Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 755
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Immunol Rev ; 313(1): 162-180, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336911

RESUMO

The alternative pathway (AP) is the phylogenetically oldest arm of the complement system and may have evolved to mark pathogens for elimination by phagocytes. Studies using purified AP proteins or AP-specific serum showed that C3b amplification on bacteria commenced following a lag phase of about 5 min and was highly dependent on the concentration of complement. Most pathogens have evolved several elegant mechanisms to evade complement, including expressing proteases that degrade AP proteins and secreting proteins that block function of C3 convertases. In an example of convergent evolution, many microbes recruit the AP inhibitor factor H (FH) using molecular mechanisms that mimic FH interactions with host cells. In most instances, the AP serves to amplify C3b deposited on microbes by the classical pathway (CP). The role of properdin on microbes appears to be restricted to stabilization of C3 convertases; scant evidence exists for its role as an initiator of the AP on pathogens in the context of serum. Therapeutic complement inhibition carries with it an increased risk of infection. Antibody (Ab)-dependent AP activation may be critical for complement activation by vaccine-elicited Ab when the CP is blocked, and its molecular mechanism is discussed.


Assuntos
Infecções Bacterianas , Ativação do Complemento , Via Alternativa do Complemento , Humanos , Ativação do Complemento/fisiologia , Properdina/metabolismo , Infecções Bacterianas/metabolismo , Complemento C3b/metabolismo
2.
J Immunol ; 207(10): 2465-2472, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34635587

RESUMO

The complement system is an important part of innate immunity. Complement activation leads to formation of convertase enzymes, switch of their specificity from C3 to C5 cleavage, and generation of lytic membrane attack complexes (C5b-9) on surfaces of pathogens. Most C5 cleavage occurs via the complement alternative pathway (AP). The regulator properdin promotes generation and stabilization of AP convertases. However, its role in C5 activation is not yet understood. In this work, we showed that serum properdin is essential for LPS- and zymosan-induced C5b-9 generation and C5b-9-mediated lysis of rabbit erythrocytes. Furthermore, we demonstrated its essential role in C5 cleavage by AP convertases. To this end, we developed a hemolytic assay in which AP convertases were generated on rabbit erythrocytes by using properdin-depleted serum in the presence of C5 inhibitor (step 1), followed by washing and addition of purified C5-C9 components to allow C5b-9 formation (step 2). In this assay, addition of purified properdin to properdin-depleted serum during convertase formation (step 1) was required to restore C5 cleavage and C5b-9-mediated hemolysis. Importantly, C5 convertase activity was also fully restored when properdin was added together with C5b-9 components (step 2), thus after convertase formation. Moreover, with C3-depleted serum, not capable of forming new convertases but containing properdin, in step 2 of the assay, again full C5b-9 formation was observed and blocked by addition of properdin inhibitor Salp20. Thus, properdin is essential for the convertase specificity switch toward C5, and this function is independent of properdin's role in new convertase formation.


Assuntos
Ativação do Complemento/fisiologia , Convertases de Complemento C3-C5/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Via Alternativa do Complemento/fisiologia , Properdina/metabolismo , Animais , Coelhos
3.
Crit Care ; 27(1): 63, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797757

RESUMO

BACKGROUND: Sepsis is characterized by a dysregulated immune response to infection. The complement system plays an important role in the host defence to pathogens. However, exaggerated complement activation might contribute to a hyperinflammatory state. The interplay between complement activation and inflammation in relationship with adverse outcomes in sepsis patients is unclear. METHODS: Secondary analysis of complement factors in a prospective study in 209 hospitalized sepsis patients, of whom the majority presented with shock. Concentrations of complement factors C3, C3a, C3c, C5, C5a, and soluble terminal complement complex were assessed in ethylenediaminetetraacetic acid plasma samples collected within 24 h after sepsis diagnosis using enzyme-linked immunosorbent assays. RESULTS: The concentration of complement factors in plasma of severely ill sepsis patients indicated profound activation of the complement system (all P < 0.01 compared to healthy controls). Spearman rank correlation tests indicated consistent relationships between the different complement factors measured, but no significant correlations were observed between the complement factors and other inflammatory biomarkers such as leukocyte numbers, C-reactive protein and ferritin concentrations, or HLA-DR expression on monocytes. The concentration of complement factors was not associated with Sequential Organ Failure Assessment score, the incidence of septic shock, and mortality rates (all P > 0.05) in this cohort of patients with high disease severity. CONCLUSIONS: Once an infection progresses to severe sepsis or septic shock, the complement pathway is already profoundly activated and is no longer related to a dysregulated inflammatory response, nor to clinical outcome. This implies that in this patient category with severe disease, the complement system is activated to such an extent that it no longer has predictive value for clinical outcome.


Assuntos
Sepse , Choque Séptico , Humanos , Estudos Prospectivos , Ativação do Complemento/fisiologia , Inflamação , Gravidade do Paciente
4.
J Neurosci ; 41(8): 1830-1843, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33446516

RESUMO

Cognitive deficits following traumatic brain injury (TBI) remain a major cause of disability and early-onset dementia, and there is increasing evidence that chronic neuroinflammation occurring after TBI plays an important role in this process. However, little is known about the molecular mechanisms responsible for triggering and maintaining chronic inflammation after TBI. Here, we identify complement, and specifically complement-mediated microglial phagocytosis of synapses, as a pathophysiological link between acute insult and a chronic neurodegenerative response that is associated with cognitive decline. Three months after an initial insult, there is ongoing complement activation in the injured brain of male C57BL/6 mice, which drives a robust chronic neuroinflammatory response extending to both hemispheres. This chronic neuroinflammatory response promotes synaptic degeneration and predicts progressive cognitive decline. Synaptic degeneration was driven by microglial phagocytosis of complement-opsonized synapses in both the ipsilateral and contralateral brain, and complement inhibition interrupted the degenerative neuroinflammatory response and reversed cognitive decline, even when therapy was delayed until 2 months after TBI. These findings provide new insight into our understanding of TBI pathology and its management; and whereas previous therapeutic investigations have focused almost exclusively on acute treatments, we show that all phases of TBI, including at chronic time points after TBI, may be amenable to therapeutic interventions, and specifically to complement inhibition.SIGNIFICANCE STATEMENT There is increasing evidence of a chronic neuroinflammatory response after traumatic brain injury (TBI), but little is known about the molecular mechanisms responsible for triggering and maintaining chronic inflammation. We identify complement, and specifically complement-mediated microglial phagocytosis of synapses, as a pathophysiological link between acute insult and a chronic neurodegenerative response, and further that this response is associated with cognitive decline. Complement inhibition interrupted this response and reversed cognitive decline, even when therapy was delayed until 2 months after injury. The data further support the concept that TBI should be considered a chronic rather than an acute disease condition, and have implications for the management of TBI in the chronic phase of injury, specifically with regard to the therapeutic application of complement inhibition.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Disfunção Cognitiva/patologia , Ativação do Complemento/fisiologia , Sinapses/patologia , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/imunologia , Disfunção Cognitiva/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , Fagocitose/imunologia
5.
Ann Neurol ; 90(6): 976-982, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34569094

RESUMO

Myelin oligodendrocyte glycoprotein (MOG)-antibody (Ab)-associated diseases (MOGADs) account for a substantial proportion of pediatric and adult patients who present with acquired demyelinating disorders. Its pathogenesis and optimal therapy are incompletely understood. We profiled systemic complement activation in adult and pediatric patients with MOGAD compared with patients with relapse-onset multiple sclerosis, patients with neuromyelitis optica spectrum disorder, and pediatric control and adult healthy donors. Proteins indicative of systemic classical and alternative complement activation were substantially increased in patients with MOGAD compared to control groups. Elevated levels were detected in both adult and pediatric cases and across all clinical syndromes. Complement inhibition should be explored for its therapeutic merit in patients with MOGAD. ANN NEUROL 2021;90:976-982.


Assuntos
Autoanticorpos/imunologia , Ativação do Complemento/fisiologia , Doenças Desmielinizantes/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Exp Eye Res ; 218: 108982, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35183540

RESUMO

Age-related macular degeneration (AMD) has been associated with both complement activation and increased levels of circulating cytokines. Here, we sougth to investigate if cytokine-preexposure of retinal pigment epithelial (RPE) leads to increased complement activation and deposition of membrane attack complex (MAC). Primary human RPE and the ARPE19 cell line cultured in serum-free conditions were preexposed to 100 ng/ml interferon-gamma (IFNγ) and 20 ng/ml tumor necrosis factor-alpha (TNFα) for 48 h followed by exposure to diluted serum from healthy donors or complement factor B deficient (CFBd) serum for 70 min. Deposition of membrane attack complexes (MAC) was examined by use of a MAC-ELISA kit and by immunofluorescence. Eculizumab (anti-C5) was examined for its ability to prevent deposition of MAC on RPE cells exposed to serum. Lactatdehydrogenase (LDH) and thiazolyl blue tetrazolium bromide (MTT) assays were used to assess cellular metabolism and survival. MAC was deposited only on RPE preexposed to both IFNγ and TNFα. Lack of complement factor B or inhibition of C5 abrogated the MAC-deposition on RPE cells, while reconstitution of CFBd serum with CFB resulted in MAC-deposition. MAC-deposition resulted in RPE-release of LDH, but unaltered mitochondrial activity estimated by MTT. We conclude that preexposure of primary RPE and ARPE19 with inflammatory cytokines promoted alternative pathway activation of complement and deposition of MAC. This implies that circulating inflammatory mediators may increase susceptibility to local complement activation and MAC-deposition, which may represent an early event in the pathogenesis leading to AMD development.


Assuntos
Degeneração Macular , Fator de Necrose Tumoral alfa , Ativação do Complemento/fisiologia , Fator B do Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Humanos , Interferon gama/metabolismo , Interferon gama/farmacologia , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Pigmentos da Retina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
7.
Immunity ; 39(6): 1000-2, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24332028

RESUMO

Activation of the complement system has long been known to be regulated by a series of steps involving fluid-phase convertases. In this issue of Immunity, Liszewski et al. (2013) report the discovery of an intracellular cathepsin-L-dependent C3 activation pathway.


Assuntos
Subpopulações de Linfócitos B/citologia , Linfócitos T CD4-Positivos/imunologia , Catepsina L/metabolismo , Diferenciação Celular , Ativação do Complemento/fisiologia , Complemento C3/metabolismo , Homeostase/fisiologia , Humanos
8.
Immunity ; 39(6): 1143-57, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24315997

RESUMO

Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically active C3a and C3b. Resting T cells contained stores of endosomal and lysosomal C3 and CTSL and substantial amounts of CTSL-generated C3a. While "tonic" intracellular C3a generation was required for homeostatic T cell survival, shuttling of this intracellular C3-activation-system to the cell surface upon T cell stimulation induced autocrine proinflammatory cytokine production. Furthermore, T cells from patients with autoimmune arthritis demonstrated hyperactive intracellular complement activation and interferon-γ production and CTSL inhibition corrected this deregulated phenotype. Importantly, intracellular C3a was observed in all examined cell populations, suggesting that intracellular complement activation might be of broad physiological significance.


Assuntos
Subpopulações de Linfócitos B/citologia , Linfócitos T CD4-Positivos/imunologia , Catepsina L/metabolismo , Diferenciação Celular , Ativação do Complemento/fisiologia , Complemento C3/metabolismo , Homeostase/fisiologia , Adulto , Artrite Reumatoide/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular , Sobrevivência Celular/imunologia , Criança , Complemento C3/imunologia , Complemento C3a/metabolismo , Complemento C3b/metabolismo , Regulação da Expressão Gênica/imunologia , Humanos
9.
J Immunol ; 204(7): 1919-1928, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32094208

RESUMO

The complement system constitutes an important part of the innate immune system. The collectins and the ficolins are soluble pattern recognition molecules that contribute to complement activation via the lectin pathway. During previous experiments with ficolin-2 and ficolin-3, we have observed that the molecules may interact. We therefore hypothesized the existence of stable ficolin-2/-3 heterocomplexes. We could demonstrate ficolin-2/-3 heterocomplexes in normal human serum and plasma by ELISA using Abs specific for ficolin-2 and ficolin-3. The formation of heteromeric protein complexes were validated by coimmunoprecipitation and Western blot analysis. When recombinant ficolin-2 and recombinant ficolin-3 were mixed, no complexes were formed. However, when coexpressing ficolin-2 and ficolin-3 in Chinese hamster ovary cells, we could detect ficolin-2/-3 heterocomplexes in the supernatant. Furthermore, we measured concentration of the ficolin-2/-3 heterocomplexes in arbitrary units in 94 healthy individuals. We also established the relationship between the concentrations of ficolin-2, ficolin-3, and the ficolin-2/-3 heterocomplexes. We observed that the concentration of the ficolin-2/-3 heterocomplex correlated significantly with ficolin-2 (ρ: 0.24, p < 0.018) and ficolin-3 concentrations (ρ: 0.46, p < 0.0001). In conclusion, we describe a novel protein complex between ficolin-2 and ficolin-3 present in serum and plasma, which might be of additional biological relevance apart from the native ficolin-2 and ficolin-3 molecules.


Assuntos
Lectinas/sangue , Animais , Células CHO , Linhagem Celular , Colectinas/metabolismo , Ativação do Complemento/fisiologia , Lectina de Ligação a Manose da Via do Complemento/fisiologia , Proteínas do Sistema Complemento/metabolismo , Cricetulus , Humanos , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Camundongos , Ficolinas
10.
J Immunol ; 205(6): 1488-1495, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32699160

RESUMO

Coronavirus disease of 2019 (COVID-19) is a highly contagious respiratory infection that is caused by the severe acute respiratory syndrome coronavirus 2. Although most people are immunocompetent to the virus, a small group fail to mount an effective antiviral response and develop chronic infections that trigger hyperinflammation. This results in major complications, including acute respiratory distress syndrome, disseminated intravascular coagulation, and multiorgan failure, which all carry poor prognoses. Emerging evidence suggests that the complement system plays a key role in this inflammatory reaction. Indeed, patients with severe COVID-19 show prominent complement activation in their lung, skin, and sera, and those individuals who were treated with complement inhibitors all recovered with no adverse reactions. These and other studies hint at complement's therapeutic potential in these sequalae, and thus, to support drug development, in this review, we provide a summary of COVID-19 and review complement's role in COVID-19 acute respiratory distress syndrome and coagulopathy.


Assuntos
Transtornos da Coagulação Sanguínea/virologia , Ativação do Complemento/fisiologia , Infecções por Coronavirus/complicações , Pneumonia Viral/complicações , Síndrome do Desconforto Respiratório/virologia , Animais , Betacoronavirus/imunologia , Coagulação Sanguínea/efeitos dos fármacos , Transtornos da Coagulação Sanguínea/imunologia , COVID-19 , Ativação do Complemento/efeitos dos fármacos , Inativadores do Complemento/uso terapêutico , Proteínas do Sistema Complemento/efeitos dos fármacos , Infecções por Coronavirus/sangue , Infecções por Coronavirus/imunologia , Humanos , Inflamação/imunologia , Inflamação/virologia , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/imunologia , SARS-CoV-2
11.
Brain ; 144(8): 2401-2415, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-33711152

RESUMO

Aquaporin 4 (AQP4)-IgG-positive neuromyelitis optica spectrum disorder (AQP4-IgG+NMOSD) is an autoimmune astrocytopathic disease pathologically characterized by the massive destruction and regeneration of astrocytes with diverse types of tissue injury with or without complement deposition. However, it is unknown whether this diversity is derived from differences in pathological processes or temporal changes. Furthermore, unlike for the demyelinating lesions in multiple sclerosis, there has been no staging of astrocytopathy in AQP4-IgG+NMOSD based on astrocyte morphology. Therefore, we classified astrocytopathy of the disease by comparing the characteristic features, such as AQP4 loss, inflammatory cell infiltration, complement deposition and demyelination activity, with the clinical phase. We performed histopathological analyses in eight autopsied cases of AQP4-IgG+NMOSD. Cases comprised six females and two males, with a median age of 56.5 years (range, 46-71 years) and a median disease duration of 62.5 months (range, 0.6-252 months). Astrocytopathy in AQP4-IgG+NMOSD was classified into the following four stages defined by the astrocyte morphology and immunoreactivity for GFAP: (i) astrocyte lysis: extensive loss of astrocytes with fragmented and/or dust-like particles; (ii) progenitor recruitment: loss of astrocytes except small nucleated cells with GFAP-positive fibre-forming foot processes; (iii) protoplasmic gliosis: presence of star-shaped astrocytes with abundant GFAP-reactive cytoplasm; and (iv) fibrous gliosis: lesions composed of densely packed mature astrocytes. The astrocyte lysis and progenitor recruitment stages dominated in clinically acute cases (within 2 months after the last recurrence). Findings common to both stages were the loss of AQP4, a decreased number of oligodendrocytes, the selective loss of myelin-associated glycoprotein and active demyelination with phagocytic macrophages. The infiltration of polymorphonuclear cells and T cells (CD4-dominant) and the deposition of activated complement (C9neo), which reflects the membrane attack complex, a hallmark of acute NMOSD lesions, were selectively observed in the astrocyte lysis stage (98.4% in astrocyte lysis, 1.6% in progenitor recruitment, and 0% in protoplasmic gliosis and fibrous gliosis). Although most of the protoplasmic gliosis and fibrous gliosis lesions were accompanied by inactive demyelinated lesions with a low amount of inflammatory cell infiltration, the deposition of complement degradation product (C3d) was observed in all four stages, even in fibrous gliosis lesions, suggesting the past or chronic occurrence of complement activation, which is a useful finding to distinguish chronic lesions in NMOSD from those in multiple sclerosis. Our staging of astrocytopathy is expected to be useful for understanding the unique temporal pathology of AQP4-IgG+NMOSD.


Assuntos
Astrócitos/patologia , Encéfalo/patologia , Ativação do Complemento/fisiologia , Neuromielite Óptica/patologia , Idoso , Aquaporina 4/imunologia , Astrócitos/imunologia , Autoanticorpos , Encéfalo/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuromielite Óptica/imunologia
12.
Ophthalmologica ; 245(3): 258-264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34034256

RESUMO

PURPOSE: The aim of this study was to investigate the influence of dietary supplementation using Age-Related Eye Disease Study 2 (AREDS2) on complement activation in patients with neovascular age-related macular degeneration (nAMD) under ongoing treatment. METHODS: In this prospective, single-center, controlled, open-label investigator-initiated trial, eligible nAMD patients were randomized at a ratio of 1:1 in 2 groups: those with and without dietary AREDS2 supplementation for 4 weeks. Zinc, plasma, and aqueous humor (AH) complement levels were quantified via enzyme-linked immunosorbent assays. RESULTS: Fifty of 62 enrolled patients completed the trial (AREDS2 n = 27, controls n = 23). Systemic zinc and complement levels were not different at baseline between the 2 groups (p > 0.1). At the final visit, systemic zinc levels were significantly higher in the AREDS2 group (10.16 ± 2.08 µmol/L; 8.66 ± 1.17 µmol/L; p = 0.007), whereas systemic and AH complement levels were not different (p > 0.1). In both groups, no significant change was observed in systemic levels of C3, C3a, FH, FI, and sC5b-9 (p > 0.1). Only systemic complement component Ba showed an increase from baseline to the end visit (p = 0.01). This increase was higher in the control group (p = 0.02) than in the AREDS2 group (p = 0.23). CONCLUSIONS: Short-term dietary AREDS2 supplementation leads to a significant increase in systemic zinc levels without any influence on complement activation levels.


Assuntos
Degeneração Macular , Degeneração Macular Exsudativa , Ativação do Complemento/fisiologia , Suplementos Nutricionais , Humanos , Degeneração Macular/diagnóstico , Degeneração Macular/tratamento farmacológico , Estudos Prospectivos , Degeneração Macular Exsudativa/diagnóstico , Degeneração Macular Exsudativa/tratamento farmacológico , Zinco
13.
J Am Soc Nephrol ; 32(2): 479-494, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33239394

RESUMO

BACKGROUND: Binding of donor-specific antibodies (DSAs) to kidney allograft endothelial cells that does not activate the classic complement cascade can trigger the recruitment of innate immune effectors, including NK cells. Activated NK cells contribute to microvascular inflammation leading to chronic antibody-mediated rejection (AMR). Recipient NK cells can also trigger antibody-independent microvascular inflammation by sensing the absence of self HLA class I molecules ("missing self") on allograft endothelial cells. This translational study investigated whether the condition of missing self amplifies DSA-dependent NK cell activation to worsen chronic AMR. METHODS AND RESULTS: Among 1682 kidney transplant recipients who underwent an allograft biopsy at Lyon University Hospital between 2004 and 2017, 135 fulfilled the diagnostic criteria for AMR and were enrolled in the study. Patients with complement-fixing DSAs identified by a positive C3d binding assay (n=73, 54%) had a higher risk of transplant failure (P=0.002). Among the remaining patients with complement-independent chronic AMR (n=62, 46%), those in whom missing self was identified through donor and recipient genotyping exhibited worse allograft survival (P=0.02). In multivariable analysis, only proteinuria (HR: 7.24; P=0.01) and the presence of missing self (HR: 3.57; P=0.04) were independent predictors for transplant failure following diagnosis of chronic AMR. Cocultures of human NK cells and endothelial cells confirmed that addition of missing self to DSA-induced NK cell activation increased endothelial damage. CONCLUSIONS: The assessment of missing self at the time of diagnosis of chronic AMR identifies patients at higher risk for kidney transplant failure.


Assuntos
Aloenxertos/patologia , Ativação do Complemento/fisiologia , Rejeição de Enxerto/etiologia , Antígenos de Histocompatibilidade Classe I/sangue , Transplante de Rim/efeitos adversos , Células Matadoras Naturais/fisiologia , Adulto , Aloenxertos/imunologia , Técnicas de Cultura de Células , Complemento C3d/metabolismo , Células Endoteliais/fisiologia , Feminino , Rejeição de Enxerto/sangue , Rejeição de Enxerto/patologia , Sobrevivência de Enxerto , Humanos , Células Matadoras Naturais/patologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
J Cell Physiol ; 236(7): 5012-5021, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33400289

RESUMO

Uromodulin (Umod) is the most abundant constituent of urine in humans and exclusively found in the kidney tubular epithelium. However, the specific role of Umod in renal tubulointerstitial injury is yet to be understood. The present study was conducted with aim of investigating the potential therapeutic mechanism of Umod in the regulation of renal tubulointerstitial injury. Protein expression of Umod in renal tubular epithelial cells was measured with the conduction of Western blot analysis. Enzyme-linked immunosorbent assay and immunofluorescence assay were performed to detect the complement activation products and the activation products of surface deposition. The expression of C1q, C2, C4, B factor, C3, C5, H factor, CD46, CD55, C3aR, and C5aR were determined with the use of reverse-transcription quantitative polymerase chain reaction and Western blot analyses. Subsequently, the unilateral ureteral obstruction (UUO) rat model was established. Renal tubulointerstitial injury was assessed with the application of hematoxylin-eosin staining and Masson staining in rats. UUO rats and normal rats were injected with si-NC or si-Umod and complement inhibitor. UUO rats were observed to have serious impairment of kidney tubule, renal tubular dilation, and epithelial atrophy, with downregulated Umod and activated complement pathway. Silencing of Umod resulted in the activation of complement system while promoting interstitial fibrosis in renal tubules. Moreover, addition of complement inhibitor significantly alleviated the renal tubule injury and fibrosis. Collectively, our study suggests that silencing of Umod mediates the complement pathway, exacerbating renal tubulointerstitial injury in rats, which provides insight into the development of novel therapeutic agents for renal tubulointerstitial injury.


Assuntos
Ativação do Complemento/fisiologia , Proteínas do Sistema Complemento/metabolismo , Túbulos Renais/patologia , Obstrução Ureteral/patologia , Uromodulina/metabolismo , Animais , Linhagem Celular , Humanos , Túbulos Renais/lesões , Masculino , Nefrite Intersticial/patologia , Ratos , Ratos Sprague-Dawley , Uromodulina/genética
15.
PLoS Pathog ; 15(12): e1008232, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31860690

RESUMO

Ecotin is a serine protease inhibitor produced by hundreds of microbial species, including pathogens. Here we show, that ecotin orthologs from Escherichia coli, Yersinia pestis, Pseudomonas aeruginosa and Leishmania major are potent inhibitors of MASP-1 and MASP-2, the two key activator proteases of the complement lectin pathway. Factor D is the key activator protease of another complement activation route, the alternative pathway. We show that ecotin inhibits MASP-3, which is the sole factor D activator in resting human blood. In pathway-specific ELISA tests, we found that all ecotin orthologs are potent lectin pathway inhibitors, and at high concentration, they block the alternative pathway as well. In flow cytometry experiments, we compared the extent of complement-mediated opsonization and lysis of wild-type and ecotin-knockout variants of two E. coli strains carrying different surface lipopolysaccharides. We show, that endogenous ecotin provides significant protections against these microbicidal activities for both bacteria. By using pathway specific complement inhibitors, we detected classical-, lectin- and alternative pathway-driven complement attack from normal serum, with the relative contributions of the activation routes depending on the lipopolysaccharide type. Moreover, in cell proliferation experiments we observed an additional, complement-unrelated antimicrobial activity exerted by heat-inactivated serum. While ecotin-knockout cells are highly vulnerable to these activities, endogenous ecotin of wild-type bacteria provides complete protection against the lectin pathway-related and the complement-unrelated attack, and partial protection against the alternative pathway-related damage. In all, ecotin emerges as a potent, versatile self-defense tool that blocks multiple antimicrobial activities of the serum. These findings suggest that ecotin might be a relevant antimicrobial drug target.


Assuntos
Lectina de Ligação a Manose da Via do Complemento/fisiologia , Proteínas do Sistema Complemento/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Periplásmicas/metabolismo , Serina Proteases/sangue , Ativação do Complemento/fisiologia , Escherichia coli/metabolismo , Humanos , Pseudomonas aeruginosa/metabolismo , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/metabolismo , Yersinia pestis/metabolismo
16.
Am J Pathol ; 190(6): 1138-1150, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32194049

RESUMO

The complement membrane attack complex (MAC) is classically known as a cytolytic effector of innate and adaptive immunity that forms pores in the plasma membrane of pathogens or targeted cells, leading to osmolysis. Nucleated cells resist MAC-mediated cytolysis by expression of inhibitors that block MAC assembly or by rapid removal of MAC through endocytosis or shedding. In the absence of lysis, MAC may induce intracellular signaling and cell activation, responses implicated in a variety of autoimmune, inflammatory, and transplant disease settings. New discoveries into the structure and biophysical properties of MAC revealed heterogeneous MAC precursors and conformations that provide insights into MAC function. In addition, new mechanisms of MAC-mediated signaling and its contribution to disease pathogenesis have recently come to light. MAC-activated cells have been found to express proinflammatory proteins-often through NF-κB-dependent transcription, assemble inflammasomes, enabling processing, and facilitate secretion of IL-1ß and IL-18, as well as other signaling pathways. These recent insights into the mechanisms of action of MAC provide an updated framework to therapeutic approaches that can target MAC assembly, signaling, and proinflammatory effects in various complement-mediated diseases.


Assuntos
Imunidade Adaptativa/fisiologia , Ativação do Complemento/fisiologia , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Imunidade Inata/fisiologia , Animais , Humanos , Interleucinas/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia
17.
J Autoimmun ; 116: 102560, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139116

RESUMO

BACKGROUND: Animal models and few clinical reports suggest the involvement of the complement system in the onset of severe manifestations of coronavirus disease-2019 (COVID-19). However, complement contribution to endotheliopathy and hypercoagulability has not been elucidated yet. OBJECTIVE: To evaluate the association among complement activation, endothelial damage and disease severity or activity in COVID-19 patients. METHODS: In this single-centre cohort study, 148 patients with COVID-19 of different severity were evaluated upon hospital admission and 30 days later. Markers of complement activation (SC5b-9 and C5a) and endothelial perturbation (von Willebrand factor [vWF], tissue-type plasminogen activator [t-PA], plasminogen activator inhibitor-1 [PAI-1], soluble thrombomodulin [sTM], and soluble endothelial selectin [sE-selectin]) were measured in plasma. RESULTS: The patients had high plasma levels of SC5b-9 and C5a (p = 0.0001 for both) and vWF, t-PA and PAI-1 (p = 0.0001 for all). Their SC5b-9 levels correlated with those of vWF (r = 0.517, p = 0.0001) and paralleled disease severity (severe vs mild p = 0.0001, severe vs moderate p = 0.026 and moderate vs mild p = 0.001). The levels of sE-selectin were significantly increased only in the patients with severe disease. After 30 days, plasma SC5b-9, C5a and vWF levels had significantly decreased (p = 0.0001 for all), and 43% of the evaluated patients had normal levels. CONCLUSIONS: Complement activation is boosted during the progression of COVID-19 and dampened during remission, thus indicating its role in the pathophysiology of the disease. The association between complement activation and the biomarkers of endothelial damage suggests that complement may contribute to tissue injury and could be the target of specific therapy.


Assuntos
Biomarcadores/sangue , COVID-19/sangue , Ativação do Complemento/fisiologia , Endotélio Vascular/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2
18.
Exp Eye Res ; 204: 108460, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33493474

RESUMO

INTRODUCTION: We recently performed a combined analysis of publicly available proteomic studies of aqueous humor (AH) of patients with primary open angle glaucoma (POAG). This analysis revealed changes in complement protein concentrations in the AH of progressive POAG patients, which suggested that the complement system may play a role in POAG progression. As the proteomic studies could not provide information on the activity of the complement system, we addressed this question in the current study. METHODS: Blood serum and AH were obtained from 30 patients: 10 progressive POAG, 10 stable POAG and, as controls, 10 cataract patients. Glaucoma patients with a visual field Mean Deviation (MD) change of at least 1.0 dB/year were considered progressive; a MD change of less than 0.5 dB/year was considered stable. The ratio between the levels of complement factors C3a and C3 was used as indicator for activation of the complement cascade. The factors were measured with commercially available ELISA kits. RESULTS: AH levels of complement factors C3 and C3a did not significantly differ between groups. In serum, complement factor C3 did not differ between groups whereas C3a was significantly elevated in progressive POAG patients compared to controls (p < 0.05). The resulting complement C3a/C3 ratio was significantly higher in progressive POAG patients in both AH (p < 0.05) and serum (p < 0.01), and this ratio significantly correlated between the two body fluids (p < 0.001). Furthermore, there was a strong correlation between disease progression and C3a/C3 activation ratio both in AH (p < 0.01) and in serum (p < 0.001). The higher the complement C3a/C3 ratio, the faster the disease progression. CONCLUSION: Significant increases in AH and serum complement C3a/C3 ratios were observed in progressive POAG patients but not in stable POAG patients. Furthermore, the complement C3a/C3 ratio correlated strongly with the rate of disease progression in both AH and serum. These findings suggest that activation of the complement system plays a role in glaucoma progression and that progressive glaucoma patients may have systemic changes in complement activation.


Assuntos
Humor Aquoso/metabolismo , Biomarcadores/metabolismo , Complemento C3/metabolismo , Complemento C3a/metabolismo , Glaucoma de Ângulo Aberto/sangue , Fatores Imunológicos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Ativação do Complemento/fisiologia , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Feminino , Glaucoma de Ângulo Aberto/diagnóstico , Humanos , Pressão Intraocular/fisiologia , Masculino , Tonometria Ocular
19.
Exp Eye Res ; 204: 108471, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33516764

RESUMO

PURPOSE: Complement activation is associated with choroidal neovascularization (CNV) in age-related macular degeneration (AMD). Fibroblast growth factor 2 (FGF2) and membrane attack complex (MAC) are present in eyes of patients with CNV. Herein, we investigated the effect of complement activation on FGF2 release in human retinal pigment epithelial (RPE) cells. METHODS: Cultured human RPE cells were primed with an anti-RPE antibody and then treated with C1q-depleted human serum in the presence or absence of Tec kinases inhibitor (LFM-A13). 38 cytokines/chemokines levels were measured by Luminex technology. Secretion of FGF2 and interleukin (IL)-6 was assessed by ELISA. Tec protein was measured by Western blot. mRNA expression of FGF2, chemokine (C-X-C motif) ligand 1 (CXCL-1), and family members of Tec kinases was evaluated by qPCR. Cell viability and MAC deposition were determined by WST-1 assay and flow cytometry, respectively. RESULTS: Complement activation caused increased FGF2 and IL-6 release. FGF2 was released when C6-depleted human serum was reconstituted with C6. Anti-C5 antibody significantly attenuated complement-mediated FGF2 release, but not IL-6. FGF2 mRNA levels were not affected, while CXCL-1 mRNA levels were increased by complement activation. FGF2-containing extracellular vesicles were detected in response to complement challenge. Tec mRNA and protein were expressed in RPE cells. In the presence of LFM-A13, secretion of FGF2, but not IL-6, and MAC deposition were significantly decreased and cell viability was significantly increased in complement-treated cells when compared to controls. CONCLUSIONS: Complement plays an important role to release FGF2 from RPE cells. Tec kinase is involved in MAC formation and complement-mediated FGF2 release. This information suggests a role for complement activation to mediate neovascularization in conditions such as AMD, and may elucidate potential therapeutic targets.


Assuntos
Ativação do Complemento/fisiologia , Proteínas do Sistema Complemento/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Western Blotting , Células Cultivadas , Neovascularização de Coroide/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Citometria de Fluxo , Humanos , Interleucina-6/metabolismo , Degeneração Macular/metabolismo , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
20.
Mol Psychiatry ; 25(1): 206-229, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31570775

RESUMO

Increased expression of the 3.1 isoform of the KCNH2 potassium channel has been associated with cognitive dysfunction and with schizophrenia, yet little is known about the underlying pathophysiological mechanisms. Here, by using in vivo wireless local field potential recordings during working memory processing, in vitro brain slice whole-cell patching recordings and in vivo stereotaxic hippocampal injection of AAV-encoded expression, we identified specific and delayed disruption of hippocampal-mPFC synaptic transmission and functional connectivity associated with reductions of SERPING1, CFH, and CD74 in the KCNH2-3.1 overexpression transgenic mice. The differentially expressed genes in mice are enriched in neurons and microglia, and reduced expression of these genes dysregulates the complement cascade, which has been previously linked to synaptic plasticity. We find that knockdown of these genes in primary neuronal-microglial cocultures from KCNH2-3.1 mice impairs synapse formation, and replenishing reduced CFH gene expression rescues KCNH2-3.1-induced impaired synaptogenesis. Translating to humans, we find analogous dysfunctional interactions between hippocampus and prefrontal cortex in coupling of the fMRI blood oxygen level-dependent (BOLD) signal during working memory in healthy subjects carrying alleles associated with increased KCNH2-3.1 expression in brain. Our data uncover a previously unrecognized role of the truncated KCNH2-3.1 potassium channel in mediating complement activation, which may explain its association with altered hippocampal-prefrontal connectivity and synaptic function. These results provide a potential molecular link between increased KCNH2-3.1 expression, synapse alterations, and hippocampal-prefrontal circuit abnormalities implicated in schizophrenia.


Assuntos
Ativação do Complemento/fisiologia , Canal de Potássio ERG1/metabolismo , Memória de Curto Prazo/fisiologia , Animais , Encéfalo/metabolismo , Disfunção Cognitiva/genética , Ativação do Complemento/imunologia , Canal de Potássio ERG1/genética , Feminino , Hipocampo/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transmissão Sináptica/fisiologia , Lobo Temporal/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa