Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Environ Sci Technol ; 56(4): 2760-2769, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35073047

RESUMO

The reduction of atmospheric dinitrogen by nitrogenase is a key component of terrestrial nitrogen cycling. Nitrogenases exist in several isoforms named after the metal present within their active center: the molybdenum (Mo), the vanadium (V), and the iron (Fe)-only nitrogenase. While earlier in vitro studies hint that the relative contribution of V nitrogenase to total BNF could be temperature-dependent, the effect of temperature on in vivo activity remains to be investigated. In this study, we characterize the in vivo effect of temperature (3-42 °C) on the activities of Mo nitrogenase and V nitrogenase in the heterocystous cyanobacteria Anabaena variabilis ATTC 29413 using the acetylene reduction assay by cavity ring-down absorption spectroscopy. We demonstrate that V nitrogenase becomes as efficient as Mo nitrogenase at temperatures below 10-15 °C. At temperatures above 22 °C, BNF seems to be limited by O2 availability to respiration in both enzymes. Furthermore, Anabaena variabilis cultures grown in Mo or V media achieved similar growth rates at temperatures below 20 °C. Considering the average temperature on earth is 15 °C, our findings further support the role of V nitrogenase as a viable backup enzymatic system for BNF in natural ecosystems.


Assuntos
Anabaena variabilis , Nitrogenase , Anabaena variabilis/enzimologia , Anabaena variabilis/metabolismo , Ecossistema , Molibdênio , Fixação de Nitrogênio , Nitrogenase/metabolismo , Temperatura , Vanádio
2.
Nucleic Acids Res ; 48(12): 6954-6969, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32459314

RESUMO

Restriction endonucleases naturally target DNA duplexes. Systematic screening has identified a small minority of these enzymes that can also cleave RNA/DNA heteroduplexes and that may therefore be useful as tools for RNA biochemistry. We have chosen AvaII (G↓GWCC, where W stands for A or T) as a representative of this group of restriction endonucleases for detailed characterization. Here, we report crystal structures of AvaII alone, in specific complex with partially cleaved dsDNA, and in scanning complex with an RNA/DNA hybrid. The specific complex reveals a novel form of semi-specific dsDNA readout by a hexa-coordinated metal cation, most likely Ca2+ or Mg2+. Substitutions of residues anchoring this non-catalytic metal ion severely impair DNA binding and cleavage. The dsDNA in the AvaII complex is in the A-like form. This creates space for 2'-OH groups to be accommodated without intra-nucleic acid steric conflicts. PD-(D/E)XK restriction endonucleases of known structure that bind their dsDNA targets in the A-like form cluster into structurally similar groups. Most such enzymes, including some not previously studied in this respect, cleave RNA/DNA heteroduplexes. We conclude that A-form dsDNA binding is a good predictor for RNA/DNA cleavage activity.


Assuntos
Enzimas de Restrição do DNA/ultraestrutura , DNA/ultraestrutura , Ácidos Nucleicos Heteroduplexes/ultraestrutura , RNA/ultraestrutura , Anabaena variabilis/genética , Sítios de Ligação/genética , Cristalografia por Raios X , DNA/genética , Quebras de DNA de Cadeia Dupla , Enzimas de Restrição do DNA/genética , Metais/química , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Heteroduplexes/genética , RNA/genética
3.
Pestic Biochem Physiol ; 177: 104904, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34301365

RESUMO

Cartap hydrochloride is a moderately hazardous nereistoxin analogue insecticide that is predominantly applied in paddy fields of India, at a recommended dose of 10 µg ml-1 to kill chewing and sucking insect pests of rice crop. Toxicity of cartap hydrochloride was studied on non-target free-living nitrogen fixing cyanobacterium Anabaena variabilis ARM 441 commonly used as algal biofertilizer in rice cultivation. Anabaena sp. could tolerate commercial grade insecticide up to 30 µg ml-1. However, at the recommended dose of 10 µg ml-1, it caused reduction in algal growth, total nitrogen and heterocyst frequency by 47.28, 24.29 and 17.72% respectively, as well as photosynthetic pigments under pure culture conditions. Scanning electron micrographs revealed cell rupture and breakage in filaments due to cartap exposure with the formation of akinetes. Cartap hydrochloride induced stress, since level of superoxide dismutase, peroxidase and catalase were increased by 108.57, 187.5 and 117% respectively. Generation of superoxide radicals and hydrogen peroxide were also increased by 152.48 and 34% respectively. Lipid peroxidation was increased by 31.03%, whereas there was decline in ascorbate content by 48.45%, however the glutathione content was increased by 128.57%. Increase in osmolytes such as proline from 8.6 to 32.8% and sucrose from 61.22 to 90.13% indicates their possible role in overcoming cartap induced oxidative stress and can be helpful in assessing its detrimental effect on Anabaena variabilis ARM 441, since cyanobacterial biofertilizers are purposely used in paddy fields as nitrogen contributors.


Assuntos
Anabaena variabilis , Catalase , Índia , Tiocarbamatos
4.
Photosynth Res ; 144(2): 261-272, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32076914

RESUMO

The phycobilisome (PBS) serves as the major light-harvesting system, funnelling excitation energy to both photosystems (PS) in cyanobacteria and red algae. The picosecond kinetics involving the excitation energy transfer has been studied within the isolated systems and intact filaments of the cyanobacterium Anabaena variabilis PCC 7120. A target model is proposed which resolves the dynamics of the different chromophore groups. The energy transfer rate of 8.5 ± 1.0/ns from the rod to the core is the rate-limiting step, both in vivo and in vitro. The PBS-PSI-PSII supercomplex reveals efficient excitation energy migration from the low-energy allophycocyanin, which is the terminal emitter, in the PBS core to the chlorophyll a in the photosystems. The terminal emitter of the phycobilisome transfers energy to both PSI and PSII with a rate of 50 ± 10/ns, equally distributing the solar energy to both photosystems. Finally, the excitation energy is trapped by charge separation in the photosystems with trapping rates estimated to be 56 ± 6/ns in PSI and 14 ± 2/ns in PSII.


Assuntos
Anabaena variabilis/química , Anabaena variabilis/metabolismo , Complexo de Proteína do Fotossistema I/química , Ficobilissomas/química , Clorofila A/química , Clorofila A/metabolismo , Transferência de Energia , Modelos Teóricos , Complexo de Proteína do Fotossistema I/isolamento & purificação , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/isolamento & purificação , Ficobilissomas/metabolismo , Espectrometria de Fluorescência , Análise Espectral/métodos , Tilacoides/química
5.
Curr Microbiol ; 75(9): 1165-1173, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29785634

RESUMO

The unicellular freshwater cyanobacterium Synechocystis sp. PCC 6803 is capable of using dihydroxamate xenosiderophores, either ferric schizokinen (FeSK) or a siderophore of the filamentous cyanobacterium Anabaena variabilis ATCC 29413 (SAV), as the sole source of iron in the TonB-dependent manner. The fecCDEB1-schT gene cluster encoding a siderophore transport system that is involved in the utilization of FeSK and SAV in Synechocystis sp. PCC 6803 was identified. The gene schT encodes TonB-dependent outer membrane transporter, whereas the remaining four genes encode the ABC-type transporter FecB1CDE formed by the periplasmic binding protein FecB1, the transmembrane permease proteins FecC and FecD, and the ATPase FecE. Inactivation of any of these genes resulted in the inability of cells to utilize FeSK and SAV. Our data strongly suggest that Synechocystis sp. PCC 6803 can readily internalize Fe-siderophores via the classic TonB-dependent transport system.


Assuntos
Anabaena variabilis/metabolismo , Ácidos Hidroxâmicos/metabolismo , Proteínas de Membrana Transportadoras/genética , Família Multigênica , Sideróforos/genética , Synechocystis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico/genética , Teste de Complementação Genética , Mutação INDEL , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sideróforos/metabolismo
6.
Ecotoxicol Environ Saf ; 165: 637-644, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30241092

RESUMO

Industrial wastewater containing heavy metals is a major environmental problem that needs to be treated. This study reported the ability of two fresh water algae cyanobacteria (Nostoc muscorum and Anabaena variabilis) to remove lead from aqueous solutions of four different initial concentrations (0-50 mg/L-1) for 21 days under controlled laboratory conditions. Results obtained in this study showed a maximum removal of Pb(II) (97.8%) by N. muscorum at 15 mg/L-1 initial metal concentration however the maximum removal by A. variabilis at the same concentration was 71.4% after 16 day of incubation. These N. muscorum appeared to be more efficient than A. variabilis for removing Pb(II). Algal growth, pigments in the algae cells were measured during incubation period. Lower concentrations of lead increased biomass, OD, chlorophyll a and carotenoids in both algae. On the other hand, higher concentrations of lead were inhibitory for growth.


Assuntos
Anabaena variabilis/metabolismo , Chumbo/análise , Nostoc muscorum/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/análise , Anabaena variabilis/efeitos dos fármacos , Anabaena variabilis/crescimento & desenvolvimento , Biomassa , Clorofila A , Chumbo/metabolismo , Nostoc muscorum/efeitos dos fármacos , Nostoc muscorum/crescimento & desenvolvimento , Poluentes Químicos da Água/metabolismo , Purificação da Água
7.
J Bacteriol ; 199(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27920300

RESUMO

Anabaena variabilis ATCC 29413 has one Mo nitrogenase that is made under oxic growth conditions in specialized cells called heterocysts and a second Mo nitrogenase that is made only under anoxic conditions in vegetative cells. The two large nif gene clusters responsible for these two nitrogenases are under the control of the promoter of the first gene in the operon, nifB1 or nifB2 Despite differences in the expression patterns of nifB1 and nifB2, related to oxygen and cell type, the regions upstream of their transcription start sites (tss) show striking homology, including three highly conserved sequences (CS). CS1, CS2, and the region just upstream from the tss were required for optimal expression from the nifB1 promoter, but CS3 and the 5' untranslated region (UTR) were not. Hybrid fusions of the nifB1 and nifB2 upstream regions revealed that the region including CS1, CS2, and CS3 of nifB2 could substitute for the similar region of nifB1; however, the converse was not true. Expression from the nifB2 promoter region required the CS1, CS2, and CS3 regions of nifB2 and also required the nifB2 5' UTR. A hybrid promoter that was mostly nifB2 but that had the region from about position -40 to the tss of nifB1 was expressed in heterocysts and in anoxic vegetative cells. Thus, addition of the nifB1 promoter region (from about position -40 to the tss of nifB1) in the nifB hybrid promoter supported expression in heterocysts but did not prevent the mostly nifB2 promoter from also functioning in anoxic vegetative cells. IMPORTANCE: In the filamentous cyanobacterium Anabaena variabilis, two Mo nitrogenase gene clusters, nif1 and nif2, function under different environmental conditions in different cell types. Little is known about the regulation of transcription from the promoter upstream of the first gene of the cluster, which drives transcription of each of these two large operons. The similarity in the sequences upstream of the primary promoters for the two nif gene clusters belies the differences in their expression patterns. Analysis of these nif promoters in strains with mutations in the conserved sequences and in strains with hybrid promoters, comprising parts from nif1 and nif2, provides strong evidence that each promoter has key elements required for cell-type-specific expression of the nif1 and nif2 gene clusters.


Assuntos
Anabaena variabilis/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Nitrogenase/classificação , Nitrogenase/metabolismo , Anabaena variabilis/enzimologia , Anabaena variabilis/genética , Proteínas de Bactérias/genética , Sequência de Bases , Nitrogenase/genética , Regiões Promotoras Genéticas
8.
Biochim Biophys Acta Bioenerg ; 1858(9): 742-749, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28576442

RESUMO

Heterocyst is a nitrogen-fixing cell differentiated from a cell for oxygen-evolving photosynthesis (vegetative cell) in some filamentous cyanobacteria when fixed nitrogen (e.g., ammonia and nitrate) is limited. Heterocysts appear at multiple separated positions in a single filament with an interval of 10-20 cells in some genera (including Anabaena variabilis). In other genera, a single heterocyst appears only at the basal terminal in a filament (including Rivularia M-261). Such morphological diversity may necessitate different properties of heterocysts. However, possible differences in heterocysts have largely remained unexplored due to the minority of heterocysts among major vegetative cells. Here, we have applied spectroscopic microscopy to Rivularia and A. variabilis to analyze their thylakoid membranes in individual cells. Absorption and fluorescence spectral imaging enabled us to estimate concentrations and interconnections of key photosynthetic components like photosystem I (PSI), photosystem II (PSII) and subunits of light-harvesting phycobilisome including phycocyanin (PC). The concentration of PC in heterocysts of Rivularia is far higher than that of A. variabilis. Fluorescence quantum yield of PC in Rivularia heterocysts was found to be virtually the same as those in its vegetative cells, while fluorescence quantum yield of PC in A. variabilis heterocysts was enhanced in comparison with its vegetative cells. PSI concentration in the thylakoid membranes of heterocysts seems to remain nearly the same as those of the vegetative cells in both the species. The average stoichiometric ratio between PSI monomer and PC hexamer in Rivularia heterocysts is estimated to be about 1:1.


Assuntos
Cianobactérias/ultraestrutura , Microscopia/métodos , Tilacoides/ultraestrutura , Absorção de Radiação , Anabaena variabilis/metabolismo , Anabaena variabilis/efeitos da radiação , Anabaena variabilis/ultraestrutura , Cianobactérias/metabolismo , Cianobactérias/efeitos da radiação , Membranas Intracelulares/ultraestrutura , Luz , Microscopia de Fluorescência , Fixação de Nitrogênio , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/efeitos da radiação , Ficobilissomas/efeitos da radiação , Ficobilissomas/ultraestrutura , Ficocianina/análise , Especificidade da Espécie , Análise Espectral/métodos , Tilacoides/metabolismo , Tilacoides/efeitos da radiação
9.
J Am Chem Soc ; 139(4): 1408-1411, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28084735

RESUMO

Screening of bacterial colonies to identify new biocatalytic activities is a widely adopted tool in biotechnology, but is constrained by the requirements for colorimetric or tag-based detection methods. Herein we report a label-free screening platform for biotransformations in live colonies using desorption electrospray ionization coupled with ion mobility mass spectrometry imaging (DiBT-IMMS). The screening method is demonstrated for both ammonia lyases and P450 monooxygenases expressed within live bacterial colonies and is shown to enable multiplexing of enzyme variants and substrate libraries simultaneously.


Assuntos
Amônia-Liases/metabolismo , Anabaena variabilis/enzimologia , Escherichia coli/metabolismo , Oxigenases de Função Mista/metabolismo , Amônia-Liases/química , Biocatálise , Escherichia coli/citologia , Oxigenases de Função Mista/química , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Fatores de Tempo
10.
Mol Microbiol ; 100(6): 1096-109, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26950042

RESUMO

The cyanobacterium Anabaena variabilis has two Mo-nitrogenases that function under different environmental conditions in different cell types. The heterocyst-specific nitrogenase encoded by the large nif1 gene cluster and the similar nif2 gene cluster that functions under anaerobic conditions in vegetative cells are under the control of the promoter for the first gene of each cluster, nifB1 or nifB2 respectively. Associated with each of these clusters is a putative regulatory gene called cnfR (patB) whose product has a C-terminal HTH domain and an N-terminal ferredoxin-like domain. CnfR1 activates nifB1 expression in heterocysts, while CnfR2 activates nifB2 expression. A cnfR1 mutant was unable to make nitrogenase under aerobic conditions in heterocysts while the cnfR2 mutant was unable to make nitrogenase under anaerobic conditions. Mutations in cnfR1 and cnfR2 reduced transcripts for the nif1 and nif2 genes respectively. The closely related cyanobacterium, Anabaena sp. PCC 7120 has the nif1 system but lacks nif2. Expression of nifB2:lacZ from A. variabilis in anaerobic vegetative cells of Anabaena sp. PCC 7120 depended on the presence of cnfR2. This suggests that CnfR2 is necessary and sufficient for activation of the nifB2 promoter and that the CnfR1/CnfR2 family of proteins are the primary activators of nitrogenase gene expression in cyanobacteria.


Assuntos
Anabaena variabilis/genética , Anabaena variabilis/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Família Multigênica , Nitrogenase/genética , Sequência de Aminoácidos , Anabaena variabilis/enzimologia , Proteínas de Bactérias/metabolismo , Ferredoxinas/metabolismo , Expressão Gênica , Genes Bacterianos , Fixação de Nitrogênio/genética , Nitrogenase/metabolismo
11.
Environ Microbiol ; 19(3): 1065-1076, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27907245

RESUMO

Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, play a major role in carbon, nitrogen and phosphorus global cycling. Under conditions of increased P availability and nutrient loading, some cyanobacteria are capable of blooming, rapidly multiplying and possibly altering the ecological structure of the ecosystem. Because of their ability of using non-conventional P sources, these microalgae can be used for bioremediation purposes. Under this perspective, the metabolization of the polyphosphonate diethylenetriaminepenta(methylenephosphonic) acid (DTPMP) by the strain CCALA 007 of Anabaena variabilis was investigated using 31 P NMR analysis. Results showed a quantitative breakdown of DTPMP by cell-free extracts from cyanobacterial cells grown in the absence of any phosphonate. The identification of intermediates and products allowed us to propose a unique and new biodegradation pathway in which the formation of (N-acetylaminomethyl)phosphonic acid represents a key step. This hypothesis was strengthened by the results obtained by incubating cell-free extracts with pathway intermediates. When Anabaena cultures were grown in the presence of the phosphonate, or phosphorus-starved before the extraction, significantly higher biodegradation rates were found.


Assuntos
Anabaena variabilis/metabolismo , Biodegradação Ambiental , Liases/metabolismo , Compostos Organofosforados/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Fotossíntese
12.
Photosynth Res ; 133(1-3): 317-326, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28210833

RESUMO

Nitrogen is among the most important nutritious elements for photosynthetic organisms such as plants, algae, and cyanobacteria. Therefore, nitrogen depletion severely compromises the growth, development, and photosynthesis of these organisms. To preserve their integrity under nitrogen-depleted conditions, filamentous nitrogen-fixing cyanobacteria reduce atmospheric nitrogen to ammonia, and self-adapt by regulating their light-harvesting and excitation energy-transfer processes. To investigate the changes in the primary processes of photosynthesis, we measured the steady-state absorption and fluorescence spectra and time-resolved fluorescence spectra (TRFS) of whole filaments of the nitrogen-fixing cyanobacterium Anabaena variabilis at 77 K. The filaments were grown in standard and nitrogen-free media for 6 months. The TRFS were measured with a picosecond time-correlated single photon counting system. Despite the phycobilisome degradation, the energy-transfer paths within phycobilisome and from phycobilisome to both photosystems were maintained. However, the energy transfer from photosystem II to photosystem I was suppressed and a specific red chlorophyll band appeared under the nitrogen-depleted condition.


Assuntos
Adaptação Fisiológica , Anabaena variabilis/fisiologia , Transferência de Energia , Nitrogênio/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Anabaena variabilis/efeitos dos fármacos , Anabaena variabilis/crescimento & desenvolvimento , Modelos Biológicos , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Espectrometria de Fluorescência , Fatores de Tempo
13.
Microbiology (Reading) ; 162(3): 526-536, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26781249

RESUMO

Most cyanobacteria use a single type of cyanophycin synthetase, CphA1, to synthesize the nitrogen-rich polymer cyanophycin. The genomes of many N2-fixing cyanobacteria contain an additional gene that encodes a second type of cyanophycin synthetase, CphA2. The potential function of this enzyme has been debated due to its reduced size and the lack of one of the two ATP-binding sites that are present in CphA1. Here, we analysed CphA2 from Anabaena variabilis ATCC 29413 and Cyanothece sp. PCC 7425. We found that CphA2 polymerized the dipeptide ß-aspartyl-arginine to form cyanophycin. Thus, CphA2 represents a novel type of cyanophycin synthetase. A cphA2 disruption mutant of A. variabilis was generated. Growth of this mutant was impaired under high-light conditions and nitrogen deprivation, suggesting that CphA2 plays an important role in nitrogen metabolism under N2-fixing conditions. Electron micrographs revealed that the mutant had fewer cyanophycin granules, but no alteration in the distribution of granules in its cells was observed. Localization of CphA2 by immunogold electron microscopy demonstrated that the enzyme is attached to cyanophycin granules. Expression of CphA1 and CphA2 was examined in Anabaena WT and cphA mutant cells. Whilst the CphA1 level increased upon nitrogen deprivation, the CphA2 level remained nearly constant.


Assuntos
Anabaena variabilis/enzimologia , Anabaena variabilis/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Cyanothece/enzimologia , Cyanothece/metabolismo , Peptídeo Sintases/metabolismo , Anabaena variabilis/genética , Anabaena variabilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Dipeptídeos/metabolismo , Técnicas de Inativação de Genes , Luz , Nitrogênio/metabolismo , Peptídeo Sintases/genética
14.
Microbiology (Reading) ; 162(2): 214-223, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26679176

RESUMO

Akinetes are resting spore-like cells formed by some heterocyst-forming filamentous cyanobacteria for surviving long periods of unfavourable conditions. We studied the development of akinetes in two model strains of cyanobacterial cell differentiation, the planktonic freshwater Anabaena variabilis ATCC 29413 and the terrestrial or symbiotic Nostoc punctiforme ATCC 29133, in response to low light and phosphate starvation. The best trigger of akinete differentiation of Anabaena variabilis was low light; that of N. punctiforme was phosphate starvation. Light and electron microscopy revealed that akinetes of both species differed from vegetative cells by their larger size, different cell morphology and large number of intracellular granules. Anabaena variabilis akinetes had a multilayer envelope; those of N. punctiforme had a simpler envelope. During akinete development of Anabaena variabilis, the amount of the storage compounds cyanophycin and glycogen increased transiently, whereas in N. punctiforme, cyanophycin and lipid droplets increased transiently. Photosynthesis and respiration decreased during akinete differentiation in both species, and remained at a low level in mature akinetes. The clear differences in the metabolic and morphological adaptations of akinetes of the two species could be related to their different lifestyles. The results pave the way for genetic and functional studies of akinete differentiation in these species.


Assuntos
Adaptação Fisiológica/fisiologia , Anabaena variabilis/metabolismo , Metabolismo Energético/fisiologia , Nostoc/metabolismo , Fotossíntese/fisiologia , Esporos Bacterianos/metabolismo , Anabaena variabilis/genética , Proteínas de Bactérias/metabolismo , Grânulos Citoplasmáticos , Ecossistema , Glicogênio/metabolismo , Luz , Microscopia Eletrônica , Nostoc/genética , Fosfatos/deficiência
15.
J Bacteriol ; 197(8): 1408-22, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25666132

RESUMO

UNLABELLED: In the cyanobacterium Anabaena variabilis ATCC 29413, aerobic nitrogen fixation occurs in micro-oxic cells called heterocysts. Synthesis of nitrogenase in heterocysts requires expression of the large nif1 gene cluster, which is primarily under the control of the promoter for the first gene, nifB1. Strong expression of nifH1 requires the nifB1 promoter but is also controlled by RNA processing, which leads to increased nifH1 transcript stability. The processing of the primary nifH1 transcript occurs at the base of a predicted stem-loop structure that is conserved in many heterocystous cyanobacteria. Mutations that changed the predicted secondary structure or changed the sequence of the stem-loop had detrimental effects on the amount of nifH1 transcript, with mutations that altered or destabilized the structure having the strongest effect. Just upstream from the transcriptional processing site for nifH1 was the promoter for a small antisense RNA, sava4870.1. This RNA was more strongly expressed in cells grown in the presence of fixed nitrogen and was downregulated in cells 24 h after nitrogen step down. A mutant strain lacking the promoter for sava4870.1 showed delayed nitrogen fixation; however, that phenotype might have resulted from an effect of the mutation on the processing of the nifH1 transcript. The nifH1 transcript was the most abundant and most stable nif1 transcript, while nifD1 and nifK1, just downstream of nifH1, were present in much smaller amounts and were less stable. The nifD1 and nifK1 transcripts were also processed at sites just upstream of nifD1 and nifK1. IMPORTANCE: In the filamentous cyanobacterium Anabaena variabilis, the nif1 cluster, encoding the primary Mo nitrogenase, functions under aerobic growth conditions in specialized cells called heterocysts that develop in response to starvation for fixed nitrogen. The large cluster comprising more than a dozen nif1 genes is transcribed primarily from the promoter for the first gene, nifB1; however, this does not explain the large amount of transcript for the structural genes nifH1, nifD1, and nifK1, which are also under the control of the distant nifB1 promoter. Here, we demonstrate the importance of a predicted stem-loop structure upstream of nifH1 that controls the abundance of nifH1 transcript through transcript processing and stabilization and show that nifD1 and nifK1 transcripts are also controlled by transcript processing.


Assuntos
Anabaena variabilis/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Oxirredutases/metabolismo , RNA Bacteriano/metabolismo , Anabaena variabilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Regulação Enzimológica da Expressão Gênica/fisiologia , Conformação de Ácido Nucleico , Oxirredutases/genética , Estabilidade Proteica , RNA Bacteriano/química
16.
Chembiochem ; 16(2): 320-7, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25487723

RESUMO

The parent core structure of mycosporine-like amino acids (MAAs) is 4-deoxygadusol, which, in cyanobacteria, is derived from conversion of the pentose phosphate pathway intermediate sedoheptulose 7-phosphate by the enzymes 2-epi-5-epivaliolone synthase (EVS) and O-methyltransferase (OMT). Yet, deletion of the EVS gene from Anabaena variabilis ATCC 29413 was shown to have little effect on MAA production, thus suggesting that its biosynthesis is not exclusive to the pentose phosphate pathway. Herein, we report how, using pathway-specific inhibitors, we demonstrated unequivocally that MAA biosynthesis occurs also via the shikimate pathway. In addition, complete in-frame gene deletion of the OMT gene from A. variabilis ATCC 29413 reveals that, although biochemically distinct, the pentose phosphate and shikimate pathways are inextricably linked to MAA biosynthesis in this cyanobacterium. Furthermore, proteomic data reveal that the shikimate pathway is the predominate route for UV-induced MAA biosynthesis.


Assuntos
Aminoácidos/biossíntese , Anabaena variabilis/metabolismo , Metiltransferases/metabolismo , Via de Pentose Fosfato , Ácido Chiquímico/metabolismo , Anabaena variabilis/genética , Anabaena variabilis/efeitos da radiação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Deleção de Genes , Glicina/análogos & derivados , Glicina/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Metiltransferases/genética , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Proteômica/métodos , Raios Ultravioleta , Glifosato
17.
Photosynth Res ; 125(1-2): 191-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25596847

RESUMO

Some filamentous cyanobacteria (including Anabaena) differentiate into heterocysts under nitrogen-depleted conditions. During differentiation, the phycobiliproteins and photosystem II in the heterocysts are gradually degraded. Nitrogen depletion induces changes in the pigment composition of both vegetative cells and heterocysts, which affect the excitation energy transfer processes. To investigate the changes in excitation energy transfer processes of Anabaena variabilis filaments grown in standard medium (BG11) and a nitrogen-free medium (BG110), we measured their steady-state absorption spectra, steady-state fluorescence spectra, and time-resolved fluorescence spectra (TRFS) at 77 K. TRFS were measured with a picosecond time-correlated single photon counting system. The pigment compositions of the filaments grown in BG110 changed throughout the growth period; the relative phycocyanin levels monotonically decreased, whereas the relative carotenoid (Car) levels decreased and then recovered to their initial value (at day 0), with formation of lower-energy Cars. Nitrogen starvation also altered the fluorescence kinetics of PSI; the fluorescence maximum of TRFS immediately after excitation occurred at 735, 740, and 730 nm after 4, 8, and 15 days growth in BG110, respectively. Based on these results, we discuss the excitation energy transfer dynamics of A. variabilis filaments under the nitrogen-depleted condition throughout the growth period.


Assuntos
Anabaena variabilis/metabolismo , Transferência de Energia , Nitrogênio/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Fluorescência , Cinética , Ficocianina/metabolismo
18.
Protein Expr Purif ; 111: 36-41, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25804337

RESUMO

N-Acyl-d-glucosamine 2-epimerase (AGE) is an important enzyme for the biocatalytic synthesis of N-acetylneuraminic acid (Neu5Ac). Due to the wide range of biological applications of Neu5Ac and its derivatives, there has been great interest in its large-scale synthesis. Thus, suitable strategies for achieving high-level production of soluble AGE are needed. Several AGEs from various organisms have been recombinantly expressed in Escherichia coli. However, the soluble expression level was consistently low with an excessive formation of inclusion bodies. In this study, the effects of different solubility-enhancement tags, expression temperatures, chaperones and host strains on the soluble expression of the AGE from the freshwater cyanobacterium Anabaena variabilis ATCC 29413 (AvaAGE) were examined. The optimum combination of tag, expression temperature, co-expression of chaperones and host strain (His6-tag, 37°C, GroEL/GroES, E. coli BL21(DE3)) led to a 264-fold improvement of the volumetric epimerase activity, a measure of the soluble expression, compared to the starting conditions (His6-maltose-binding protein-tag, 20°C, without chaperones, E. coli BL21(DE3)). A maximum yield of 22.5mg isolated AvaAGE per liter shake flask culture was obtained.


Assuntos
Anabaena variabilis/enzimologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Carboidratos Epimerases/biossíntese , Carboidratos Epimerases/química , Proteínas de Transporte/biossíntese , Proteínas de Transporte/química , Expressão Gênica , Anabaena variabilis/genética , Proteínas de Bactérias/genética , Carboidratos Epimerases/genética , Proteínas de Transporte/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Solubilidade
19.
Appl Microbiol Biotechnol ; 99(4): 1779-93, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25434810

RESUMO

Determining spatiotemporal gene expression and analyzing knockout mutant phenotypes have become powerful tools in elucidating the function of genes; however, genetic approaches for simultaneously inactivating a gene and monitoring its expression have not been reported in the literature. In this study, we designed a dual-functional gene knockout vector pZR606 that contains a multiple cloning site (MCS) for inserting the internal fragment of a target gene, with a gfp gene as its transcriptional marker located immediately downstream of the MCS. By using this gene knockout system, we inactivated ava_2679 from Anabaena variabilis ATCC 29413, as well as all2508, alr2887, alr3608, and all4388 from Anabaena sp. strain PCC 7120. The ava_2679 knockout mutant fails to grow diazotrophically. Morphological analysis of ava_2679 knockout mutant after nitrogen step-down revealed defective junctions between heterocysts and adjacent vegetative cells, and the heterocyst was 1.53-fold longer compared to wild-type heterocysts. The alr2887, all4388, and alr3608 mutant colonies turned yellow and showed lack of protracted growth when deprived of fixed nitrogen, consistent with the previous reports that alr2887, all4388, and alr3608 are Fox genes. The all2508 encodes a GTP-binding elongation factor (EF4/LepA), and its knockout mutant exhibited reduced diazotrophic growth. The heterocyst development of all2508 knockout was significantly delayed, and only about 4.0 % of vegetative cells differentiated to heterocysts after nitrogen deprivation for 72 h, decreased 49.6 % compared to wild-type. Thus, we discovered that All2508 may regulate heterocyst development spatiotemporally. Concurrently, the GFP reporter revealed that all five target gene expressions were up-regulated in response to nitrogen deprivation. We demonstrated that the pZR606-based specific gene knockout approach worked effectively for the five selected genes, including four previously identified Fox genes or Fox gene homolog, and a previously unknown function of gene all2508. Thus, gene expression and phenotypic analysis of mutants can be achieved simultaneously by targeted gene inactivation using the pZR606-based system. This combined approach for targeted gene inactivation and its promoter reporting with GFP may be broadly applicable to the study of gene function in other prokaryotic organisms.


Assuntos
Anabaena variabilis/crescimento & desenvolvimento , Anabaena variabilis/genética , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes/métodos , Inativação Gênica , Genes Reporter , Regiões Promotoras Genéticas , Anabaena variabilis/citologia , Anabaena variabilis/fisiologia , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Dados de Sequência Molecular , Fixação de Nitrogênio , Análise de Sequência de DNA
20.
Angew Chem Int Ed Engl ; 54(15): 4608-11, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25728350

RESUMO

The synthesis of substituted D-phenylalanines in high yield and excellent optical purity, starting from inexpensive cinnamic acids, has been achieved with a novel one-pot approach by coupling phenylalanine ammonia lyase (PAL) amination with a chemoenzymatic deracemization (based on stereoselective oxidation and nonselective reduction). A simple high-throughput solid-phase screening method has also been developed to identify PALs with higher rates of formation of non-natural D-phenylalanines. The best variants were exploited in the chemoenzymatic cascade, thus increasing the yield and ee value of the D-configured product. Furthermore, the system was extended to the preparation of those L-phenylalanines which are obtained with a low ee value using PAL amination.


Assuntos
Anabaena variabilis/enzimologia , Fenilalanina Amônia-Liase/metabolismo , Fenilalanina/análogos & derivados , Aminação , Técnicas de Química Sintética , Oxirredução , Fenilalanina/síntese química , Fenilalanina/metabolismo , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa