & inibidores
2.
FASEB J ; 38(9): e23645, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703043

RESUMO

Inflammation assumes a pivotal role in the aortic remodeling of aortic dissection (AD). Asiatic acid (AA), a triterpene compound, is recognized for its strong anti-inflammatory properties. Yet, its effects on ß-aminopropionitrile (BAPN)-triggered AD have not been clearly established. The objective is to determine whether AA attenuates adverse aortic remodeling in BAPN-induced AD and clarify potential molecular mechanisms. In vitro studies, RAW264.7 cells pretreated with AA were challenged with lipopolysaccharide (LPS), and then the vascular smooth muscle cells (VSMCs)-macrophage coculture system was established to explore intercellular interactions. To induce AD, male C57BL/6J mice at three weeks of age were administered BAPN at a dosage of 1 g/kg/d for four weeks. To decipher the mechanism underlying the effects of AA, RNA sequencing analysis was conducted, with subsequent validation of these pathways through cellular experiments. AA exhibited significant suppression of M1 macrophage polarization. In the cell coculture system, AA facilitated the transformation of VSMCs into a contractile phenotype. In the mouse model of AD, AA strikingly prevented the BAPN-induced increases in inflammation cell infiltration and extracellular matrix degradation. Mechanistically, RNA sequencing analysis revealed a substantial upregulation of CX3CL1 expression in BAPN group but downregulation in AA-treated group. Additionally, it was observed that the upregulation of CX3CL1 negated the beneficial impact of AA on the polarization of macrophages and the phenotypic transformation of VSMCs. Crucially, our findings revealed that AA is capable of downregulating CX3CL1 expression, accomplishing this by obstructing the nuclear translocation of NF-κB p65. The findings indicate that AA holds promise as a prospective treatment for adverse aortic remodeling by suppressing the activity of NF-κB p65/CX3CL1 signaling pathway.


Assuntos
Dissecção Aórtica , Quimiocina CX3CL1 , Camundongos Endogâmicos C57BL , Triterpenos Pentacíclicos , Transdução de Sinais , Fator de Transcrição RelA , Remodelação Vascular , Animais , Camundongos , Masculino , Dissecção Aórtica/metabolismo , Dissecção Aórtica/patologia , Dissecção Aórtica/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Remodelação Vascular/efeitos dos fármacos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Aminopropionitrilo/farmacologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos
3.
Arterioscler Thromb Vasc Biol ; 44(7): 1555-1569, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38779856

RESUMO

BACKGROUND: ß-aminopropionitrile (BAPN) is a pharmacological inhibitor of LOX (lysyl oxidase) and LOXLs (LOX-like proteins). Administration of BAPN promotes aortopathies, although there is a paucity of data on experimental conditions to generate pathology. The objective of this study was to define experimental parameters and determine whether equivalent or variable aortopathies were generated throughout the aortic tree during BAPN administration in mice. METHODS: BAPN was administered in drinking water for a period ranging from 1 to 12 weeks. The impacts of BAPN were first assessed with regard to BAPN dose, and mouse strain, age, and sex. BAPN-induced aortic pathological characterization was conducted using histology and immunostaining. To investigate the mechanistic basis of regional heterogeneity, the ascending and descending thoracic aortas were harvested after 1 week of BAPN administration before the appearance of overt pathology. RESULTS: BAPN-induced aortic rupture predominantly occurred or originated in the descending thoracic aorta in young C57BL/6J or N mice. No apparent differences were found between male and female mice. For mice surviving 12 weeks of BAPN administration, profound dilatation was consistently observed in the ascending region, while there were more heterogeneous changes in the descending thoracic region. Pathological features were distinct between the ascending and descending thoracic regions. Aortic pathology in the ascending region was characterized by luminal dilatation and elastic fiber disruption throughout the media. The descending thoracic region frequently had dissections with false lumen formation, collagen deposition, and remodeling of the wall surrounding the false lumen. Cells surrounding the false lumen were predominantly positive for α-SMA (α-smooth muscle actin). One week of BAPN administration compromised contractile properties in both regions equivalently, and RNA sequencing did not show obvious differences between the 2 aortic regions in smooth muscle cell markers, cell proliferation markers, and extracellular components. CONCLUSIONS: BAPN-induced pathologies show distinct, heterogeneous features within and between ascending and descending aortic regions in mice.


Assuntos
Aminopropionitrilo , Aorta Torácica , Ruptura Aórtica , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Animais , Aminopropionitrilo/toxicidade , Aminopropionitrilo/farmacologia , Aorta Torácica/patologia , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Feminino , Masculino , Ruptura Aórtica/induzido quimicamente , Ruptura Aórtica/patologia , Ruptura Aórtica/metabolismo , Ruptura Aórtica/prevenção & controle , Camundongos , Remodelação Vascular/efeitos dos fármacos , Dilatação Patológica , Músculo Liso Vascular/patologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Fatores Etários , Fatores de Tempo , Fatores Sexuais , Proliferação de Células/efeitos dos fármacos , Proteína-Lisina 6-Oxidase/metabolismo
4.
J Mol Cell Cardiol ; 189: 38-51, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387723

RESUMO

Acute aortic dissection (AAD) progresses rapidly and is associated with high mortality; therefore, there remains an urgent need for pharmacological agents that can protect against AAD. Herein, we examined the therapeutic effects of cannabidiol (CBD) in AAD by establishing a suitable mouse model. In addition, we performed human AAD single-cell RNA sequencing and mouse AAD bulk RNA sequencing to elucidate the potential underlying mechanism of CBD. Pathological assays and in vitro studies were performed to verify the results of the bioinformatic analysis and explore the pharmacological function of CBD. In a ß-aminopropionitrile (BAPN)-induced AAD mouse model, CBD reduced AAD-associated morbidity and mortality, alleviated abnormal enlargement of the ascending aorta and aortic arch, and suppressed macrophage infiltration and vascular smooth muscle cell (VSMC) apoptosis. Bioinformatic analysis revealed that the pro-apoptotic gene PMAIP1 was highly expressed in human and mouse AAD samples, and CBD could inhibit Pmaip1 expression in AAD mice. Using human aortic VSMCs (HAVSMCs) co-cultured with M1 macrophages, we revealed that CBD alleviated HAVSMCs mitochondrial-dependent apoptosis by suppressing the BAPN-induced overexpression of PMAIP1 in M1 macrophages. PMAIP1 potentially mediates HAVSMCs apoptosis by regulating Bax and Bcl2 expression. Accordingly, CBD reduced AAD-associated morbidity and mortality and mitigated the progression of AAD in a mouse model. The CBD-induced effects were potentially mediated by suppressing macrophage infiltration and PMAIP1 (primarily expressed in macrophages)-induced VSMC apoptosis. Our findings offer novel insights into M1 macrophages and HAVSMCs interaction during AAD progression, highlighting the potential of CBD as a therapeutic candidate for AAD treatment.


Assuntos
Dissecção Aórtica , Canabidiol , Animais , Humanos , Camundongos , Aminopropionitrilo/farmacologia , Dissecção Aórtica/tratamento farmacológico , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Canabidiol/farmacologia , Canabidiol/metabolismo , Macrófagos/metabolismo , Músculo Liso Vascular/patologia
5.
Eur J Vasc Endovasc Surg ; 67(4): 663-671, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37863308

RESUMO

OBJECTIVE: Selenium (Se) is a key part of the body's oxidation defence system. However, it is unclear whether Se affects the development of aortic aneurysm (AA). An animal experiment was conducted to clarify the role of Se in AA development. METHODS: C57BL/6N male mice were fed with a Se deficient (Se-D, < 0.05 mg/kg), Se adequate (Se-A, 0.2 mg/kg), or Se supplemented (Se-S, 1 mg/kg) diet for 8 weeks. Subsequently, an AA murine model (Se-D, n = 11; Se-A, n = 12; Se-S, n = 15) was established using angiotensin II (Ang II, 1 mg/kg/min) for four weeks plus ß-aminopropionitrile (BAPN, 1 mg/mL) for the first two weeks. Saline replaced Ang II, and BAPN was removed during the modelling process for sham mice (Se-A, n = 9). To determine whether Se deficiency promoted aortic dilation via matrix metalloproteinase-2 (MMP-2), the non-specific MMP inhibitor doxycycline (Dox, 100 mg/kg/day) was given to Se-D AA mice (n = 7) for two weeks. RESULTS: The maximum aortic diameter in Se-D AA model mice was significantly increased compared with Se-A AA model mice. MMP-2 expression and activity in the aortic media of Se-D AA model mice was significantly increased compared with Se-A AA model mice. A large number of vascular smooth muscle cells (VSMCs) were found aggregating in the media of the non-dilated aorta of Se-D AA model mice, which was completely inhibited by Dox. The percentage of VSMCs in aortic media of Se-D AA model mice was significantly higher than in Se-A AA model mice. The maximum aortic diameter and occurrence rate of AA in Se-D AA model mice with Dox were significantly reduced compared with Se-D AA model mice. CONCLUSION: Se deficiency promoted dilatation of the aorta in AA model mice by increasing expression and activity of VSMC derived MMP-2, causing abnormal aggregation and proliferation of VSMCs in aortic media.


Assuntos
Aneurisma Aórtico , Selênio , Masculino , Camundongos , Animais , Metaloproteinase 2 da Matriz/metabolismo , Músculo Liso Vascular/metabolismo , Dilatação , Selênio/farmacologia , Selênio/metabolismo , Aminopropionitrilo/farmacologia , Camundongos Endogâmicos C57BL , Aorta/metabolismo , Modelos Animais de Doenças , Miócitos de Músculo Liso/metabolismo
6.
Am J Physiol Renal Physiol ; 324(4): F364-F373, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36825626

RESUMO

Patients with chronic kidney disease (CKD) are at increased risk for adverse cardiovascular events. CKD is associated with increases in arterial stiffness, whereas improvements in arterial stiffness correlate with better survival. However, arterial stiffness is increased early in CKD, suggesting that there might be additional factors, unique to kidney disease, that increase arterial stiffness. Lysyl oxidase (LOX) is a key mediator of collagen cross linking and matrix remodeling. LOX is predominantly expressed in the cardiovascular system, and its upregulation has been associated with increased tissue stiffening and extracellular matrix remodeling. Thus, this study was designed to evaluate the role of increased LOX activity in inducing aortic stiffness in CKD and whether ß-aminopropionitrile (BAPN), a LOX inhibitor, could prevent aortic stiffness by reducing collagen cross linking. Eight-week-old male C57BL/6 mice were subjected to 5/6 nephrectomy (Nx) or sham surgery. Two weeks after surgery, mice were randomized to BAPN (300 mg/kg/day in water) or vehicle treatment for 4 wk. Aortic stiffness was assessed by pulse wave velocity (PWV) using Doppler ultrasound. Aortic levels of LOX were assessed by ELISA, and cross-linked total collagen levels were analyzed by mass spectrometry and Sircol assay. Nx mice showed increased PWV and aortic wall remodeling compared with control mice. Collagen cross linking was increased in parallel with the increases in total collagen in the aorta of Nx mice. In contrast, Nx mice that received BAPN treatment showed decreased cross-linked collagens and PWV compared with that received vehicle treatment. Our results indicated that LOX might be an early and key mediator of aortic stiffness in CKD.NEW & NOTEWORTHY Arterial stiffness in CKD is associated with adverse cardiovascular outcomes. However, the mechanisms underlying increased aortic stiffness in CKD are unclear. Herein, we demonstrated that 1) increased aortic stiffness in CKD is independent of hypertension and calcification and 2) LOX-mediated changes in extracellular matrix are at least in part responsible for increased aortic stiffness in CKD. Prevention of excess LOX may have therapeutic potential in alleviating increased aortic stiffness and improving cardiovascular disease in CKD.


Assuntos
Insuficiência Renal Crônica , Rigidez Vascular , Animais , Masculino , Camundongos , Aminopropionitrilo/farmacologia , Colágeno , Camundongos Endogâmicos C57BL , Proteína-Lisina 6-Oxidase , Análise de Onda de Pulso/métodos , Rigidez Vascular/fisiologia
7.
Angew Chem Int Ed Engl ; 62(12): e202217339, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36694443

RESUMO

Cancer immunotherapy has shown tremendous potential to train the intrinsic immune system against malignancy in the clinic. However, the extracellular matrix (ECM) in tumor microenvironment is a formidable barrier that not only restricts the penetration of therapeutic drugs but also prevents the infiltration of antitumor immune cells. We herein report a semiconducting polymer-based ECM nanoremodeler (SPNcb) to combine photodynamic antitumor activity with cancer-specific inhibition of collagen-crosslinking enzymes (lysyl oxidase (LOX) family) for activatable cancer photo-immunotherapy. SPNcb is self-assembled from an amphiphilic semiconducting polymer conjugated with a LOX inhibitor (ß-aminopropionitrile, BAPN) via a cancer biomarker (cathepsin B, CatB)-cleavable segment. BAPN can be exclusively activated to inhibit LOX activity in the presence of the tumor-overexpressed CatB, thus blocking collagen crosslinking and decreasing ECM stiffness. Such an ECM nanoremodeler synergizes immunogenic phototherapy and checkpoint blockade immunotherapy to improve the tumor infiltration of cytotoxic T cells, inhibiting tumor growth and metastasis.


Assuntos
Aminopropionitrilo , Neoplasias , Aminopropionitrilo/farmacologia , Matriz Extracelular , Colágeno , Imunoterapia , Neoplasias/patologia
8.
J Cell Physiol ; 237(5): 2516-2527, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35285015

RESUMO

Chronic kidney disease is one of the major health burdens affecting a considerable number of people worldwide. The aberrant regulation of lysyl oxidase (LOX) family of enzymes results in establishment of dense extracellular matrix (ECM). Since, LOX enzymes need copper (Cu) for their proper catalytic activity; the present study investigated the efficacy of a copper chelator, disulfiram (DSF) in renal fibrosis. Antifibrotic activity of DSF was investigated in kidney epithelial cells stimulated by transforming growth factor-ß1 (5 ng/ml) as well as in two animal models. The renal injury was induced in animals by unilateral ureteral obstruction and folic acid administration (250 mg/kg). The DSF (3 and 10 mg/kg, every 3rd day) and standard LOX inhibitor, ß-aminopropionitrile (BAPN, 100 mg/kg, daily) administration was started on day 0 and continued till the day of sacrifice. DSF was found to be a potent LOX/LOXL2 inhibitor to reduce crosslinking of collagen fibrils leading to reduction in the collagen deposition. In addition, the DSF was demonstrated to inhibit epithelial-mesenchymal transition in the tubular cells and fibrotic kidneys. Our results suggested that DSF, being a clinically available drug could be translated to clinics for its potent antifibrotic activity due to its inhibitory effect on LOX proteins.


Assuntos
Nefropatias , Proteína-Lisina 6-Oxidase , Aminopropionitrilo/farmacologia , Animais , Colágeno/metabolismo , Cobre , Dissulfiram/farmacologia , Fibrose , Humanos , Proteína-Lisina 6-Oxidase/metabolismo
9.
Int J Mol Sci ; 22(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34769331

RESUMO

Congenital clubfoot is a complex musculoskeletal deformity, in which a stiff, contracted tissue forms in the medial part of the foot. Fibrotic changes are associated with increased collagen deposition and lysyl oxidase (LOX)-mediated crosslinking, which impair collagen degradation and increase the tissue stiffness. First, we studied collagen deposition, as well as the expression of collagen and the amount of pyridinoline and deoxypyridinoline crosslinks in the tissue of relapsed clubfoot by immunohistochemistry, real-time PCR, and enzyme-linked immunosorbent assay (ELISA). We then isolated fibroblast-like cells from the contracted tissue to study the potential inhibition of these processes in vitro. We assessed the effects of a LOX inhibitor, ß-aminopropionitrile (BAPN), on the cells by a hydroxyproline assay, ELISA, and Second Harmonic Generation imaging. We also evaluated the cell-mediated contraction of extracellular matrix in 3D cell-populated collagen gels. For the first time, we have confirmed significantly increased crosslinking and excessive collagen type I deposition in the clubfoot-contracted tissue. We successfully reduced these processes in vitro in a dose-dependent manner with 10-40 µg/mL of BAPN, and we observed an increasing trend in the inhibition of the cell-mediated contraction of collagen gels. The in vitro inhibitory effects indicate that BAPN has good potential for the treatment of relapsed and resistant clubfeet.


Assuntos
Aminopropionitrilo/farmacologia , Pé Torto Equinovaro/tratamento farmacológico , Colágeno/química , Reagentes de Ligações Cruzadas/farmacologia , Fibroblastos/efeitos dos fármacos , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Pré-Escolar , Pé Torto Equinovaro/metabolismo , Pé Torto Equinovaro/patologia , Feminino , Humanos , Masculino
10.
J Mol Cell Cardiol ; 134: 13-28, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31233754

RESUMO

Cardiac fibrosis is a hallmark of heart failure for which there is no effective pharmacological therapy. By genetic modification and in vivo inhibitor approaches it was suggested that the Rho-associated kinases (ROCK1 and ROCK2) are involved in pro-fibrotic signalling in cardiac fibroblasts and that they may serve as targets for anti-fibrotic therapies. We demonstrate that simultaneous inhibition of ROCK1 and ROCK2 strongly interfered with tissue formation and their biomechanical properties in a model of engineered connective tissue (ECT), comprised of cardiac fibroblasts and collagen. These effects were observed with both rat and human ECT. Inhibitors of different chemistries, including the isoquinoline inhibitors Fasudil and H1152P as well as the pyrazol-phenyl inhibitor SR-3677, showed comparable effects. By combined treatment of ECT with TGF-ß and H1152P, we could identify ROCK as a mediator of TGF-ß-dependent tissue stiffening. Moreover, expression analyses suggested that lysyl oxidase (LOX) is a downstream target of the ROCK-actin-MRTF/SRF pathway and inhibition of this pathway by Latrunculin A and CCG-203971 showed similar anti-fibrotic effects in the ECT model as ROCK inhibitors. In line with the collagen crosslinking function of LOX, its inhibition by ß-aminopropionitrile resulted in reduced ECT stiffness, but let tissue compaction unaffected. Finally, we show that ROCK inhibition also reduced the compaction and stiffness of engineered heart muscle tissues. Our results indicate that pharmacological inhibition of ROCK has a strong anti-fibrotic potential which is in part due to a decrease in the expression of the collagen crosslinking enzyme lysyl oxidase.


Assuntos
Miocárdio/metabolismo , Miofibroblastos/metabolismo , Quinases Associadas a rho/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Actinas/metabolismo , Aminopropionitrilo/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibrose/metabolismo , Coração/efeitos dos fármacos , Humanos , Masculino , Miofibroblastos/efeitos dos fármacos , Proteína-Lisina 6-Oxidase/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
11.
Calcif Tissue Int ; 105(6): 660-669, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31482192

RESUMO

Enzymatic crosslinks stabilize type I collagen and are catalyzed by lysyl oxidase (LOX), a step interrupted through ß-aminopropionitrile (BAPN) exposure. This study evaluated dose-dependent effects of BAPN on osteoblast gene expression of type I collagen, LOX, and genes associated with crosslink formation. The second objective was to characterize collagen produced in vitro after exposure to BAPN, and to explore changes to collagen properties under continuous cyclical substrate strain. To evaluate dose-dependent effects, osteoblasts were exposed to a range of BAPN dosages (0-10 mM) for gene expression analysis and cell proliferation. Results showed significant upregulation of BMP-1, POST, and COL1A1 and change in cell proliferation. Results also showed that while the gene encoding LOX was unaffected by BAPN treatment, other genes related to LOX activation and matrix production were upregulated. For the loading study, the combined effects of BAPN and mechanical loading were assessed. Gene expression was quantified, atomic force microscopy was used to extract elastic properties of the collagen matrix, and Fourier Transform infrared spectroscopy was used to assess collagen secondary structure for enzymatic crosslinking analysis. BAPN upregulated BMP-1 in static samples and BAPN combined with mechanical loading downregulated LOX when compared to control-static samples. Results showed a higher indentation modulus in BAPN-loaded samples compared to control-loaded samples. Loading increased the mature-to-immature crosslink ratios in control samples, and BAPN increased the height ratio in static samples. In summary, effects of BAPN (upregulation of genes involved in crosslinking, mature/immature crosslinking ratios, upward trend in collagen elasticity) were mitigated by mechanical loading.


Assuntos
Aminopropionitrilo/farmacologia , Proliferação de Células/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Proteína-Lisina 6-Oxidase/efeitos dos fármacos , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Colágeno/metabolismo , Colágeno Tipo I/genética , Expressão Gênica/efeitos dos fármacos , Osteoblastos/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo
12.
FASEB J ; 32(8): 4459-4469, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29547702

RESUMO

Vascular smooth muscle cells (VSMCs) transdifferentiate into osteoblast-like cells during vascular calcification, inducing active remodeling and calcification of the extracellular matrix (ECM). Intracellular and extracellular enzymes, such as lysyl hydroxylase 1 (PLOD1) and lysyl oxidase (LOX), contribute to ECM maturation and stabilization. We assessed the contribution of these enzymes to hyperphosphatemia-induced calcification. Human and murine VSMCs were differentiated into functional osteoblast-like cells by high-phosphate medium (HPM) conditioning. HPM promoted ECM calcification and up-regulated osteoblast markers associated with induction of LOX and PLOD1 expression and with an increase in ECM-insoluble collagen deposition. Murine VSMCs from transgenic mice overexpressing LOX (TgLOX) exhibited an increase in HPM-dependent calcification and osteoblast commitment compared with wild-type cells. Similarly, enhanced HPM-induced calcification was detected in aorta from TgLOX. Conversely, ß-aminopropionitrile (a LOX inhibitor) and LOX knockdown abrogated VSMC calcification and transdifferentiation. We found a significant positive association between LOX expression and vascular calcification in human atherosclerotic lesions. Likewise, 2,2'-dipyridil (a PLOD inhibitor) and PLOD1 knockdown impaired HPM-induced ECM mineralization and osteoblast commitment. Our findings identify LOX and PLOD as critical players in vascular calcification and highlight the importance of ECM remodeling in this process.-Jover, E., Silvente, A., Marín, F., Martínez-González, J., Orriols, M., Martinez, C. M., Puche, C. M., Valdés, M., Rodriguez, C., Hernández-Romero, D. Inhibition of enzymes involved in collagen cross-linking reduces vascular smooth muscle cell calcification.


Assuntos
Colágeno/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Calcificação Vascular/metabolismo , Aminopropionitrilo/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/fisiologia , Transdiferenciação Celular/efeitos dos fármacos , Transdiferenciação Celular/fisiologia , Células Cultivadas , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Calcificação Vascular/tratamento farmacológico
13.
Immunopharmacol Immunotoxicol ; 41(6): 644-651, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31724452

RESUMO

Objectives: In the current study, we aimed to investigate the effect of administration of resveratrol (RES) and beta-aminopropionitrile (BAPN) separately and together on the liver fibrosis progression via regulation of the gene expression and protein level of lysyl oxidase (LOX).Materials and methods: The six-week old Wistar rats received carbon tetrachloride (CCl4) intraperitoneally and RES and BAPN were administrated orally for eight weeks. The hepatoprotective effects of RES, BAPN, and combination treatment were evaluated. Then the hepatic protein and gene expression levels of LOX were measured.Results: Both RES and BAPN showed the antifibrotic effect through the reduction of collagen fiber bundles, hepatic hydroxyproline content, and protein level of LOX. The antifibrotic effect increased when RES and BAPN up-taken together.Conclusion: The co-administration of RES and BAPN can be considered as a promising therapeutic approach via targeting LOX.


Assuntos
Aminopropionitrilo/farmacologia , Intoxicação por Tetracloreto de Carbono/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Cirrose Hepática/tratamento farmacológico , Proteína-Lisina 6-Oxidase/imunologia , Resveratrol/farmacologia , Animais , Intoxicação por Tetracloreto de Carbono/imunologia , Intoxicação por Tetracloreto de Carbono/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/imunologia , Cirrose Hepática/patologia , Masculino , Ratos , Ratos Wistar
14.
J Cell Mol Med ; 22(3): 2018-2022, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29278308

RESUMO

Penile fibrosis caused by ischemic priapism (IP) adversely affects patients' erectile function. We explored the role of lysyl oxidase (LOX) in rat and human penes after ischemic priapism (IP) to verify the effects of anti-LOX in relieving penile fibrosis and preventing erectile dysfunction caused by IP in rats. Seventy-two rats were randomly divided into six groups: control group, control + ß-aminopropionitrile (BAPN) group, 9 hrs group, 9 hrs + BAPN group, 24 hrs group, and 24 hrs + BAPN group. ß-aminopropionitrile (BAPN), a specific inhibitor of LOX, was administered in the drinking water. At 1 week and 4 weeks, half of the rats in each group were randomly selected for the experiment. Compared to the control group, the erectile function of IP rats was significantly decreased while the expression of LOX in the corpus cavernosum was significantly up-regulated in both 9 and 24 hrs group. Proliferated fibroblasts, decreased corpus cavernosum smooth muscle cells/collagen ratios, destroyed endothelial continuity, deposited abnormal collagen and disorganized fibers were observed in IP rats. The relative content of collage I and III was not obviously different among the groups. ß-aminopropionitrile (BAPN) could effectively improve the structure and erectile function of the penis, and enhance recovery. The data in this study suggests that LOX may play an important role in the fibrosis of corpus cavernosum after IP and anti-LOX may be a novel target for patients suffering with IP.


Assuntos
Aminopropionitrilo/farmacologia , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Isquemia/tratamento farmacológico , Priapismo/prevenção & controle , Animais , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/antagonistas & inibidores , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo III/antagonistas & inibidores , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Modelos Animais de Doenças , Água Potável/administração & dosagem , Fibroblastos/enzimologia , Fibroblastos/patologia , Fibrose/prevenção & controle , Expressão Gênica , Humanos , Isquemia/enzimologia , Isquemia/genética , Isquemia/fisiopatologia , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Ereção Peniana/fisiologia , Pênis/enzimologia , Pênis/fisiopatologia , Priapismo/enzimologia , Priapismo/genética , Priapismo/fisiopatologia , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo , Ratos , Ratos Sprague-Dawley
15.
Am J Physiol Heart Circ Physiol ; 315(3): H463-H473, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29775412

RESUMO

The cardiac extracellular matrix is a complex architectural network that serves many functions, including providing structural and biochemical support to surrounding cells and regulating intercellular signaling pathways. Cardiac function is directly affected by extracellular matrix (ECM) composition, and alterations of the ECM contribute to the progression of heart failure. Initially, collagen deposition is an adaptive response that aims to preserve tissue integrity and maintain normal ventricular function. However, the synergistic effects of proinflammatory and profibrotic responses induce a vicious cycle, which causes excess activation of myofibroblasts, significantly increasing collagen deposition and accumulation in the matrix. Furthermore, excess synthesis and activation of the enzyme lysyl oxidase (LOX) during disease increases collagen cross-linking, which significantly increases collagen resistance to degradation by matrix metalloproteinases (MMPs). In the present study, the aortocaval fistula model of volume overload (VO) was used to determine whether LOX inhibition could prevent adverse changes in the ECM and subsequent cardiac dysfunction. The major findings from this study were that LOX inhibition 1) prevented VO-induced increases in left ventricular wall stress; 2) partially attenuated VO-induced ventricular hypertrophy; 3) completely blocked the increases in fibrotic proteins, including collagens, MMPs, and their tissue inhibitors; and 4) prevented the VO-induced decline in cardiac function. It remains unclear whether a direct interaction between LOX and MMPs exists; however, our experiments suggest a potential link between the two because LOX inhibition completely attenuated VO-induced increases in MMPs. Overall, our study demonstrated key cardioprotective effects of LOX inhibition against adverse cardiac remodeling due to chronic VO. NEW & NOTEWORTHY Although the primary role of lysyl oxidase (LOX) is to cross-link collagens, we found that elevated LOX during cardiac disease plays a key role in the progression of heart failure. Here, we show that inhibition of LOX in volume-overloaded rats prevented the development of cardiac dysfunction and improved ventricular collagen and matrix metalloproteinase/tissue inhibitor of metalloproteinase profiles.


Assuntos
Matriz Extracelular/efeitos dos fármacos , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Miocárdio/metabolismo , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Aminopropionitrilo/farmacologia , Aminopropionitrilo/uso terapêutico , Animais , Fístula Arteriovenosa/complicações , Colágeno/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Matriz Extracelular/metabolismo , Hipertrofia Ventricular Esquerda/etiologia , Masculino , Metaloproteinases da Matriz/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Ratos , Ratos Sprague-Dawley
16.
Exp Physiol ; 103(12): 1717-1731, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30191627

RESUMO

NEW FINDINGS: What is the central question of this study? Thoracic aortic aneurysm and dissection (TAAD) is characterized by extracellular matrix remodelling and an inflammatory response. Evidence suggests that ADAMTS1 is closely associated with TAAD development, but whether it contributes to the pathophysiology of TAAD remains unknown. What is the main finding and its importance? We generated inducible postnatal ADAMTS1 knockout mice and found that ADAMTS1 deficiency attenuated ß-aminopropionitrile-dependent TAAD formation and rupture. Furthermore, ADAMTS1 deficiency suppressed neutrophil and macrophage infiltration by inhibiting inflammatory cytokine levels and macrophage migration during the early stage of ß-aminopropionitrile-induced TAAD. ADAMTS1 could be a new therapeutic target for TAAD. ABSTRACT: Thoracic aortic aneurysm and dissection (TAAD), as a life-threatening cardiovascular disease, is characterized by extracellular matrix remodelling and an inflammatory response. A disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1) is an inflammation-related protein that is able to degrade extracellular matrix proteins in arteries. Herein, we investigated whether ADAMTS1 contributes to the pathophysiology of TAAD in mice. Using the mouse model of ß-aminopropionitrile (BAPN)-induced TAAD, we found that ADAMTS1 expression was upregulated beginning in the early stage of TAAD development and localized predominantly in the aortic adventitia. ADAMTS1-floxed mice and whole-body tamoxifen-inducible ADAMTS1 knockout mice (ADAMTS1flox/flox Ubc-CreERT2+ , ADAMTS1 KO) were generated to investigate the direct causal role of ADAMTS1 in TAAD development. The incidence and rupture rates of BAPN-induced TAAD in ADAMTS1 KO mice were significantly lower than those in ADAMTS1flox/flox mice (45.5 versus 81.8% and 18.2 versus 42.4%, respectively). Aortas from BAPN-treated ADAMTS1flox/flox mice displayed profound destruction of the elastic lamellae, abundant neutrophil and macrophage accumulation in the adventitia, obviously increased neutrophil proportions in peripheral blood and significantly increased expression of inflammatory factors in the early stage of TAAD induction, all of which were markedly suppressed in ADAMTS1 KO mice. Furthermore, ADAMTS1-deficient macrophages exhibited abrogated migration capacity both in vivo and in vitro. In conclusion, ADAMTS1 plays a crucial role in postnatal TAAD formation and rupture by regulating inflammatory responses, suggesting that ADAMTS1 might be a new therapeutic target for TAAD.


Assuntos
Proteína ADAMTS1/deficiência , Aneurisma da Aorta Torácica/metabolismo , Aminopropionitrilo/farmacologia , Dissecção Aórtica/induzido quimicamente , Dissecção Aórtica/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aneurisma da Aorta Torácica/induzido quimicamente , Modelos Animais de Doenças , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regulação para Cima/fisiologia
17.
Bioorg Med Chem Lett ; 28(18): 3113-3118, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30098867

RESUMO

Lysyl oxidase (LOX) enzymes as potential drug targets maintain constant attention in the therapy of fibrosis, cancer and metastasis. In order to measure the inhibitory activity of small molecules on the LOX enzyme family members a fluorometric activity screening method was developed. During assay validation, previously reported non-selective small inhibitor molecules (BAPN, MCP-1, thiram, disulfiram) were investigated on all of the major LOX enzymes. We confirmed that MCP-1, thiram, disulfiram are in fact pan-inhibitors, while BAPN inhibits only LOX-like enzymes (preferably LOX-like-protein-2, LOXL2) in contrast to the previous reports. We measured the LOX inhibitory profile of a small targeted library generated by 2D ligand-based chemoinformatics methods. Ten hits (10.4% hit rate) were identified, and the compounds showed distinct activity profiles. Potential inhibitors were also identified for LOX-like-protein-3 (LOXL3) and LOX-like-protein-4 (LOXL4), that are considered as emerging drug targets in the therapy of melanoma and gastric cancer.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Aminopropionitrilo/química , Aminopropionitrilo/farmacologia , Dissulfiram/química , Dissulfiram/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Ligantes , Estrutura Molecular , Proteína-Lisina 6-Oxidase/metabolismo , Piridinas/química , Piridinas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Tionas/química , Tionas/farmacologia , Tiram/química , Tiram/farmacologia
18.
FASEB J ; 30(4): 1599-609, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26700732

RESUMO

Collagen stabilization through irreversible cross-linking is thought to promote hepatic fibrosis progression and limit its reversibility. However, the mechanism of this process remains poorly defined. We studied the functional contribution of lysyl oxidase (LOX) to collagen stabilization and hepatic fibrosis progression/reversalin vivousing chronic administration of irreversible LOX inhibitor ß-aminopropionitrile (BAPN, or vehicle as control) in C57Bl/6J mice with carbon tetrachloride (CCl4)-induced fibrosis. Fibrotic matrix stability was directly assessed using a stepwise collagen extraction assay and fibrotic septae morphometry. Liver cells and fibrosis were studied by histologic, biochemical methods and quantitative real-time reverse-transcription PCR. During fibrosis progression, BAPN administration suppressed accumulation of cross-linked collagens, and fibrotic septae showed widening and collagen fibrils splitting, reminiscent of remodeling signs observed during fibrosis reversal. LOX inhibition attenuated hepatic stellate cell activation markers and promoted F4/80-positive scar-associated macrophage infiltration without an increase in liver injury. In reversal experiments, BAPN-treated fibrotic mice demonstrated accelerated fibrosis reversal after CCl4withdrawal. Our findings demonstrate for the first time that LOX contributes significantly to collagen stabilization in liver fibrosis, promotes fibrogenic activation of attenuated hepatic stellate cells, and limits fibrosis reversal. Our data support the concept of pharmacologic targeting of LOX pathway to inhibit liver fibrosis and promote its resolution.-Liu, S. B., Ikenaga, N., Peng, Z.-W., Sverdlov, D. Y., Greenstein, A., Smith, V., Schuppan, D., Popov, Y. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice.


Assuntos
Colágeno/metabolismo , Cirrose Hepática Experimental/metabolismo , Fígado/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Aminopropionitrilo/administração & dosagem , Aminopropionitrilo/farmacologia , Animais , Tetracloreto de Carbono , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Progressão da Doença , Fibrose , Expressão Gênica/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Injeções Intraperitoneais , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/prevenção & controle , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Microscopia Confocal/métodos , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
19.
Am J Pathol ; 185(3): 631-42, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25701883

RESUMO

Heart failure, the leading cause of hospitalization of elderly patients, is correlated with myocardial fibrosis (ie, deposition of excess extracellular matrix proteins such as collagen). A key regulator of collagen homeostasis is lysyl oxidase (LOX), an enzyme responsible for cross-linking collagen fibers. Our objective was to ameliorate age-related myocardial fibrosis by disrupting collagen cross-linking through inhibition of LOX. The nonreversible LOX inhibitor ß-aminopropionitrile (BAPN) was administered by osmotic minipump to 38-week-old C57BL/6J male mice for 2 weeks. Sirius Red staining of myocardial cross sections revealed a reduction in fibrosis, compared with age-matched controls (5.84 ± 0.30% versus 10.17 ± 1.34%) (P < 0.05), to a level similar to that of young mice at 8 weeks (4.9 ± 1.2%). BAPN significantly reduced COL1A1 mRNA, compared with age-matched mice (3.5 ± 0.3-fold versus 15.2 ± 4.9-fold) (P < 0.05), suggesting that LOX is involved in regulation of collagen synthesis. In accord, fibrotic factor mRNA expression was reduced after BAPN. There was also a novel increase in Ly6C expression by resident macrophages. By interrupting collagen cross-linking by LOX, the BAPN treatment reduced myocardial fibrosis. A novel observation is that BAPN treatment modulated the transforming growth factor-ß pathway, collagen synthesis, and the resident macrophage population. This is especially valuable in terms of potential therapeutic targeting of collagen regulation and thereby age-related myocardial fibrosis.


Assuntos
Aminopropionitrilo/uso terapêutico , Colágeno/metabolismo , Cardiopatias/tratamento farmacológico , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Fatores Etários , Aminopropionitrilo/farmacologia , Animais , Fibrose/metabolismo , Fibrose/patologia , Cardiopatias/metabolismo , Cardiopatias/patologia , Masculino , Camundongos , Miocárdio/patologia
20.
J Pathol ; 236(3): 373-83, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25788370

RESUMO

Thoracic aortic aneurysm/dissection (TAAD) is characterized by excessive smooth muscle cell (SMC) loss, extracellular matrix (ECM) degradation and inflammation. In response to certain stimuli, endoplasmic reticulum (ER) stress is activated and regulates apoptosis and inflammation. Excessive apoptosis promotes aortic inflammation and degeneration, leading to TAAD. Therefore, we studied the role of ER stress in TAAD formation. A lysyl oxidase inhibitor, 3-aminopropionitrile fumarate (BAPN), was administrated to induce TAAD formation in mice, which showed significant SMC loss (α-SMA level). Excessive apoptosis (TUNEL staining) and ER stress (ATF4 and CHOP), along with inflammation, were present in TAAD samples from both mouse and human. Transcriptional profiling of SMCs after mechanical stress demonstrated the expression of genes for ER stress and inflammation. To explore the causal role of ER stress in initiating degenerative signalling events and TAAD, we treated wild-type (CHOP(+/+)) or CHOP(-/-) mice with BAPN and found that CHOP deficiency protected against TAAD formation and rupture, as well as reduction in α-SMA level. Both SMC apoptosis and inflammation were significantly reduced in CHOP(-/-) mice. Moreover, SMCs isolated from CHOP(-/-) mice were resistant to mechanical stress-induced apoptosis. Taken together, our results demonstrated that mechanical stress-induced ER stress promotes SMCs apoptosis, inflammation and degeneration, providing insight into TAAD formation and progression.


Assuntos
Aneurisma da Aorta Torácica/patologia , Apoptose , Estresse do Retículo Endoplasmático , Transdução de Sinais , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Aminopropionitrilo/farmacologia , Animais , Aorta/metabolismo , Aneurisma da Aorta Torácica/induzido quimicamente , Aneurisma da Aorta Torácica/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Humanos , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos de Músculo Liso/metabolismo , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa