Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 693
Filtrar
1.
PLoS Genet ; 19(1): e1010588, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36668670

RESUMO

Inorganic arsenic is highly toxic and carcinogenic to humans. Exposed individuals vary in their ability to metabolize arsenic, and variability in arsenic metabolism efficiency (AME) is associated with risks of arsenic-related toxicities. Inherited genetic variation in the 10q24.32 region, near the arsenic methyltransferase (AS3MT) gene, is associated with urine-based measures of AME in multiple arsenic-exposed populations. To identify potential causal variants in this region, we applied fine mapping approaches to targeted sequencing data generated for exposed individuals from Bangladeshi, American Indian, and European American populations (n = 2,357, 557, and 648 respectively). We identified three independent association signals for Bangladeshis, two for American Indians, and one for European Americans. The size of the confidence sets for each signal varied from 4 to 85 variants. There was one signal shared across all three populations, represented by the same SNP in American Indians and European Americans (rs191177668) and in strong linkage disequilibrium (LD) with a lead SNP in Bangladesh (rs145537350). Beyond this shared signal, differences in LD patterns, minor allele frequency (MAF) (e.g., rs12573221 ~13% in Bangladesh ~0.2% among American Indians), and/or heterogeneity in effect sizes across populations likely contributed to the apparent population specificity of the additional identified signals. One of our potential causal variants influences AS3MT expression and nearby DNA methylation in numerous GTEx tissue types (with rs4919690 as a likely causal variant). Several SNPs in our confidence sets overlap transcription factor binding sites and cis-regulatory elements (from ENCODE). Taken together, our analyses reveal multiple potential causal variants in the 10q24.32 region influencing AME, including a variant shared across populations, and elucidate potential biological mechanisms underlying the impact of genetic variation on AME.


Assuntos
Intoxicação por Arsênico , Arsênio , Arsenicais , Humanos , Arsênio/toxicidade , Arsênio/metabolismo , Intoxicação por Arsênico/genética , Arsenicais/metabolismo , Metilação de DNA , Metiltransferases/genética , Metiltransferases/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Cromossomos Humanos Par 10
2.
Mol Microbiol ; 119(4): 505-514, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36785875

RESUMO

The pentavalent organoarsenical arsinothricin (AST) is a natural product synthesized by the rhizosphere bacterium Burkholderia gladioli GSRB05. AST is a broad-spectrum antibiotic effective against human pathogens such as carbapenem-resistant Enterobacter cloacae. It is a non-proteogenic amino acid and glutamate mimetic that inhibits bacterial glutamine synthetase. The AST biosynthetic pathway is composed of a three-gene cluster, arsQML. ArsL catalyzes synthesis of reduced trivalent hydroxyarsinothricin (R-AST-OH), which is methylated by ArsM to the reduced trivalent form of AST (R-AST). In the culture medium of B. gladioli, both trivalent species appear as the corresponding pentavalent arsenicals, likely due to oxidation in air. ArsQ is an efflux permease that is proposed to transport AST or related species out of the cells, but the chemical nature of the actual transport substrate is unclear. In this study, B. gladioli arsQ was expressed in Escherichia coli and shown to confer resistance to AST and its derivatives. Cells of E. coli accumulate R-AST, and exponentially growing cells expressing arsQ take up less R-AST. The cells exhibit little transport of their pentavalent forms. Transport was independent of cellular energy and appears to be equilibrative. A homology model of ArsQ suggests that Ser320 is in the substrate binding site. A S320A mutant exhibits reduced R-AST-OH transport, suggesting that it plays a role in ArsQ function. The ArsQ permease is proposed to be an energy-independent uniporter responsible for downhill transport of the trivalent form of AST out of cells, which is oxidized extracellularly to the active form of the antibiotic.


Assuntos
Arsenicais , Proteínas de Escherichia coli , Simportadores , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Escherichia coli/metabolismo , Arsenicais/metabolismo , Proteínas de Escherichia coli/metabolismo , Simportadores/metabolismo , Transporte Biológico Ativo
3.
J Pharmacol Exp Ther ; 388(2): 546-559, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37914412

RESUMO

Vesicants such as arsenicals and mustards produce highly painful cutaneous inflammatory and blistering responses, hence developed as chemical weapons during World War I/II. Here, using lewisite and sulfur mustard surrogates, namely phenylarsine oxide (PAO) and 2-chloroethyl ethyl sulfide (CEES), respectively, we defined a common underlying mechanism of toxic action by these two distinct classes of vesicants. Murine skin exposure to these chemicals causes tissue destruction characterized by increase in skin bifold thickness, Draize score, infiltration of inflammatory cells, and apoptosis of epidermal and dermal cells. RNA sequencing analysis identified ∼346 inflammatory genes that were commonly altered by both PAO and CEES, along with the identification of cytokine signaling activation as the top canonical pathway. Activation of several proinflammatory genes and pathways is associated with phosphorylation-dependent activation of heat shock protein 90α (p-HSP90α). Topical treatment with known HSP90 inhibitors SNX-5422 and IPI-504 post PAO or CEES skin challenge significantly attenuated skin damage including reduction in overall skin injury and clinical scores. In addition, highly upregulated inflammatory genes Saa3, Cxcl1, Ccl7, IL-6, Nlrp3, Csf3, Chil3, etc. by both PAO and CEES were significantly diminished by treatment with HSP90 inhibitors. These drugs not only reduced PAO- or CEES-induced p-HSP90α expression but also its client proteins NLRP3 and pP38 and the expression of their target inflammatory genes. Our data confirm a critical role of HSP90 as a shared underlying molecular target of toxicity by these two distinct vesicants and provide an effective and novel medical countermeasure to suppress vesicant-induced skin injury. SIGNIFICANCE STATEMENT: Development of effective and novel mechanism-based antidotes that can simultaneously block cutaneous toxic manifestations of distinct vesicants is important and urgently needed. Due to difficulties in determining the exact nature of onsite chemical exposure, a potent drug that can suppress widespread cutaneous damage may find great utility. Thus, this study identified HSP90 as a common molecular regulator of cutaneous inflammation and injury by two distinct warfare vesicants, arsenicals and mustards, and HSP90 inhibitors afford significant protection against skin damage.


Assuntos
Arsenicais , Substâncias para a Guerra Química , Gás de Mostarda , Humanos , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Substâncias para a Guerra Química/toxicidade , Irritantes , Pele , Gás de Mostarda/toxicidade , Arsenicais/metabolismo , Arsenicais/farmacologia
4.
J Pharmacol Exp Ther ; 388(2): 605-612, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37699712

RESUMO

Arsenicals are deadly chemical warfare agents that primarily cause death through systemic capillary fluid leakage and hypovolemic shock. Arsenical exposure is also known to cause acute kidney injury, a condition that contributes to arsenical-associated death due to the necessity of the kidney in maintaining whole-body fluid homeostasis. Because of the global health risk that arsenicals pose, a nuanced understanding of how arsenical exposure can lead to kidney injury is needed. We used a nontargeted transcriptional approach to evaluate the effects of cutaneous exposure to phenylarsine oxide, a common arsenical, in a murine model. Here we identified an upregulation of metabolic pathways such as fatty acid oxidation, fatty acid biosynthesis, and peroxisome proliferator-activated receptor (PPAR)-α signaling in proximal tubule epithelial cell and endothelial cell clusters. We also revealed highly upregulated genes such as Zbtb16, Cyp4a14, and Pdk4, which are involved in metabolism and metabolic switching and may serve as future therapeutic targets. The ability of arsenicals to inhibit enzymes such as pyruvate dehydrogenase has been previously described in vitro. This, along with our own data, led us to conclude that arsenical-induced acute kidney injury may be due to a metabolic impairment in proximal tubule and endothelial cells and that ameliorating these metabolic effects may lead to the development of life-saving therapies. SIGNIFICANCE STATEMENT: In this study, we demonstrate that cutaneous arsenical exposure leads to a transcriptional shift enhancing fatty acid metabolism in kidney cells, indicating that metabolic alterations might mechanistically link topical arsenical exposure to acute kidney injury. Targeting metabolic pathways may generate promising novel therapeutic approaches in combating arsenical-induced acute kidney injury.


Assuntos
Injúria Renal Aguda , Arsenicais , Camundongos , Humanos , Animais , Células Endoteliais/metabolismo , Rim/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Arsenicais/efeitos adversos , Arsenicais/metabolismo
5.
Metab Brain Dis ; 39(5): 929-940, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38848024

RESUMO

The nature of brain redox metabolism in health, aging, and disease remains to be fully established. Reversible oxidations, to disulfide bonds, of closely spaced (vicinal) protein thiols underlie the catalytic maintenance of redox homeostasis by redoxin enzymes, including thioredoxin peroxidases (peroxiredoxins), and have been implicated in redox buffering and regulation. We propose that non-peroxidase proteins containing vicinal thiols that are responsive to physiological redox perturbations may serve as intrinsic probes of brain redox metabolism. Using redox phenylarsine oxide (PAO)-affinity chromatography, we report that PAO-binding vicinal thiols on creatine kinase B and alpha-enolase from healthy rat brains were preferentially oxidized compared to other selected proteins, including neuron-specific (gamma) enolase, under conditions designed to trap in vivo protein thiol redox states. Moreover, measures of the extents of oxidations of vicinal thiols on total protein, and on creatine kinase B and alpha-enolase, showed that vicinal thiol-linked redox states were stable over the lifespan of rats and revealed a transient reductive shift in these redox couples following decapitation-induced global ischemia. Finally, formation of disulfide-linked complexes between peroxiredoxin-2 and brain proteins was demonstrated on redox blots, supporting a link between protein vicinal thiol redox states and the peroxidase activities of peroxiredoxins. The implications of these findings with respect to underappreciated aspects of brain redox metabolism in health, aging, and ischemia are discussed.


Assuntos
Envelhecimento , Isquemia Encefálica , Encéfalo , Oxirredução , Compostos de Sulfidrila , Animais , Ratos , Envelhecimento/metabolismo , Compostos de Sulfidrila/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Masculino , Fosfopiruvato Hidratase/metabolismo , Arsenicais/metabolismo , Creatina Quinase Forma BB/metabolismo , Ratos Sprague-Dawley
6.
J Sci Food Agric ; 104(11): 6957-6965, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38597303

RESUMO

BACKGROUND: Including seaweed in cattle feed has gained increased interest, but it is important to take into account that the concentration of toxic metals, especially arsenic, is high in seaweed. This study investigated the arsenic species in milk from seaweed-fed cows. RESULTS: Total arsenic in milk of control diets (9.3 ± 1.0 µg As kg-1, n = 4, dry mass) was significantly higher than seaweed-based diet (high-seaweed diet: 7.8 ± 0.4 µg As kg-1, P < 0.05, n = 4, dry mass; low-seaweed diet: 6.2 ± 1.0 µg As kg-1, P < 0.01, n = 4, dry mass). Arsenic speciation showed that the main species present were arsenobetaine (AB) and arsenate (As(V)) (37% and 24% of the total arsenic, respectively). Trace amounts of dimethylarsinic acid (DMA) and arsenocholine (AC) have also been detected in milk. Apart from arsenate being significantly lower (P < 0.001) in milk from seaweed-fed cows than in milk from the control group, other arsenic species showed no significant differences between groups. CONCLUSION: The lower total arsenic and arsenate in seaweed diet groups indicates a possible competition of uptake between arsenate and phosphate, and the presence of AC indicates that a reduction of AB occurred in the digestive tract. Feeding a seaweed blend (91% Ascophyllum nodosum and 9% Laminaria digitata) does not raise As-related safety concerns for milk. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ração Animal , Arsênio , Leite , Alga Marinha , Animais , Alga Marinha/química , Alga Marinha/metabolismo , Bovinos/metabolismo , Leite/química , Leite/metabolismo , Arsênio/análise , Arsênio/metabolismo , Ração Animal/análise , Feminino , Dieta/veterinária , Arsenicais/análise , Arsenicais/metabolismo , Arsenicais/química , Arseniatos/análise , Arseniatos/metabolismo , Arseniatos/química , Contaminação de Alimentos/análise
7.
Drug Metab Rev ; 55(4): 405-427, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37679937

RESUMO

Arsenic is a hazardous heavy metalloid that imposes threats to human health globally. It is widely spread throughout the environment in various forms. Arsenic-based compounds are either inorganic compounds (iAs) or organoarsenicals (oAs), where the latter are biotically generated from the former. Exposure to arsenic-based compounds results in varying biochemical derangements in living systems, leading eventually to toxic consequences. One important target for arsenic in biosystems is the network of metabolic enzymes, especially the superfamily of cytochrome P450 enzymes (CYPs) because of their prominent role in both endobiotic and xenobiotic metabolism. Therefore, the alteration of the CYPs by different arsenicals has been actively studied in the last few decades. We have previously summarized the findings of former studies investigating arsenic associated modulation of different CYPs in human experimental models. In this review, we focus on non-human models to get a complete picture about possible CYPs alterations in response to arsenic exposure.


Assuntos
Arsênio , Arsenicais , Humanos , Arsenicais/metabolismo , Arsênio/metabolismo , Arsênio/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Inativação Metabólica , Modelos Teóricos
8.
BMC Microbiol ; 23(1): 134, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37193944

RESUMO

BACKGROUND: Arsenic (As) with various chemical forms, including inorganic arsenic and organic arsenic, is the most prevalent water and environmental toxin. This metalloid occurs worldwide and many of its forms, especially arsenite [As(III)], cause various diseases including cancer. Organification of arsenite is an effective way for organisms to cope with arsenic toxicity. Microbial communities are vital contributors to the global arsenic biocycle and represent a promising way to reduce arsenite toxicity. METHODS: Brevundimonas sp. M20 with arsenite and roxarsone resistance was isolated from aquaculture sewage. The arsHRNBC cluster and the metRFHH operon of M20 were identified by sequencing. The gene encoding ArsR/methyltransferase fusion protein, arsRM, was amplified and expressed in Escherichia coli BL21 (DE3), and this strain showed resistance to arsenic in the present of 0.25-6 mM As(III), aresenate, or pentavalent roxarsone. The methylation activity and regulatory action of ArsRM were analyzed using Discovery Studio 2.0, and its functions were confirmed by methyltransferase activity analysis and electrophoretic mobility shift assays. RESULTS: The minimum inhibitory concentration of the roxarsone resistant strain Brevundimonas sp. M20 to arsenite was 4.5 mM. A 3,011-bp arsenite resistance ars cluster arsHRNBC and a 5649-bp methionine biosynthesis met operon were found on the 3.315-Mb chromosome. Functional prediction analyses suggested that ArsRM is a difunctional protein with transcriptional regulation and methyltransferase activities. Expression of ArsRM in E. coli increased its arsenite resistance to 1.5 mM. The arsenite methylation activity of ArsRM and its ability to bind to its own gene promoter were confirmed. The As(III)-binding site (ABS) and S-adenosylmethionine-binding motif are responsible for the difunctional characteristic of ArsRM. CONCLUSIONS: We conclude that ArsRM promotes arsenite methylation and is able to bind to its own promoter region to regulate transcription. This difunctional characteristic directly connects methionine and arsenic metabolism. Our findings contribute important new knowledge about microbial arsenic resistance and detoxification. Future work should further explore how ArsRM regulates the met operon and the ars cluster.


Assuntos
Arsênio , Arsenicais , Arsenitos , Roxarsona , Arsênio/metabolismo , Arsenitos/farmacologia , Arsenitos/metabolismo , Sequência de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Metilação , Roxarsona/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Arsenicais/metabolismo , Arsenicais/farmacologia , Óperon , Metiltransferases/genética , Metionina , Regulação Bacteriana da Expressão Gênica , Transativadores/genética
9.
Exp Eye Res ; 236: 109672, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797797

RESUMO

Lewisite (LEW) is an arsenical vesicant that can be a potentially dangerous chemical warfare agent (CWA). Eyes are particularly susceptible to vesicant induced injuries and ocular LEW exposure can act swiftly, causing burning of eyes, edema, inflammation, cell death and even blindness. In our previous studies, we developed a LEW exposure-induced corneal injury model in rabbit and showed increased inflammation, neovascularization, cell death, and structural damage to rabbit corneas upon LEW exposure. In the present study, we further assessed the metabolomic changes to delineate the possible mechanisms underlying the LEW-induced corneal injuries. This information is vital and could help in the development of effective targeted therapies against ocular LEW injuries. Thus, the metabolomic changes associated with LEW exposures in rabbit corneas were assessed as a function of time, to delineate pathways from molecular perturbations at the genomic and proteomic levels. New Zealand white rabbit corneas (n = 3-6) were exposed to LEW vapor (0.2 mg/L; flow rate: 300 ml/min) for 2.5 min (short exposure; low dose) or 7.5 min (long-exposure; high dose) and then collected at 1, 3, 7, or 14 days post LEW exposure. Samples were prepared using the automated MicroLab STAR® system, and proteins precipitated to recover the chemically diverse metabolites. Metabolomic analysis was carried out by reverse phase UPLC-MS/MS and gas chromatography (GC)-MS. The data obtained were analyzed using Metabolon's software. The results showed that LEW exposures at high doses were more toxic, particularly at the day 7 post exposure time point. LEW exposure was shown to dysregulate metabolites associated with all the integral functions of the cornea and cause increased inflammation and immune response, as well as generate oxidative stress. Additionally, all important metabolic functions of the cells were also affected: lipid and nucleotide metabolism, and energetics. The high dose LEW exposures were more toxic, particularly at day 7 post LEW exposure (>10-fold increased levels of histamine, quinolinate, N-acetyl-ß-alanine, GMP, and UPM). LEW exposure dysregulated integral functions of the cornea, caused inflammation and heightened immune response, and generated oxidative stress. Lipid and nucleotide metabolism, and energetics were also affected. The novel information about altered metabolic profile of rabbit cornea following LEW exposure could assist in delineating complex molecular events; thus, aid in identifying therapeutic targets to effectively ameliorate ocular trauma.


Assuntos
Arsenicais , Lesões da Córnea , Animais , Coelhos , Irritantes/efeitos adversos , Irritantes/metabolismo , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Córnea/metabolismo , Lesões da Córnea/induzido quimicamente , Lesões da Córnea/metabolismo , Arsenicais/efeitos adversos , Arsenicais/metabolismo , Inflamação/metabolismo , Nucleotídeos/efeitos adversos , Nucleotídeos/metabolismo , Lipídeos
10.
Cell Biol Toxicol ; 39(1): 85-110, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35362847

RESUMO

Worldwide, more than 200 million people are estimated to be exposed to unsafe levels of arsenic. Chronic exposure to unsafe levels of groundwater arsenic is responsible for multiple human disorders, including dermal, cardiovascular, neurological, pulmonary, renal, and metabolic conditions. Consumption of rice and seafood (where high levels of arsenic are accumulated) is also responsible for human exposure to arsenic. The toxicity of arsenic compounds varies greatly and may depend on their chemical form, solubility, and concentration. Surprisingly, synthetic organoarsenicals are extremely toxic molecules which created interest in their development as chemical warfare agents (CWAs) during World War I (WWI). Among these CWAs, adamsite, Clark I, Clark II, and lewisite are of critical importance, as stockpiles of these agents still exist worldwide. In addition, unused WWII weaponized arsenicals discarded in water bodies or buried in many parts of the world continue to pose a serious threat to the environment and human health. Metabolic inhibition, oxidative stress, genotoxicity, and epigenetic alterations including micro-RNA-dependent regulation are some of the underlying mechanisms of arsenic toxicity. Mechanistic understanding of the toxicity of organoarsenicals is also critical for the development of effective therapeutic interventions. This review provides comprehensive details and a critical assessment of recently published data on various chemical forms of arsenic, their exposure, and implications on human and environmental health.


Assuntos
Arsênio , Arsenicais , Substâncias para a Guerra Química , Humanos , Arsênio/toxicidade , Arsenicais/efeitos adversos , Arsenicais/metabolismo , Estresse Oxidativo
11.
Environ Sci Technol ; 57(26): 9675-9682, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37354103

RESUMO

Microbially mediated inorganic-methylated arsenic (As) transformation in paddy soil is crucial to rice safety; however, the linkages between the microbial As methylation process and methylated As species remain elusive. Here, 62 paddy soils were collected from the Mekong River delta of Cambodia to profile As-related functional gene composition involved in the As cycle. The soil As concentration ranged from <1 to 16.6 mg kg-1, with average As contents of approximately 81% as methylated As and 54% as monomethylarsenate (MMAs(V)) in the phosphate- and oxalate-extractable fractions based on As sequential extraction analysis. Quantitative PCR revealed high arsenite-methylating gene (arsM) copy numbers, and metagenomics identified consistently high arsM gene abundance. The abundance of As-related genes was the highest in bacteria, followed by archaea and fungi. Pseudomonas, Bradyrhizobium, Burkholderia, and Anaeromyxobacter were identified as bacteria harboring the most genes related to As biotransformation. Moreover, arsM and arsI (As demethylation) gene-containing operons were identified in the metagenome-assembled genomes (MAGs), implying that arsM and arsI could be transcribed together. The prevalence of methylated As and arsM genes may have been overlooked in tropical paddy fields. The As methylation-demethylation cycle should be considered when manipulating the methylated As pool in paddy fields for rice safety.


Assuntos
Arsênio , Arsenicais , Oryza , Poluentes do Solo , Metilação , Solo , Prevalência , Arsenicais/metabolismo , Bactérias/genética , Bactérias/metabolismo
12.
Ecotoxicol Environ Saf ; 259: 115010, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37211000

RESUMO

Inorganic arsenic (iAs) contamination in drinking water is a global public health problem, and exposure to iAs is a known risk factor for bladder cancer. Perturbation of urinary microbiome and metabolome induced by iAs exposure may have a more direct effect on the development of bladder cancer. The aim of this study was to determine the impact of iAs exposure on urinary microbiome and metabolome, and to identify microbiota and metabolic signatures that are associated with iAs-induced bladder lesions. We evaluated and quantified the pathological changes of bladder, and performed 16S rDNA sequencing and mass spectrometry-based metabolomics profiling on urine samples from rats exposed to low (30 mg/L NaAsO2) or high (100 mg/L NaAsO2) iAs from early life (in utero and childhood) to puberty. Our results showed that iAs induced pathological bladder lesions, and more severe effects were noticed in the high-iAs group and male rats. Furthermore, six and seven featured urinary bacteria genera were identified in female and male offspring rats, respectively. Several characteristic urinary metabolites, including Menadione, Pilocarpine, N-Acetylornithine, Prostaglandin B1, Deoxyinosine, Biopterin, and 1-Methyluric acid, were identified significantly higher in the high-iAs groups. In addition, the correlation analysis demonstrated that the differential bacteria genera were highly correlated with the featured urinary metabolites. Collectively, these results suggest that exposure to iAs in early life not only causes bladder lesions, but also perturbs urinary microbiome composition and associated metabolic profiles, which shows a strong correlation. Those differential urinary genera and metabolites may contribute to bladder lesions, suggesting a potential for development of urinary biomarkers for iAs-induced bladder cancer.


Assuntos
Arsênio , Arsenicais , Microbiota , Neoplasias da Bexiga Urinária , Masculino , Feminino , Animais , Ratos , Arsênio/metabolismo , Bexiga Urinária/metabolismo , Arsenicais/metabolismo , Neoplasias da Bexiga Urinária/induzido quimicamente
13.
Ecotoxicol Environ Saf ; 251: 114528, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36640577

RESUMO

Perfluorooctanoic acid (PFOA) and arsenic are widely distributed pollutants and can coexist in the environment. However, no study has been reported about the effects of different arsenic species on the joint toxicity of arsenic and PFOA to soil invertebrates. In this study, four arsenic species were selected, including arsenite (As(III)), arsenate (As(V)), monomethylarsonate (MMA), and dimethylarsinate (DMA). Earthworms Eisenia fetida were exposed to soils spiked with sublethal concentrations of PFOA, different arsenic species, and their binary mixtures for 56 days. The bioaccumulation and biotransformation of pollutants, as well as eight biomarkers in organisms, were assayed. The results indicated that the coexistence of PFOA and different arsenic species in soils could enhance the bioavailability of arsenic species while reducing the bioavailability of PFOA, and inhibit the arsenic biotransformation process in earthworms. Responses of most biomarkers in joint treatments of PFOA and As(III)/As(V) showed more significant variations compared with those in single treatments, indicating higher toxicity to the earthworms. The Integrated Biomarker Response (IBR) index was used to integrate the multi-biomarker responses, and the results also exhibited enhanced toxic effects in combined treatments of inorganic arsenic and PFOA. In comparison, both the biomarker variations and IBR values were lower in joint treatments of PFOA and MMA/DMA. Then the toxic interactions in the binary mixture systems were characterized by using a combined method of IBR and Effect Addition Index. The results revealed that the toxic interactions of the PFOA/arsenic mixture in earthworms depended on the different species of arsenic. The combined exposure of PFOA with inorganic arsenic led to a synergistic interaction, while that with organic arsenic resulted in an antagonistic response. Overall, this study provides new insights into the assessment of the joint toxicity of perfluoroalkyl substances and arsenic in soil ecosystems.


Assuntos
Arsênio , Arsenicais , Poluentes Ambientais , Fluorocarbonos , Oligoquetos , Poluentes do Solo , Animais , Arsênio/análise , Ecossistema , Arsenicais/metabolismo , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo , Ácido Cacodílico/metabolismo , Poluentes Ambientais/metabolismo , Biomarcadores/metabolismo , Solo , Poluentes do Solo/análise
14.
AAPS PharmSciTech ; 24(3): 71, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828949

RESUMO

Lewisite is a highly toxic chemical warfare agent that leads to cutaneous and systemic damage. N-acetylcysteine (NAC) and 4-phenylbutryic acid (4-PBA) are two novel antidotes developed to treat toxicity caused by lewisite and similar arsenicals. Our in vivo studies demonstrated safety and effectiveness of these agents against skin injury caused by surrogate lewisite (Phenylarsine oxide) proving their potential for the treatment of lewisite injury. We further focused on exploring various enhancement strategies for an enhanced delivery of these agents via skin. NAC did not permeate passively from propylene glycol (PG). Iontophoresis as a physical enhancement technique and chemical enhancers were investigated for transdermal delivery of NAC. Application of cathodal and anodal iontophoresis with the current density of 0.2 mA/cm2 for 4 h followed by passive diffusion till 24 h significantly enhanced the delivery of NAC with a total delivery of 65.16 ± 1.95 µg/cm2 and 87.23 ± 7.02 µg/cm2, respectively. Amongst chemical enhancers, screened oleic acid, oleyl alcohol, sodium lauryl ether sulfate, and dimethyl sulfoxide (DMSO) showed significantly enhanced delivery of NAC with DMSO showing highest delivery of 28,370.2 ± 2355.4 µg/cm2 in 24 h. Furthermore, 4-PBA permeated passively from PG with total delivery of 1745.8 ± 443.5 µg/cm2 in 24 h. Amongst the chemical enhancers screened for 4-PBA, oleic acid, oleyl alcohol, and isopropyl myristate showed significantly enhanced delivery with isopropyl myristate showing highest total delivery of 17,788.7 ± 790.2 µg/cm2. These studies demonstrate feasibility of delivering these antidotes via skin and will aid in selection of excipients for the development of topical/transdermal delivery systems of these agents.


Assuntos
Arsenicais , Absorção Cutânea , Acetilcisteína/metabolismo , Antídotos , Ácido Oleico/metabolismo , Dimetil Sulfóxido/metabolismo , Administração Cutânea , Pele/metabolismo , Arsenicais/metabolismo , Dodecilsulfato de Sódio/metabolismo
15.
Environ Microbiol ; 24(2): 772-783, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35049138

RESUMO

Microbial arsenic methylation by arsenite (As(III)) S-adenosylmethionine methyltransferases (ArsMs) can produce the intermediate methylarsenite (MAs(III)), which is highly toxic and is used by some microbes as an antibiotic. Other microbes have evolved mechanisms to detoxify MAs(III). In this study, an arsRM operon was identified in the genome of an MAs(III)-methylation strain Noviherbaspirillum denitrificans HC18. The arsM gene (NdarsM) is located downstream of an open reading frame encoding an MAs(III)-responsive transcriptional regulator (NdArsR). The N. denitrificans arsRM genes are co-transcribed whose expression is significantly induced by MAs(III), likely by alleviating the repressive effect of ArsR on arsRM transcription. Both in vivo and in vitro assays showed that NdArsM methylates MAs(III) to dimethyl- and trimethyl-arsenicals but does not methylate As(III). Heterologous expression of NdarsM in arsenic-sensitive Escherichia coli AW3110 conferred resistance to MAs(III) but not As(III). NdArsM has the four conserved cysteine residues present in most ArsMs, but only two of them are essential for MAs(III) methylation. The ability to methylate MAs(III) by enzymes such as NdArsM may be an evolutionary step originated from enzymes capable of methylating As(III). This finding reveals a mechanism employed by microbes such as N. denitrificans HC18 to detoxify MAs(III) by further methylation.


Assuntos
Arsênio , Arsenicais , Oxalobacteraceae , Arsênio/metabolismo , Arsenicais/metabolismo , Metiltransferases/metabolismo , Óperon , Oxalobacteraceae/genética
16.
Environ Microbiol ; 24(2): 752-761, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33769668

RESUMO

Arsenic can be biomethylated to form a variety of organic arsenicals differing in toxicity and environmental mobility. Trivalent methylarsenite (MAs(III)) produced in the methylation process is more toxic than inorganic arsenite (As(III)). MAs(III) also serves as a primitive antibiotic and, consequently, some environmental microorganisms have evolved mechanisms to detoxify MAs(III). However, the mechanisms of MAs(III) detoxification are not well understood. In this study, we identified an arsenic resistance (ars) operon consisting of three genes, arsRVK, that contribute to MAs(III) resistance in Ensifer adhaerens ST2. ArsV is annotated as an NADPH-dependent flavin monooxygenase with unknown function. Expression of arsV in the arsenic hypersensitive Escherichia coli strain AW3110Δars conferred resistance to MAs(III) and the ability to oxidize MAs(III) to MAs(V). In the presence of NADPH and either FAD or FMN, purified ArsV protein was able to oxidize both MAs(III) to MAs(V) and Sb(III) to Sb(V). Genes with arsV-like sequences are widely present in soils and environmental bacteria. Metagenomic analysis of five paddy soils showed the abundance of arsV-like sequences of 0.12-0.25 ppm. These results demonstrate that ArsV is a novel enzyme for the detoxification of MAs(III) and Sb(III) and the genes encoding ArsV are widely present in soil bacteria.


Assuntos
Arsênio , Arsenicais , Antimônio , Arsenicais/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Flavinas , Oxigenases de Função Mista , Solo
17.
Environ Microbiol ; 24(4): 1977-1987, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35229439

RESUMO

Arsenical resistance (ars) operons encode genes for arsenic resistance and biotransformation. The majority are composed of individual genes, but fusion of ars genes is not uncommon, although it is not clear if the fused gene products are functional. Here we report identification of a four-gene ars operon from Paracoccus sp. SY that has two arsR-arsC gene fusions. ArsRC1 and ArsRC2 are related proteins that consist of an N-terminal ArsR arsenite (As(III))-responsive repressor with a C-terminal ArsC arsenate reductase. The other two genes in the operon are gapdh and arsJ. GAPDH, glyceraldehyde 3-phosphate dehydrogenase, forms 1-arseno-3-phosphoglycerate (1As3PGA) from 3-phosphoglyceraldehyde and arsenate (As(V)), ArsJ is an efflux permease for 1As3PGA that dissociates into extracellular As(V) and 3-phosphoglycerate. The net effect is As(V) extrusion and resistance. ArsRs are usually selective for As(III) and do not respond to As(V). However, the substrates and products of this operon are pentavalent, which would not be inducers of the operon. We propose that ArsRC fusions overcome this limitation by channelling the ArsC product into the ArsR binding site without diffusion through the cytosol, a de facto mechanism for As(V) induction. This novel mechanism for arsenate sensing can confer an evolutionary advantage for detoxification of inorganic arsenate.


Assuntos
Arsênio , Arsenicais , Arsenitos , Arseniatos/metabolismo , Arsênio/metabolismo , Arsenicais/metabolismo , Arsenitos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon
18.
Environ Microbiol ; 24(7): 3013-3021, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35355385

RESUMO

Trivalent methylarsenite [MAs(III)] produced by biomethylation is more toxic than inorganic arsenite [As(III)]. Hence, MAs(III) has been proposed to be a primordial antibiotic. Other bacteria evolved mechanisms to detoxify MAs(III). In this study, the molecular mechanisms of MAs(III) resistance of Ensifer adhaerens ST2 were investigated. In the chromosome of E. adhaerens ST2 is a gene encoding a protein of unknown function. Here, we show that this gene, designated arsZ, encodes a novel MAs(III) oxidase that confers resistance by oxidizing highly toxic MAs(III) to relatively nontoxic MAs(V). Two other genes, arsRK, are adjacent to arsZ but are divergently encoded in the opposite direction. Heterologous expression of arsZ in Escherichia coli confers resistance to MAs(III) but not to As(III). Purified ArsZ catalyses thioredoxin- and NAPD+ -dependent oxidation of MAs(III). Mutational analysis of ArsZ suggests that Cys59 and Cys123 are involved in the oxidation of MAs(III). Expression of arsZ, arsR and arsK genes is induced by MAs(III) and As(III) and is likely controlled by the ArsR transcriptional repressor. These results demonstrate that ArsZ is a novel MAs(III) oxidase that contributes to E. adhaerens tolerance to environmental organoarsenicals. The arsZRK operon is widely present in bacteria within the Rhizobiaceae family.


Assuntos
Arsênio , Arsenicais , Proteínas de Bactérias/metabolismo , Rhizobiaceae , Arsenicais/metabolismo , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1 , Oxirredutases/genética
19.
Appl Environ Microbiol ; 88(6): e0246721, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35080903

RESUMO

Methylarsenate (MAs(V)) is a product of microbial arsenic (As) biomethylation and has also been widely used as an herbicide. Some microbes are able to reduce nontoxic MAs(V) to highly toxic methylarsenite (MAs(III)) possibly as an antibiotic. The mechanism of MAs(V) reduction in microbes has not been elucidated. Here, we found that the bacterium Enterobacter sp. CZ-1 isolated from an As-contaminated paddy soil has a strong ability to reduce MAs(V) to MAs(III). Using a MAs(III)-responsive biosensor to detect MAs(V) reduction in E. coli Trans5α transformants of a genomic library of Enterobacter sp. CZ-1, we identified gshA, encoding a glutamate-cysteine ligase, as a key gene involved in MAs(V) reduction. Heterologous expression of gshA increased the biosynthesis of glutathione (GSH) and MAs(V) reduction in E. coli Trans5α. Deletion of gshA in Enterobacter sp. CZ-1 abolished its ability to synthesize GSH and decreased its MAs(V) reduction ability markedly, which could be restored by supplementation of exogenous GSH. In the presence of MAs(V), Enterobacter sp. CZ-1 was able to inhibit the growth of Bacillus subtilis 168; this ability was lost in the gshA-deleted mutant. In addition, deletion of gshA greatly decreased the reduction of arsenate to arsenite. These results indicate that GSH plays an important role in MAs(V) reduction to generate MAs(III) as an antibiotic. IMPORTANCE Arsenic is a ubiquitous environmental toxin. Some microbes detoxify inorganic arsenic through biomethylation, generating relatively nontoxic pentavalent methylated arsenicals, such as methylarsenate. Methylarsenate has also been widely used as an herbicide. Surprisingly, some microbes reduce methylarsenate to highly toxic methylarsenite possibly to use the latter as an antibiotic. How microbes reduce methylarsenate to methylarsenite is unknown. Here, we show that gshA encoding a glutamate-cysteine ligase in the glutathione biosynthesis pathway is involved in methylarsenate reduction in Enterobacter sp. CZ-1. Our study provides new insights into the crucial role of glutathione in the transformation of a common arsenic compound to a natural antibiotic.


Assuntos
Arsênio , Arsenicais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Arsênio/metabolismo , Arsenicais/metabolismo , Enterobacter/genética , Enterobacter/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glutationa/metabolismo
20.
Environ Sci Technol ; 56(19): 13858-13866, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36112513

RESUMO

Arsenic methylation contributes to the formation and diversity of environmental organoarsenicals, an important process in the arsenic biogeochemical cycle. The arsM gene encoding an arsenite (As(III)) S-adenosylmethionine (SAM) methyltransferase is widely distributed in members of every kingdom. A number of ArsM enzymes have been shown to have different patterns of methylation. When incubated with inorganic As(III), Burkholderia gladioli GSRB05 has been shown to synthesize the organoarsenical antibiotic arsinothricin (AST) but does not produce either methylarsenate (MAs(V)) or dimethylarsenate (DMAs(V)). Here, we show that cells of B. gladioli GSRB05 synthesize DMAs(V) when cultured with either MAs(III) or MAs(V). Heterologous expression of the BgarsM gene in Escherichia coli conferred resistance to MAs(III) but not As(III). The cells methylate MAs(III) and the AST precursor, reduced trivalent hydroxyarsinothricin (R-AST-OH) but do not methylate inorganic As(III). Similar results were obtained with purified BgArsM. Compared with ArsM orthologs, BgArsM has an additional 37 amino acid residues in a linker region between domains. Deletion of the additional 37 residues restored As(III) methylation activity. Cells of E. coli co-expressing the BgarsL gene encoding the noncanonical radical SAM enzyme that catalyzes the synthesis of R-AST-OH together with the BgarsM gene produce much more of the antibiotic AST compared with E. coli cells co-expressing BgarsL together with the CrarsM gene from Chlamydomonas reinhardtii, which lacks the sequence for additional 37 residues. We propose that the presence of the insertion reduces the fitness of B. gladioli because it cannot detoxify inorganic arsenic but concomitantly confers an evolutionary advantage by increasing the ability to produce AST.


Assuntos
Arsênio , Arsenicais , Arsenitos , Burkholderia gladioli , Antibacterianos , Arsênio/metabolismo , Arsenicais/metabolismo , Arsenitos/metabolismo , Burkholderia gladioli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Metilação , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , S-Adenosilmetionina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa