Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.513
Filtrar
Mais filtros

Eixos temáticos
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 33(19-20): 1416-1427, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31488576

RESUMO

Polycomb-repressive complex 2 (PRC2) is a histone methyltransferase that is critical for regulating transcriptional repression in mammals. Its catalytic subunit, EZH2, is responsible for the trimethylation of H3K27 and also undergoes automethylation. Using mass spectrometry analysis of recombinant human PRC2, we identified three methylated lysine residues (K510, K514, and K515) on a disordered but highly conserved loop of EZH2. Methylation of these lysines increases PRC2 histone methyltransferase activity, whereas their mutation decreases activity in vitro. De novo histone methylation in an EZH2 knockout cell line is greatly impeded by mutation of the automethylation lysines. EZH2 automethylation occurs intramolecularly (in cis) by methylation of a pseudosubstrate sequence on a flexible loop. This posttranslational modification and cis regulation of PRC2 are analogous to the activation of many protein kinases by autophosphorylation. We propose that EZH2 automethylation allows PRC2 to modulate its histone methyltransferase activity by sensing histone H3 tails, SAM concentration, and perhaps other effectors.


Assuntos
Histonas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Ativação Enzimática/fisiologia , Regulação da Expressão Gênica , Humanos , Lisina/metabolismo , Metilação , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo
2.
Mol Cell ; 69(1): 87-99.e7, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29249655

RESUMO

Loss of LKB1 is associated with increased metastasis and poor prognosis in lung cancer, but the development of targeted agents is in its infancy. Here we report that a glutaminolytic enzyme, glutamate dehydrogenase 1 (GDH1), upregulated upon detachment via pleomorphic adenoma gene 1 (PLAG1), provides anti-anoikis and pro-metastatic signals in LKB1-deficient lung cancer. Mechanistically, the GDH1 product α-KG activates CamKK2 by enhancing its substrate AMPK binding, which contributes to energy production that confers anoikis resistance. The effect of GDH1 on AMPK is evident in LKB1-deficient lung cancer, where AMPK activation predominantly depends on CamKK2. Targeting GDH1 with R162 attenuated tumor metastasis in patient-derived xenograft model and correlation studies in lung cancer patients further validated the clinical relevance of our finding. Our study provides insight into the molecular mechanism by which GDH1-mediated metabolic reprogramming of glutaminolysis mediates lung cancer metastasis and offers a therapeutic strategy for patients with LKB1-deficient lung cancer.


Assuntos
Anoikis/fisiologia , Proteínas de Ligação a DNA/metabolismo , Glutamato Desidrogenase/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Serina-Treonina Quinases/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Células A549 , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/fisiologia , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Metástase Neoplásica/patologia , Transplante de Neoplasias , Transplante Heterólogo
3.
Genes Dev ; 32(23-24): 1576-1590, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478248

RESUMO

Saccharomyces cerevisiae target of rapamycin (TOR) complex 2 (TORC2) is an essential regulator of plasma membrane lipid and protein homeostasis. How TORC2 activity is modulated in response to changes in the status of the cell envelope is unclear. Here we document that TORC2 subunit Avo2 is a direct target of Slt2, the mitogen-activated protein kinase (MAPK) of the cell wall integrity pathway. Activation of Slt2 by overexpression of a constitutively active allele of an upstream Slt2 activator (Pkc1) or by auxin-induced degradation of a negative Slt2 regulator (Sln1) caused hyperphosphorylation of Avo2 at its MAPK phosphoacceptor sites in a Slt2-dependent manner and diminished TORC2-mediated phosphorylation of its major downstream effector, protein kinase Ypk1. Deletion of Avo2 or expression of a phosphomimetic Avo2 allele rendered cells sensitive to two stresses (myriocin treatment and elevated exogenous acetic acid) that the cell requires Ypk1 activation by TORC2 to survive. Thus, Avo2 is necessary for optimal TORC2 activity, and Slt2-mediated phosphorylation of Avo2 down-regulates TORC2 signaling. Compared with wild-type Avo2, phosphomimetic Avo2 shows significant displacement from the plasma membrane, suggesting that Slt2 inhibits TORC2 by promoting Avo2 dissociation. Our findings are the first demonstration that TORC2 function is regulated by MAPK-mediated phosphorylation.


Assuntos
Regulação para Baixo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética , Estresse Fisiológico/genética , Ácido Acético/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Ácidos Graxos Monoinsaturados/farmacologia , Deleção de Genes , Quinase 3 da Glicogênio Sintase/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosforilação , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/efeitos dos fármacos
4.
J Biol Chem ; 299(8): 104941, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37343701

RESUMO

The serum- and glucocorticoid-induced kinase 1 (SGK1) promotes cell survival under stress conditions and facilitates the emergence of drug resistance in cancer. The underlying mechanisms of these observations are not fully understood. In this study, we found that SGK1 activity is suppressed by the action of the S/T phosphatases PP5 and PP2A, which constantly dephosphorylate SGK1. Using newly developed anti-phospho SGK1 antibodies and inhibitors of phosphatases, we determined that the high degree of dephosphorylation is caused by two factors: the tendency of SGK1 to unfold, which makes it dependent on Hsp90 chaperone complexes composed of four proteins, Hsp90/CDC37/PP5/SGK1, and where the phosphatase PP5 persistently dephosphorylates SGK1 within the complex. SGK1 binding to PP2A regulatory subunits B55γ and B55δ brings PP2A catalytic subunit close to exposed SGK1 phosphoresidues. A further association of phosphorylated pS37-FAM122A-an endogenous inhibitor of PP2A-to the holoenzyme diminishes dephosphorylation of SGK1 mediated by PP2A. Our study also reveals that genotoxic stress can reverse the dominant impact of phosphatases over kinases by activating the DNA-dependent protein kinase, which enhances mTORC2 activity directed to SGK1. Thus, our results provide insight into a molecular pathway that enables SGK1 to gain phosphorylation and catalytic activity and promote cell survival, potentially diminishing the efficacy of cancer treatments. As the DNA damage response operates in many cancer cells and is further induced by chemotherapies, the findings of this study could have significant implications for the development of novel cancer therapies targeting SGK1.


Assuntos
Dano ao DNA , Fosfoproteínas Fosfatases , Proteínas Serina-Treonina Quinases , Dano ao DNA/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/metabolismo , Humanos , Ativação Enzimática/fisiologia , Sobrevivência Celular
5.
J Immunol ; 208(2): 286-292, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35017218

RESUMO

Inflammasomes are important in human health and disease, whereby they control the secretion of IL-1ß and IL-18, two potent proinflammatory cytokines that play a key role in inflammatory responses to pathogens and danger signals. Several inflammasomes have been discovered over the past two decades. NLRP3 inflammasome is the best characterized and can be activated by a wide variety of inducers. It is composed of a sensor, NLRP3, an adapter protein, ASC, and an effector enzyme, caspase-1. After activation, caspase-1 mediates the cleavage and secretion of bioactive IL-1ß and IL-18 via gasdermin-D pores in the plasma membrane. Aberrant activation of NLRP3 inflammasomes has been implicated in a multitude of human diseases, including inflammatory, autoimmune, and metabolic diseases. Therefore, several mechanisms have evolved to control their activity. In this review, we describe the posttranslational modifications that regulate NLRP3 inflammasome components, including ubiquitination, phosphorylation, and other forms of posttranslational modifications.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Processamento de Proteína Pós-Traducional/genética , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Caspase 1/genética , Caspase 1/metabolismo , Membrana Celular/metabolismo , Ativação Enzimática/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas de Ligação a Fosfato/metabolismo , Fosforilação/fisiologia , Ubiquitinação/fisiologia
6.
J Virol ; 96(9): e0219821, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35438536

RESUMO

HIV-1 encodes a viral protease that is essential for the maturation of infectious viral particles. While protease inhibitors are effective antiretroviral agents, recent studies have shown that prematurely activating, rather than inhibiting, protease function leads to the pyroptotic death of infected cells, with exciting implications for efforts to eradicate viral reservoirs. Despite 40 years of research into the kinetics of protease activation, it remains unclear exactly when protease becomes activated. Recent reports have estimated that protease activation occurs minutes to hours after viral release, suggesting that premature protease activation is challenging to induce efficiently. Here, monitoring viral protease activity with sensitive techniques, including nanoscale flow cytometry and instant structured illumination microscopy, we demonstrate that the viral protease is activated within cells prior to the release of free virions. Using genetic mutants that lock protease into a precursor conformation, we further show that both the precursor and mature protease have rapid activation kinetics and that the activity of the precursor protease is sufficient for viral fusion with target cells. Our finding that HIV-1 protease is activated within producer cells prior to release of free virions helps resolve a long-standing question of when protease is activated and suggests that only a modest acceleration of protease activation kinetics is required to induce potent and specific elimination of HIV-infected cells. IMPORTANCE HIV-1 protease inhibitors have been a mainstay of antiretroviral therapy for more than 2 decades. Although antiretroviral therapy is effective at controlling HIV-1 replication, persistent reservoirs of latently infected cells quickly reestablish replication if therapy is halted. A promising new strategy to eradicate the latent reservoir involves prematurely activating the viral protease, which leads to the pyroptotic killing of infected cells. Here, we use highly sensitive techniques to examine the kinetics of protease activation during and shortly after particle formation. We found that protease is fully activated before virus is released from the cell membrane, which is hours earlier than recent estimates. Our findings help resolve a long-standing debate as to when the viral protease is initially activated during viral assembly and confirm that prematurely activating HIV-1 protease is a viable strategy to eradicate infected cells following latency reversal.


Assuntos
Protease de HIV , HIV-1 , Ativação Enzimática/fisiologia , Infecções por HIV/virologia , Protease de HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Humanos , Inibidores de Proteases/farmacologia
7.
Biochem J ; 479(2): 129-143, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35050327

RESUMO

The chemical and mechanical responses of cells via the exchange of information during growth and development result in the formation of biological tissues. Information processing within the cells through the signaling pathways and networks inherent to the constituent cells has been well-studied. However, the cell signaling mechanisms responsible for generating dynamic multicellular responses in developing tissues remain unclear. Here, I review the dynamic multicellular response systems during the development and growth of vertebrate tissues based on the extracellular signal-regulated kinase (ERK) pathway. First, an overview of the function of the ERK signaling network in cells is provided, followed by descriptions of biosensors essential for live imaging of the quantification of ERK activity in tissues. Then adducing four examples, I highlight the contribution of live imaging techniques for studying the involvement of spatio-temporal patterns of ERK activity change in tissue development and growth. In addition, theoretical implications of ERK signaling are also discussed from the viewpoint of dynamic systems. This review might help in understanding ERK-mediated dynamic multicellular responses and tissue morphogenesis.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Sistema de Sinalização das MAP Quinases/fisiologia , Morfogênese/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Técnicas Biossensoriais/métodos , Ativação Enzimática/fisiologia , Humanos , Cinética , Camundongos , Ligação Proteica
8.
Genes Dev ; 29(22): 2349-61, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26543158

RESUMO

The apoptotic protease-activating factor 1 (Apaf-1) controls the onset of many known forms of intrinsic apoptosis in mammals. Apaf-1 exists in normal cells as an autoinhibited monomer. Upon binding to cytochrome c and dATP, Apaf-1 oligomerizes into a heptameric complex known as the apoptosome, which recruits and activates cell-killing caspases. Here we present an atomic structure of an intact mammalian apoptosome at 3.8 Å resolution, determined by single-particle, cryo-electron microscopy (cryo-EM). Structural analysis, together with structure-guided biochemical characterization, uncovered how cytochrome c releases the autoinhibition of Apaf-1 through specific interactions with the WD40 repeats. Structural comparison with autoinhibited Apaf-1 revealed how dATP binding triggers a set of conformational changes that results in the formation of the apoptosome. Together, these results constitute the molecular mechanism of cytochrome c- and dATP-mediated activation of Apaf-1.


Assuntos
Trifosfato de Adenosina/metabolismo , Apoptossomas/química , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Citocromos c/metabolismo , Modelos Moleculares , Animais , Caspase 9/metabolismo , Linhagem Celular , Microscopia Crioeletrônica , Citocromos c/genética , Ativação Enzimática/fisiologia , Humanos , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína
9.
Genes Dev ; 29(11): 1175-87, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26063575

RESUMO

Topoisomerase IV (topo IV), an essential factor during chromosome segregation, resolves the catenated chromosomes at the end of each replication cycle. How the decatenating activity of the topo IV is regulated during the early stages of the chromosome cycle despite being in continuous association with the chromosome remains poorly understood. Here we report a novel cell cycle-regulated protein in Caulobacter crescentus, NstA (negative switch for topo IV decatenation activity), that inhibits the decatenation activity of the topo IV during early stages of the cell cycle. We demonstrate that in C. crescentus, NstA acts by binding to the ParC DNA-binding subunit of topo IV. Most importantly, we uncover a dynamic oscillation of the intracellular redox state during the cell cycle, which correlates with and controls NstA activity. Thus, we propose that predetermined dynamic intracellular redox fluctuations may act as a global regulatory switch to control cellular development and cell cycle progression and may help retain pathogens in a suitable cell cycle state when encountering redox stress from the host immune response.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/enzimologia , Ciclo Celular/fisiologia , DNA Topoisomerase IV/metabolismo , Genes de Troca/fisiologia , Caulobacter crescentus/crescimento & desenvolvimento , DNA Topoisomerase IV/genética , Ativação Enzimática/fisiologia , Oxirredução , Ligação Proteica , Subunidades Proteicas/metabolismo
10.
Genes Dev ; 29(12): 1271-84, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26109050

RESUMO

YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif) are major downstream effectors of the Hippo pathway that influences tissue homeostasis, organ size, and cancer development. Aberrant hyperactivation of YAP/TAZ causes tissue overgrowth and tumorigenesis, whereas their inactivation impairs tissue development and regeneration. Dynamic and precise control of YAP/TAZ activity is thus important to ensure proper physiological regulation and homeostasis of the cells. Here, we show that YAP/TAZ activation results in activation of their negative regulators, LATS1/2 (large tumor suppressor 1/2) kinases, to constitute a negative feedback loop of the Hippo pathway in both cultured cells and mouse tissues. YAP/TAZ in complex with the transcription factor TEAD (TEA domain family member) directly induce LATS2 expression. Furthermore, YAP/TAZ also stimulate the kinase activity of LATS1/2 through inducing NF2 (neurofibromin 2). This feedback regulation is responsible for the transient activation of YAP upon lysophosphatidic acid (LPA) stimulation and the inhibition of YAP-induced cell migration. Thus, this LATS-mediated feedback loop provides an efficient mechanism to establish the robustness and homeostasis of YAP/TAZ regulation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Retroalimentação Fisiológica/fisiologia , Homeostase/fisiologia , Neurofibromina 2/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Movimento Celular , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática/fisiologia , Feminino , Regulação da Expressão Gênica , Células HEK293 , Via de Sinalização Hippo , Homeostase/genética , Humanos , Fígado/metabolismo , Masculino , Camundongos , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteínas de Sinalização YAP
11.
J Neurosci ; 41(13): 2814-2827, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33602824

RESUMO

Epigenetic mechanisms regulate processes of neuroplasticity critical to cocaine-induced behaviors. This includes the Class I histone deacetylase (HDAC) HDAC3, known to act as a negative regulator of cocaine-associated memory formation within the nucleus accumbens (NAc). Despite this, it remains unknown how cocaine alters HDAC3-dependent mechanisms. Here, we profiled HDAC3 expression and activity in total NAc mouse tissue following cocaine exposure. Although chronic cocaine did not affect expression of Hdac3 within the NAc, chronic cocaine did affect promoter-specific changes in HDAC3 and H4K8Ac occupancy. These changes in promoter occupancy correlated with cocaine-induced changes in expression of plasticity-related genes. To causally determine whether cocaine-induced plasticity is mediated by HDAC3's deacetylase activity, we overexpressed a deacetylase-dead HDAC3 point mutant (HDAC3-Y298H-v5) within the NAc of adult male mice. We found that disrupting HDAC3's enzymatic activity altered selective changes in gene expression and synaptic plasticity following cocaine exposure, despite having no effects on cocaine-induced behaviors. In further assessing HDAC3's role within the NAc, we observed that chronic cocaine increases Hdac3 expression in Drd1 but not Drd2-cells of the NAc. Moreover, we discovered that HDAC3 acts selectively within D1R cell-types to regulate cocaine-associated memory formation and cocaine-seeking. Overall, these results suggest that cocaine induces cell-type-specific changes in epigenetic mechanisms to promote plasticity important for driving cocaine-related behaviors.SIGNIFICANCE STATEMENT Drugs of abuse alter molecular mechanisms throughout the reward circuitry that can lead to persistent drug-associated behaviors. Epigenetic regulators are critical drivers of drug-induced changes in gene expression. Here, we demonstrate that the activity of an epigenetic enzyme promotes neuroplasticity within the nucleus accumbens (NAc) critical to cocaine action. In addition, we demonstrate that these changes in epigenetic activity drive cocaine-seeking behaviors in a cell-type-specific manner. These findings are key in understanding and targeting cocaine's impact of neural circuitry and behavior.


Assuntos
Cocaína/administração & dosagem , Comportamento de Procura de Droga/fisiologia , Histona Desacetilases/biossíntese , Plasticidade Neuronal/fisiologia , Núcleo Accumbens/citologia , Núcleo Accumbens/enzimologia , Animais , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Inibidores da Captação de Dopamina/administração & dosagem , Comportamento de Procura de Droga/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/fisiologia , Histona Desacetilases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Autoadministração
12.
Mol Microbiol ; 115(6): 1323-1338, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33400299

RESUMO

Mitochondria play essential roles in eukaryotic cells for glucose metabolism to produce ATP. In Schizosaccharomyces pombe, transcription factor Rst2 can be activated upon glucose deprivation. However, the link between Rst2 and mitochondrial function remains elusive. Here, we monitored Rst2 transcriptional activity in living cells using a Renilla luciferase reporter system, and found that inhibition of mitochondrial complex III/IV caused cells to produce reactive oxygen species (ROS) and nitric oxide (NO), which in turn activated Rst2. Furthermore, Rst2-GFP was observed to translocate from cytoplasm to nucleus upon mitochondrial complex III/IV inhibitors treatment, and deletion of genes associated with complex III/IV resulted in delayed process of Rst2-GFP nuclear exportation under glucose-rich condition. In particular, we found that Rst2 was phosphorylated following the treatment of complex III/IV inhibitors or SNAP. Altogether, our findings suggest that mitochondrial complex III/IV participates in the activation of Rst2 through ROS and NO generation in Schizosaccharomyces pombe.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/genética , Ativação Enzimática/fisiologia , Mitocôndrias/metabolismo , Fosforilação , S-Nitroso-N-Acetilpenicilamina/farmacologia , Schizosaccharomyces/genética , Transcrição Gênica/genética
13.
EMBO J ; 37(3): 367-383, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29330193

RESUMO

Myostatin, a key regulator of muscle mass in vertebrates, is biosynthesised as a latent precursor in muscle and is activated by sequential proteolysis of the pro-domain. To investigate the molecular mechanism by which pro-myostatin remains latent, we have determined the structure of unprocessed pro-myostatin and analysed the properties of the protein in its different forms. Crystal structures and SAXS analyses show that pro-myostatin adopts an open, V-shaped structure with a domain-swapped arrangement. The pro-mature complex, after cleavage of the furin site, has significantly reduced activity compared with the mature growth factor and persists as a stable complex that is resistant to the natural antagonist follistatin. The latency appears to be conferred by a number of distinct features that collectively stabilise the interaction of the pro-domains with the mature growth factor, enabling a regulated stepwise activation process, distinct from the prototypical pro-TGF-ß1. These results provide a basis for understanding the effect of missense mutations in pro-myostatin and pave the way for the design of novel myostatin inhibitors.


Assuntos
Músculo Esquelético/metabolismo , Miostatina/metabolismo , Precursores de Proteínas/metabolismo , Linhagem Celular , Cristalografia por Raios X , Ativação Enzimática/fisiologia , Folistatina/farmacologia , Células HEK293 , Humanos , Miostatina/antagonistas & inibidores , Polimorfismo Genético , Estrutura Secundária de Proteína , Proteólise , Fator de Crescimento Transformador beta/metabolismo
14.
EMBO J ; 37(3): 384-397, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29343545

RESUMO

Growth differentiation factor 8 (GDF8)/myostatin is a latent TGF-ß family member that potently inhibits skeletal muscle growth. Here, we compared the conformation and dynamics of precursor, latent, and Tolloid-cleaved GDF8 pro-complexes to understand structural mechanisms underlying latency and activation of GDF8. Negative stain electron microscopy (EM) of precursor and latent pro-complexes reveals a V-shaped conformation that is unaltered by furin cleavage and sharply contrasts with the ring-like, cross-armed conformation of latent TGF-ß1. Surprisingly, Tolloid-cleaved GDF8 does not immediately dissociate, but in EM exhibits structural heterogeneity consistent with partial dissociation. Hydrogen-deuterium exchange was not affected by furin cleavage. In contrast, Tolloid cleavage, in the absence of prodomain-growth factor dissociation, increased exchange in regions that correspond in pro-TGF-ß1 to the α1-helix, latency lasso, and ß1-strand in the prodomain and to the ß6'- and ß7'-strands in the growth factor. Thus, these regions are important in maintaining GDF8 latency. Our results show that Tolloid cleavage activates latent GDF8 by destabilizing specific prodomain-growth factor interfaces and primes the growth factor for release from the prodomain.


Assuntos
Músculo Esquelético/crescimento & desenvolvimento , Miostatina/metabolismo , Precursores de Proteínas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Linhagem Celular , Medição da Troca de Deutério , Drosophila , Ativação Enzimática/fisiologia , Furina/metabolismo , Células HEK293 , Humanos , Microscopia Eletrônica , Metaloproteases Semelhantes a Toloide/metabolismo
16.
Genes Dev ; 28(12): 1310-22, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24939934

RESUMO

dsRNA-dependent protein kinase R (PKR) is a ubiquitously expressed enzyme well known for its roles in immune response. Upon binding to viral dsRNA, PKR undergoes autophosphorylation, and the phosphorylated PKR (pPKR) regulates translation and multiple signaling pathways in infected cells. Here, we found that PKR is activated in uninfected cells, specifically during mitosis, by binding to dsRNAs formed by inverted Alu repeats (IRAlus). While PKR and IRAlu-containing RNAs are segregated in the cytosol and nucleus of interphase cells, respectively, they interact during mitosis when nuclear structure is disrupted. Once phosphorylated, PKR suppresses global translation by phosphorylating the α subunit of eukaryotic initiation factor 2 (eIF2α). In addition, pPKR acts as an upstream kinase for c-Jun N-terminal kinase and regulates the levels of multiple mitotic factors such as cyclins A and B and Polo-like kinase 1 and phosphorylation of histone H3. Disruption of PKR activation via RNAi or expression of a transdominant-negative mutant leads to misregulation of the mitotic factors, delay in mitotic progression, and defects in cytokinesis. Our study unveils a novel function of PKR and endogenous dsRNAs as signaling molecules during the mitosis of uninfected cells.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/fisiologia , Mitose/fisiologia , RNA de Cadeia Dupla/metabolismo , eIF-2 Quinase/metabolismo , Elementos Alu/fisiologia , Ciclo Celular/fisiologia , Ativação Enzimática/fisiologia , Regulação da Expressão Gênica , Células HeLa , Humanos , Fosforilação , Ligação Proteica
17.
Genes Dev ; 28(14): 1604-19, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25030699

RESUMO

A key function of the cellular DNA damage response is to facilitate the bypass of replication fork-stalling DNA lesions. Template switch reactions allow such a bypass and involve the formation of DNA joint molecules (JMs) between sister chromatids. These JMs need to be resolved before cell division; however, the regulation of this process is only poorly understood. Here, we identify a regulatory mechanism in yeast that critically controls JM resolution by the Mus81-Mms4 endonuclease. Central to this regulation is a conserved complex comprising the scaffold proteins Dpb11 and Slx4 that is under stringent control. Cell cycle-dependent phosphorylation of Slx4 by Cdk1 promotes the Dpb11-Slx4 interaction, while in mitosis, phosphorylation of Mms4 by Polo-like kinase Cdc5 promotes the additional association of Mus81-Mms4 with the complex, thereby promoting JM resolution. Finally, the DNA damage checkpoint counteracts Mus81-Mms4 binding to the Dpb11-Slx4 complex. Thus, Dpb11-Slx4 integrates several cellular inputs and participates in the temporal program for activation of the JM-resolving nuclease Mus81.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Reparo do DNA/fisiologia , Replicação do DNA , Endodesoxirribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Endodesoxirribonucleases/genética , Ativação Enzimática/fisiologia , Mutação/genética , Fosforilação , Ligação Proteica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
Genes Dev ; 28(8): 902-11, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24736846

RESUMO

Intracellular proteases combat proteotoxic stress by degrading damaged proteins, but their activity must be carefully controlled to maintain cellular fitness. The activity of Escherichia coli DegP, a highly conserved periplasmic protease, is regulated by substrate-dependent allosteric transformations between inactive and active trimer conformations and by the formation of polyhedral cages that confine the active sites within a proteolytic chamber. Here, we investigate how these distinct control mechanisms contribute to bacterial fitness under heat stress. We found that mutations that increase or decrease the equilibrium population of active DegP trimers reduce high-temperature fitness, that a mutation that blocks cage formation causes a mild fitness decrease, and that combining mutations that stabilize active DegP and block cage formation generates a lethal rogue protease. This lethality is suppressed by an extragenic mutation that prevents covalent attachment of an abundant outer-membrane lipoprotein to peptidoglycan and makes this protein an inhibitor of the rogue protease. Lethality is also suppressed by intragenic mutations that stabilize inactive DegP trimers. In combination, our results suggest that allosteric control of active and inactive conformations is the primary mechanism that regulates DegP proteolysis and fitness, with cage formation providing an additional layer of cellular protection against excessive protease activity.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Proteínas Periplásmicas/metabolismo , Proteólise , Serina Endopeptidases/metabolismo , Estresse Fisiológico/fisiologia , Ativação Enzimática/fisiologia , Escherichia coli/crescimento & desenvolvimento , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Viabilidade Microbiana/genética , Mutação , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Conformação Proteica , Serina Endopeptidases/química , Serina Endopeptidases/genética , Estresse Fisiológico/genética
19.
Genes Dev ; 28(9): 983-94, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24732379

RESUMO

In most tissues, the prevailing view is that stem cell (SC) niches are generated by signals from within the nearby tissue environment. Here, we define genetic changes altered in hair follicle (HF) SCs in mice treated with a potent SC activator, cyclosporine A (CSA), which inhibits the phosphatase calcineurin (CN) and the activity of the transcription factor nuclear factor of activated T cells c1 (Nfatc1). We show that CN/Nfatc1 regulates expression of prolactin receptor (Prlr) and that canonical activation of Prlr and its downstream signaling via Jak/Stat5 drives quiescence of HF SCs during pregnancy and lactation, when serum prolactin (Prl) levels are highly elevated. Using Prl injections and genetic/pharmacological loss-of-function experiments in mice, we show that Prl signaling stalls follicular SC activation through its activity in the skin epithelium. Our findings define a unique CN-Nfatc1-Prlr-Stat5 molecular circuitry that promotes persistent SC quiescence in the skin.


Assuntos
Calcineurina/metabolismo , Folículo Piloso/citologia , Lactação/fisiologia , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Animais , Calcineurina/genética , Ciclosporina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Folículo Piloso/efeitos dos fármacos , Hormônios/farmacologia , Janus Quinases/metabolismo , Lactação/genética , Lactação/metabolismo , Camundongos , Fatores de Transcrição NFATC/genética , Gravidez , Prolactina/sangue , Prolactina/farmacologia , Receptores da Prolactina/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos
20.
J Neurosci ; 40(23): 4609-4619, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32350039

RESUMO

Idebenone is a synthetic quinone that on reduction in cells can bypass mitochondrial Complex I defects by donating electrons to Complex III. The drug is used clinically to treat the Complex I disease Leber's hereditary optic neuropathy (LHON), but has been less successful in clinical trials for other neurodegenerative diseases. NAD(P)H:quinone oxidoreductase 1 (NQO1) appears to be the main intracellular enzyme catalyzing idebenone reduction. However, NQO1 is not universally expressed by cells of the brain. Using primary rat cortical cells pooled from both sexes, we tested the hypotheses that the level of endogenous NQO1 activity limits the ability of neurons, but not astrocytes, to use idebenone as an electron donor to support mitochondrial respiration. We then tested the prediction that NQO1 induction by pharmacological activation of the transcription factor nuclear erythroid 2-related factor 2 (Nrf2) enables idebenone to bypass Complex I in cells with poor NQO1 expression. We found that idebenone stimulated respiration by astrocytes but reduced the respiratory capacity of neurons. Importantly, idebenone supported mitochondrial oxygen consumption in the presence of a Complex I inhibitor in astrocytes but not neurons, and this ability was reversed by inhibiting NQO1. Conversely, recombinant NQO1 delivery to neurons prevented respiratory impairment and conferred Complex I bypass activity. Nrf2 activators failed to increase NQO1 in neurons, but carnosic acid induced NQO1 in COS-7 cells that expressed little endogenous enzyme. Carnosic acid-idebenone combination treatment promoted NQO1-dependent Complex I bypass activity in these cells. Thus, combination drug strategies targeting NQO1 may promote the repurposing of idebenone for additional disorders.SIGNIFICANCE STATEMENT Idebenone is used clinically to treat loss of visual acuity in Leber's hereditary optic neuropathy. Clinical trials for several additional diseases have failed. This study demonstrates a fundamental difference in the way idebenone affects mitochondrial respiration in cortical neurons compared with cortical astrocytes. Cortical neurons are unable to use idebenone as a direct mitochondrial electron donor due to NQO1 deficiency. Our results suggest that idebenone behaves as an NQO1-dependent prodrug, raising the possibility that lack of neuronal NQO1 activity has contributed to the limited efficacy of idebenone in neurodegenerative disease treatment. Combination therapy with drugs able to safely induce NQO1 in neurons, as well as other brain cell types, may be able to unlock the neuroprotective therapeutic potential of idebenone or related quinones.


Assuntos
Antioxidantes/farmacologia , Astrócitos/enzimologia , Respiração Celular/fisiologia , Mitocôndrias/enzimologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Ubiquinona/análogos & derivados , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Células COS , Respiração Celular/efeitos dos fármacos , Células Cultivadas , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Feminino , Masculino , Mitocôndrias/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ubiquinona/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa