Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34.147
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Trends Genet ; 38(10): 996-998, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35641343

RESUMO

MRI-based gene reporters allow imaging of gene expression at depth (tens of centimetres) and at relatively high resolution (~10-100 µm) and have the potential to be translated to the clinic. The reporters exploit either endogenous contrast mechanisms or they modulate the response to an introduced exogenous contrast agent.


Assuntos
Genes Reporter , Imageamento por Ressonância Magnética , Genes Reporter/genética , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos
2.
Neuroimage ; 291: 120571, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518829

RESUMO

DCE-MRI provides information about vascular permeability and tissue perfusion through the acquisition of pharmacokinetic parameters. However, traditional methods for estimating these pharmacokinetic parameters involve fitting tracer kinetic models, which often suffer from computational complexity and low accuracy due to noisy arterial input function (AIF) measurements. Although some deep learning approaches have been proposed to tackle these challenges, most existing methods rely on supervised learning that requires paired input DCE-MRI and labeled pharmacokinetic parameter maps. This dependency on labeled data introduces significant time and resource constraints and potential noise in the labels, making supervised learning methods often impractical. To address these limitations, we present a novel unpaired deep learning method for estimating pharmacokinetic parameters and the AIF using a physics-driven CycleGAN approach. Our proposed CycleGAN framework is designed based on the underlying physics model, resulting in a simpler architecture with a single generator and discriminator pair. Crucially, our experimental results indicate that our method does not necessitate separate AIF measurements and produces more reliable pharmacokinetic parameters than other techniques.


Assuntos
Meios de Contraste , Aprendizado Profundo , Humanos , Meios de Contraste/farmacocinética , Simulação por Computador , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Reprodutibilidade dos Testes
3.
Radiology ; 312(1): e232304, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39012249

RESUMO

Background The level of background parenchymal enhancement (BPE) at breast MRI provides predictive and prognostic information and can have diagnostic implications. However, there is a lack of standardization regarding BPE assessment. Purpose To investigate how well results of quantitative BPE assessment methods correlate among themselves and with assessments made by radiologists experienced in breast MRI. Materials and Methods In this pseudoprospective analysis of 5773 breast MRI examinations from 3207 patients (mean age, 60 years ± 10 [SD]), the level of BPE was prospectively categorized according to the Breast Imaging Reporting and Data System by radiologists experienced in breast MRI. For automated extraction of BPE, fibroglandular tissue (FGT) was segmented in an automated pipeline. Four different published methods for automated quantitative BPE extractions were used: two methods (A and B) based on enhancement intensity and two methods (C and D) based on the volume of enhanced FGT. The results from all methods were correlated, and agreement was investigated in comparison with the respective radiologist-based categorization. For surrogate validation of BPE assessment, how accurately the methods distinguished premenopausal women with (n = 50) versus without (n = 896) antihormonal treatment was determined. Results Intensity-based methods (A and B) exhibited a correlation with radiologist-based categorization of 0.56 ± 0.01 and 0.55 ± 0.01, respectively, and volume-based methods (C and D) had a correlation of 0.52 ± 0.01 and 0.50 ± 0.01 (P < .001). There were notable correlation differences (P < .001) between the BPE determined with the four methods. Among the four quantitation methods, method D offered the highest accuracy for distinguishing women with versus without antihormonal therapy (P = .01). Conclusion Results of different methods for quantitative BPE assessment agree only moderately among themselves or with visual categories reported by experienced radiologists; intensity-based methods correlate more closely with radiologists' ratings than volume-based methods. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Mann in this issue.


Assuntos
Neoplasias da Mama , Mama , Imageamento por Ressonância Magnética , Humanos , Feminino , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Adulto , Estudos Prospectivos , Aumento da Imagem/métodos , Idoso , Reprodutibilidade dos Testes , Estudos Retrospectivos
4.
Magn Reson Med ; 92(4): 1484-1495, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38725423

RESUMO

PURPOSE: To develop and evaluate a phase unwrapping method for cine phase contrast MRI based on graph cuts. METHODS: A proposed Iterative Graph Cuts method was evaluated in 10 cardiac patients with two-dimensional flow quantification which was repeated at low venc settings to provoke wrapping. The images were also unwrapped by a path-following method (ROMEO), and a Laplacian-based method (LP). Net flow was quantified using semi-automatic vessel segmentation. High venc images were also wrapped retrospectively to asses the residual amount of wrapped voxels. RESULTS: The absolute net flow error after unwrapping at venc = 100 cm/s was 1.8 mL, which was 0.83 mL smaller than for LP. The repeatability error at high venc without unwrapping was 2.5 mL. The error at venc = 50 cm/s was 7.5 mL, which was 8.2 mL smaller than for ROMEO and 5.7 mL smaller than for LP. For retrospectively wrapped images with synthetic venc of 100/50/25 cm/s, the residual amount of wrapped voxels was 0.00/0.12/0.79%, which was 0.09/0.26/8.0 percentage points smaller than for LP. With synthetic venc of 25 cm/s, omitting magnitude information resulted in 3.2 percentage points more wrapped voxels, and only spatial/temporal unwrapping resulted in 4.6/21 percentage points more wrapped voxels compared to spatiotemporal unwrapping. CONCLUSION: Iterative Graph Cuts enables unwrapping of cine phase contrast MRI with very small errors, except for at extreme blood velocities, with equal or better performance compared to ROMEO and LP. The use of magnitude information and spatiotemporal unwrapping is recommended.


Assuntos
Algoritmos , Imagem Cinética por Ressonância Magnética , Humanos , Imagem Cinética por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Feminino , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Estudos Retrospectivos , Pessoa de Meia-Idade
5.
Magn Reson Med ; 92(1): 269-288, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38520259

RESUMO

PURPOSE: To determine whether the spatial scale and magnetic susceptibility of microstructure can be evaluated robustly from the decay of gradient-echo and spin-echo signals. THEORY AND METHODS: Gradient-echo and spin-echo images were acquired from suspensions of spherical polystyrene microbeads of 10, 20, and 40 µm nominal diameter. The sizes of the beads and their magnetic susceptibility relative to the medium were estimated from the signal decay curves, using a lookup table generated from Monte Carlo simulations and an analytic model based on the Gaussian phase approximation. RESULTS: Fitting Monte Carlo predictions to spin-echo data yielded acceptable estimates of microstructural parameters for the 20 and 40 µm microbeads. Using gradient-echo data, the Monte Carlo lookup table provided satisfactory parameter estimates for the 20 µm beads but unstable results for the diameter of the largest beads. Neither spin-echo nor gradient-echo data allowed accurate parameter estimation for the smallest beads. The analytic model performed poorly over all bead sizes. CONCLUSIONS: Microstructural sources of magnetic susceptibility produce distinctive non-exponential signatures in the decay of gradient-echo and spin-echo signals. However, inverting the problem to extract microstructural parameters from the signals is nontrivial and, in certain regimes, ill-conditioned. For microstructure with small characteristic length scales, parameter estimation is hampered by the difficulty of acquiring accurate data at very short echo times. For microstructure with large characteristic lengths, the gradient-echo signal approaches the static-dephasing regime, where it becomes insensitive to size. Applicability of the analytic model was further limited by failure of the Gaussian phase approximation for all but the smallest beads.


Assuntos
Algoritmos , Imagem Ecoplanar/métodos , Reprodutibilidade dos Testes , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Sensibilidade e Especificidade , Aumento da Imagem/métodos , Método de Monte Carlo , Simulação por Computador
6.
Magn Reson Med ; 91(6): 2391-2402, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38317286

RESUMO

PURPOSE: Clinical scanners require pulsed CEST sequences to maintain amplifier and specific absorption rate limits. During off-resonant RF irradiation and interpulse delay, the magnetization can accumulate specific relative phases within the pulse train. In this work, we show that these phases are important to consider, as they can lead to unexpected artifacts when no interpulse gradient spoiling is performed during the saturation train. METHODS: We investigated sideband artifacts using a CEST-3D snapshot gradient-echo sequence at 3 T. Initially, Bloch-McConnell simulations were carried out with Pulseq-CEST, while measurements were performed in vitro and in vivo. RESULTS: Sidebands can be hidden in Z-spectra, and their structure becomes clearly visible only at high sampling. Sidebands are further influenced by B0 inhomogeneities and the RF phase cycling within the pulse train. In vivo, sidebands are mostly visible in liquid compartments such as CSF. Multi-pulse sidebands can be suppressed by interpulse gradient spoiling. CONCLUSION: We provide new insights into sidebands occurring in pulsed CEST experiments and show that, similar as in imaging sequences, gradient and RF spoiling play an important role. Gradient spoiling avoids misinterpretations of sidebands as CEST effects especially in liquid environments including pathological tissue or for CEST resonances close to water. It is recommended to simulate pulsed CEST sequences in advance to avoid artifacts.


Assuntos
Aumento da Imagem , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Aumento da Imagem/métodos , Concentração de Íons de Hidrogênio , Interpretação de Imagem Assistida por Computador/métodos
7.
Magn Reson Med ; 92(3): 1277-1289, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38469893

RESUMO

PURPOSE: Ultrahigh field (≥7 T) MRI is at the cutting edge of medical imaging, enabling enhanced spatial and spectral resolution as well as enhanced susceptibility contrast. However, transmit ( B 1 + $$ {\mathrm{B}}_1^{+} $$ ) field inhomogeneity due to standing wave effects caused by the shortened RF wavelengths at 7 T is still a challenge to overcome. Novel hardware methods such as dielectric pads have been shown to improve the B 1 + $$ {\mathrm{B}}_1^{+} $$ field inhomogeneity but are currently limited in their corrective effect by the range of high-permittivity materials available and have a fixed shelf life. In this work, an optimized metasurface design is presented that demonstrates in vivo enhancement of the B 1 + $$ {\mathrm{B}}_1^{+} $$ field. METHODS: A prototype metasurface was optimized by an empirical capacitor sweep and by varying the period size. Phantom temperature experiments were performed to evaluate potential metasurface heating effects during scanning. Lastly, in vivo gradient echo images and B 1 + $$ {\mathrm{B}}_1^{+} $$ maps were acquired on five healthy subjects on a 7 T system. Dielectric pads were also used as a comparison throughout the work as a standard comparison. RESULTS: The metasurfaces presented here enhanced the average relative SNR of the gradient echo images by a factor of 2.26 compared to the dielectric pads factor of 1.61. Average B 1 + $$ {\mathrm{B}}_1^{+} $$ values reflected a similar enhancement of 27.6% with the metasurfaces present versus 8.9% with the dielectric pads. CONCLUSION: The results demonstrate that metasurfaces provide superior performance to dielectric padding as shown by B 1 + $$ {\mathrm{B}}_1^{+} $$ maps reflecting their direct effects and resulting enhancements in image SNR at 7 T.


Assuntos
Desenho de Equipamento , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Imageamento por Ressonância Magnética/instrumentação , Humanos , Perna (Membro)/diagnóstico por imagem , Adulto , Aumento da Imagem/métodos , Feminino , Masculino , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Razão Sinal-Ruído
8.
Magn Reson Med ; 92(4): 1600-1616, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38725131

RESUMO

PURPOSE: For effective optimization of MR fingerprinting (MRF) pulse sequences, estimating and minimizing errors from actual scan conditions are crucial. Although virtual-scan simulations offer an approximation to these errors, their computational demands become expensive for high-dimensional MRF frameworks, where interactions between more than two tissue properties are considered. This complexity makes sequence optimization impractical. We introduce a new mathematical model, the systematic error index (SEI), to address the scalability challenges for high-dimensional MRF sequence design. METHODS: By eliminating the need to perform dictionary matching, the SEI model approximates quantification errors with low computational costs. The SEI model was validated in comparison with virtual-scan simulations. The SEI model was further applied to optimize three high-dimensional MRF sequences that quantify two to four tissue properties. The optimized scans were examined in simulations and healthy subjects. RESULTS: The proposed SEI model closely approximated the virtual-scan simulation outcomes while achieving hundred- to thousand-times acceleration in the computational speed. In both simulation and in vivo experiments, the optimized MRF sequences yield higher measurement accuracy with fewer undersampling artifacts at shorter scan times than the heuristically designed sequences. CONCLUSION: We developed an efficient method for estimating real-world errors in MRF scans with high computational efficiency. Our results illustrate that the SEI model could approximate errors both qualitatively and quantitatively. We also proved the practicality of the SEI model of optimizing sequences for high-dimensional MRF frameworks with manageable computational power. The optimized high-dimensional MRF scans exhibited enhanced robustness against undersampling and system imperfections with faster scan times.


Assuntos
Algoritmos , Encéfalo , Simulação por Computador , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Interpretação de Imagem Assistida por Computador/métodos , Aumento da Imagem/métodos , Processamento de Sinais Assistido por Computador
9.
Magn Reson Med ; 92(4): 1421-1439, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38726884

RESUMO

PURPOSE: To develop a novel low-rank tensor reconstruction approach leveraging the complete acquired data set to improve precision and repeatability of multiparametric mapping within the cardiovascular MR Multitasking framework. METHODS: A novel approach that alternated between estimation of temporal components and spatial components using the entire data set acquired (i.e., including navigator data and imaging data) was developed to improve reconstruction. The precision and repeatability of the proposed approach were evaluated on numerical simulations, 10 healthy subjects, and 10 cardiomyopathy patients at multiple scan times for 2D myocardial T1/T2 mapping with MR Multitasking and were compared with those of the previous navigator-derived fixed-basis approach. RESULTS: In numerical simulations, the proposed approach outperformed the previous fixed-basis approach with lower T1 and T2 error against the ground truth at all scan times studied and showed better motion fidelity. In human subjects, the proposed approach showed no significantly different sharpness or T1/T2 measurement and significantly improved T1 precision by 20%-25%, T2 precision by 10%-15%, T1 repeatability by about 30%, and T2 repeatability by 25%-35% at 90-s and 50-s scan times The proposed approach at the 50-s scan time also showed comparable results with that of the previous fixed-basis approach at the 90-s scan time. CONCLUSION: The proposed approach improved precision and repeatability for quantitative imaging with MR Multitasking while maintaining comparable motion fidelity, T1/T2 measurement, and septum sharpness and had the potential for further reducing scan time from 90 s to 50 s.


Assuntos
Algoritmos , Humanos , Reprodutibilidade dos Testes , Masculino , Feminino , Interpretação de Imagem Assistida por Computador/métodos , Adulto , Aumento da Imagem/métodos , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Processamento de Imagem Assistida por Computador/métodos , Cardiomiopatias/diagnóstico por imagem , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Coração/diagnóstico por imagem
10.
Magn Reson Med ; 92(1): 82-97, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308081

RESUMO

PURPOSE: To develop a method for dynamic ∆ B 0 $$ \Delta {B}_0 $$ mapping and distortion correction. METHODS: A blip-rewound EPI trajectory was developed to acquire multiple 2D EPI images in a single readout with an interleaved order, which allows a short TE difference. A joint multi-echo reconstruction was utilized to exploit the shared information between EPI images. The reconstructed images from each readout are combined to produce a final magnitude image. A ∆ B 0 $$ \Delta {B}_0 $$ map is calculated from the phase of these images for distortion correction. The efficacy of the proposed method is assessed with phantom and in vivo experiments. The performance of the proposed method in the presence of subject motion is also investigated. RESULTS: Compared to conventional multi-echo EPI, the proposed method allows dynamic ∆ B 0 $$ \Delta {B}_0 $$ mapping at matched resolution with a much shorter TR. Phantom and in vivo results show that the proposed method can provide a comparable magnitude image as conventional single-shot EPI. The ∆ B 0 $$ \Delta {B}_0 $$ maps calculated from the proposed method are consistent with conventional multi-echo EPI in the phantom experiment. For in vivo experiments, the proposed method provides a more accurate estimation of ∆ B 0 $$ \Delta {B}_0 $$ than conventional multi-echo EPI, which is prone to phase wrapping problems due to the long TE difference. In-vivo scan with subject motion shows the proposed dynamic field mapping method can improve the temporal stability of EPI time series compared to gradient echo (GRE) based static field mapping. CONCLUSION: The proposed method allows accurate dynamic ∆ B 0 $$ \Delta {B}_0 $$ mapping for robust distortion correction without compromising spatial or temporal resolution.


Assuntos
Algoritmos , Imagem Ecoplanar , Imagens de Fantasmas , Humanos , Imagem Ecoplanar/métodos , Artefatos , Reprodutibilidade dos Testes , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Sensibilidade e Especificidade
11.
Magn Reson Med ; 91(1): 357-367, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37798945

RESUMO

PURPOSE: pH enhanced (pHenh ) CEST imaging combines the pH sensitivity from amide and guanidino signals, but the saturation parameters have not been optimized. We propose pHdual as a variant of pHenh that suppresses background signal variations, while enhancing pH sensitivity and potential for imaging ischemic brain injury of stroke. METHODS: Simulation and in vivo rodent stroke experiments of pHenh MRI were performed with varied RF saturation powers for both amide and guanidino protons to optimize the contrast between lesion/normal tissues, while simultaneously minimizing signal variations across different types of normal tissues. In acute stroke, contrast and volume ratio measured by pHdual imaging were compared with an amide-CEST approach, and perfusion and diffusion MRI. RESULTS: Simulation experiments indicated that amide and guanidino CEST signals exhibit unique sensitivities across different pH ranges, with pHenh producing greater sensitivity over a broader pH regime. The pHenh data of rodent stroke brain demonstrated that the lesion/normal tissue contrast was maximized for an RF saturation power pair of 0.5 µT at 2.0 ppm and 1.0 µT at 3.6 ppm, whereas an optimal contrast-to-variation ratio (CVR) was obtained with a 0.7 µT saturation at 2.0 ppm and 0.8 µT at 3.6 ppm. In acute stroke, CVR optimized pHenh (i.e., pHdual ) achieved a higher sensitivity than the three-point amide-CEST approach, and distinct patterns of lesion tissue compared to diffusion and perfusion MRI. CONCLUSION: pHdual MRI improves the sensitivity of pH-weighted imaging and will be a valuable tool for assessing tissue viability in stroke.


Assuntos
Aumento da Imagem , Acidente Vascular Cerebral , Humanos , Concentração de Íons de Hidrogênio , Aumento da Imagem/métodos , Imagens de Fantasmas , Acidente Vascular Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Amidas
12.
Magn Reson Med ; 91(6): 2345-2357, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38193249

RESUMO

PURPOSE: To investigate the effect of incomplete fat spoiling on the accuracy of B1 mapping with actual flip angle imaging (AFI) and to propose a method to minimize the errors using the chemical shift properties of fat. THEORY AND METHODS: Diffusion-based dephasing is the main spoiling mechanism exploited in AFI. However, a very low diffusion in fat may make the spoiling insufficient, leading to ghosts in the B1 maps. As the errors retain the chemical-shift signature of fat, their impact can be minimized using chemical-shift-based fat signal removal from AFI acquisition modified to include multi-echo readout. The source of the errors and the proposed correction were studied in simulations and phantom and in-vivo imaging experiments. RESULTS: Our results support that AFI artifacts are caused by the incomplete fat spoiling present in clinically attractive short TR acquisition regimes. The correction eliminated the ghosting and significantly improved the B1 mapping accuracy as well as the accuracy of R1 mapping performed with AFI-derived B1 maps. CONCLUSIONS: The incomplete fat signal spoiling may be a source of AFI B1 mapping errors, especially in subjects with high fat content. Achieving complete fat spoiling requires longer TR, which is undesirable in clinical applications. The proposed approach based on fat signal removal can reduce errors without significant prolongation of the AFI pulse sequence. We propose that, when attaining complete fat spoiling is not feasible, AFI mapping should be performed in a multi-echo regime with appropriate fat separation or suppression to minimize these errors.


Assuntos
Aumento da Imagem , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Algoritmos , Reprodutibilidade dos Testes , Imageamento Tridimensional/métodos , Imagens de Fantasmas
13.
Magn Reson Med ; 92(3): 1011-1021, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38623991

RESUMO

PURPOSE: Demonstrate the potential of spatiotemporal encoding (SPEN) MRI to deliver largely undistorted 2D, 3D, and diffusion weighted images on a 110 mT portable system. METHODS: SPEN's quadratic phase modulation was used to subsample the low-bandwidth dimension of echo planar acquisitions, delivering alias-free images with an enhanced immunity to image distortions in a laboratory-built, low-field, portable MRI system lacking multiple receivers. RESULTS: Healthy brain images with different SPEN time-bandwidth products and subsampling factors were collected. These compared favorably to EPI acquisitions including topup corrections. Robust 3D and diffusion weighted SPEN images of diagnostic value were demonstrated, with 2.5 mm isotropic resolutions achieved in 3 min scans. This performance took advantage of the low specific absorption rate and relative long TEs associated with low-field MRI. CONCLUSION: SPEN MRI provides a robust and advantageous fast acquisition approach to obtain faithful 3D images and DWI data in low-cost, portable, low-field systems without parallel acceleration.


Assuntos
Encéfalo , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Desenho de Equipamento , Reprodutibilidade dos Testes , Algoritmos , Aumento da Imagem/métodos , Sensibilidade e Especificidade , Análise Espaço-Temporal , Processamento de Sinais Assistido por Computador , Imagem Ecoplanar , Análise de Falha de Equipamento , Interpretação de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética
14.
Magn Reson Med ; 92(3): 1138-1148, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38730565

RESUMO

PURPOSE: To develop a highly accelerated multi-echo spin-echo method, TEMPURA, for reducing the acquisition time and/or increasing spatial resolution for kidney T2 mapping. METHODS: TEMPURA merges several adjacent echoes into one k-space by either combining independent echoes or sharing one echo between k-spaces. The combined k-space is reconstructed based on compressed sensing theory. Reduced flip angles are used for the refocusing pulses, and the extended phase graph algorithm is used to correct the effects of indirect echoes. Two sequences were developed: a fast breath-hold sequence; and a high-resolution sequence. The performance was evaluated prospectively on a phantom, 16 healthy subjects, and two patients with different types of renal tumors. RESULTS: The fast TEMPURA method reduced the acquisition time from 3-5 min to one breath-hold (18 s). Phantom measurements showed that fast TEMPURA had a mean absolute percentage error (MAPE) of 8.2%, which was comparable to a standardized respiratory-triggered sequence (7.4%), but much lower than a sequence accelerated by purely k-t undersampling (21.8%). High-resolution TEMPURA reduced the in-plane voxel size from 3 × 3 to 1 × 1 mm2, resulting in improved visualization of the detailed anatomical structure. In vivo T2 measurements demonstrated good agreement (fast: MAPE = 1.3%-2.5%; high-resolution: MAPE = 2.8%-3.3%) and high correlation coefficients (fast: R = 0.85-0.98; high-resolution: 0.82-0.96) with the standardized method, outperforming k-t undersampling alone (MAPE = 3.3-4.5%, R = 0.57-0.59). CONCLUSION: TEMPURA provides fast and high-resolution renal T2 measurements. It has the potential to improve clinical throughput and delineate intratumoral heterogeneity and tissue habitats at unprecedented spatial resolution.


Assuntos
Algoritmos , Neoplasias Renais , Rim , Imagens de Fantasmas , Humanos , Neoplasias Renais/diagnóstico por imagem , Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Feminino , Adulto , Masculino , Interpretação de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Pessoa de Meia-Idade , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Suspensão da Respiração
15.
Magn Reson Med ; 92(4): 1556-1567, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38702999

RESUMO

PURPOSE: To achieve high-resolution fetal brain anatomical imaging without introducing image artifacts by reducing the FOV, and to demonstrate improved image quality compared to conventional full-FOV fetal brain imaging. METHODS: Reduced FOV was achieved by applying outer volume suppression (OVS) pulses immediately prior to standard single-shot fast spin echo (SSFSE) imaging. In the OVS preparation, a saturation RF pulse followed by a gradient spoiler was repeated three times with optimized flip-angle weightings and a variable spoiler scheme to enhance signal suppression. Simulations and phantom and in-vivo experiments were performed to evaluate OVS performance. In-vivo high-resolution SSFSE images acquired using the proposed approach were compared with conventional and high-resolution SSFSE images with a full FOV, using image quality scores assessed by neuroradiologists and calculated image metrics. RESULTS: Excellent signal suppression in the saturation bands was confirmed in phantom and in-vivo experiments. High-resolution SSFSE images with a reduced FOV acquired using OVS demonstrated the improved depiction of brain structures without significant motion and blurring artifacts. The proposed method showed the highest image quality scores in the criteria of sharpness, contrast, and artifact and was selected as the best method based on overall image quality. The calculated image sharpness and tissue contrast ratio were also the highest with the proposed method. CONCLUSION: High-resolution fetal brain anatomical images acquired using a reduced FOV with OVS demonstrated improved image quality both qualitatively and quantitatively, suggesting the potential for enhanced diagnostic accuracy in detecting fetal brain abnormalities in utero.


Assuntos
Algoritmos , Artefatos , Encéfalo , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Encéfalo/diagnóstico por imagem , Encéfalo/embriologia , Humanos , Imageamento por Ressonância Magnética/métodos , Feminino , Gravidez , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Diagnóstico Pré-Natal/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Sensibilidade e Especificidade , Imageamento Tridimensional/métodos
16.
Magn Reson Med ; 92(4): 1376-1391, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38899391

RESUMO

PURPOSE: We propose and evaluate multiphoton parallel transmission (MP-pTx) to mitigate flip angle inhomogeneities in high-field MRI. MP-pTx is an excitation method that utilizes a single, conventional birdcage coil supplemented with low-frequency (kHz) irradiation from a multichannel shim array and/or gradient channels. SAR analysis is simplified to that of a conventional birdcage coil, because only the radiofrequency (RF) field from the birdcage coil produces significant SAR. METHODS: MP-pTx employs an off-resonance RF pulse from a conventional birdcage coil supplemented with oscillating z $$ z $$ -directed fields from a multichannel shim array and/or the gradient coils. We simulate the ability of MP-pTx to create uniform nonselective brain excitations at 7 T using realistic B 1 + $$ {\mathrm{B}}_1^{+} $$ and Δ B 0 $$ \Delta {\mathrm{B}}_0 $$ field maps. The RF, shim array, and gradient waveform's amplitudes and phases are optimized using a genetic algorithm followed by sequential quadratic programming. RESULTS: A 1 ms MP-pTx excitation using a 32-channel shim array with current constrained to less than 50 Amp-turns reduced the transverse magnetization's normalized root-mean-squared error from 29% for a conventional birdcage excitation to 6.6% and was nearly 40% better than a 1 ms birdcage coil 5 kT-point excitation with optimized kT-point locations and comparable pulse power. CONCLUSION: The MP-pTx method resembles conventional pTx in its goals and approach but replaces the parallel RF channels with cheaper, low-frequency shim channels. The method mitigates high-field flip angle inhomogeneities to a level better than 3 T CP-mode and comparable to 7 T pTx while retaining the straightforward SAR characteristics of conventional birdcage excitations, as low-frequency shim array fields produce negligible SAR.


Assuntos
Algoritmos , Encéfalo , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Humanos , Encéfalo/diagnóstico por imagem , Reprodutibilidade dos Testes , Imagens de Fantasmas , Simulação por Computador , Fótons , Aumento da Imagem/métodos , Processamento de Sinais Assistido por Computador , Interpretação de Imagem Assistida por Computador/métodos
17.
Magn Reson Med ; 92(4): 1617-1631, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38775235

RESUMO

PURPOSE: To develop a generalized rigid body motion correction method in 3D radial brain MRI to deal with continuous motion pattern through projection moment analysis. METHODS: An assumption was made that the multichannel coil moves with the head, which was achieved by using a flexible head coil. A two-step motion correction scheme was proposed to directly extract the motion parameters from the acquired k-space data using the analysis of center-of-mass with high noise robustness, which were used for retrospective motion correction. A recursive least-squares model was introduced to recursively estimate the motion parameters for every single spoke, which used the smoothness of motion and resulted in high temporal resolution and low computational cost. Five volunteers were scanned at 3 T using a 3D radial multidimensional golden-means trajectory with instructed motion patterns. The performance was tested through both simulation and in vivo experiments. Quantitative image quality metrics were calculated for comparison. RESULTS: The proposed method showed good accuracy and precision in both translation and rotation estimation. A better result was achieved using the proposed two-step correction compared to traditional one-step correction without significantly increasing computation time. Retrospective correction showed substantial improvements in image quality among all scans, even for stationary scans. CONCLUSIONS: The proposed method provides an easy, robust, and time-efficient tool for motion correction in brain MRI, which may benefit clinical diagnosis of uncooperative patients as well as scientific MRI researches.


Assuntos
Algoritmos , Encéfalo , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Movimento (Física) , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Artefatos , Processamento de Imagem Assistida por Computador/métodos , Simulação por Computador , Estudos Retrospectivos , Reprodutibilidade dos Testes , Adulto , Aumento da Imagem/métodos
18.
Magn Reson Med ; 92(3): 1035-1047, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38651264

RESUMO

PURPOSE: To study the additional value of FRONSAC encoding in 2D and 3D wave sequences, implementing a simple strategy to trajectory mapping for FRONSAC encoding gradients. THEORY AND METHODS: The nonlinear gradient trajectory for each voxel was estimated by exploiting the sparsity of the point spread function in the frequency domain. Simulations and in-vivo experiments were used to analyze the performance of combinations of wave and FRONSAC encoding. RESULTS: Field mapping using the simplified approach produced similar image quality with much shorter calibration time than the comprehensive mapping schemes utilized in previous work. In-vivo human brain images showed that the addition of FRONSAC encoding could improve wave image quality, particularly at very high undersampling factors and in the context of limited wave amplitudes. These results were further supported by g-factor maps. CONCLUSION: Results show that FRONSAC can be used to improve image quality of wave at very high undersampling rates or in slew-limited acquisitions. Our study illustrates the potential of the proposed fast field mapping approach.


Assuntos
Algoritmos , Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos , Simulação por Computador , Dinâmica não Linear , Imagens de Fantasmas , Reprodutibilidade dos Testes , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos
19.
Magn Reson Med ; 92(1): 257-268, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38282291

RESUMO

PURPOSE: Free water in cortical bone is either contained in nearly cylindrical structures (mainly Haversian canals oriented parallel to the bone axis) or in more spherically shaped pores (lacunae). Those cavities have been reported to crucially influence bone quality and mechanical stability. Susceptibility differences between bone and water can lead to water frequency shifts dependent on the geometric characteristics. The purpose of this study is to calculate and measure the frequency distribution of the water signal in MRI in dependence of the microscopic bone geometry. METHODS: Finite element modeling and analytical approaches were performed to characterize the free water components of bone. The previously introduced UTE-FID technique providing spatially resolved FID-spectra was used to measure the frequency distribution pixel-wise for different orientations of the bone axis. RESULTS: The frequency difference between free water in spherical pores and in canals parallel to B0 amounts up to approximately 100 Hz at 3T. Simulated resonance frequencies showed good agreement with the findings in UTE-FID spectra. The intensity ratio of the two signal components (parallel canals and spherical pores) was found to vary between periosteal and endosteal regions. CONCLUSION: Spatially resolved UTE-FID examinations allow the determination of the frequency distribution of signals from free water in cortical bone. This frequency distribution indicates the composition of the signal contributions from nearly spherical cavities and cylindrical canals which allows for further characterization of bone structure and status.


Assuntos
Água Corporal , Simulação por Computador , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Água Corporal/diagnóstico por imagem , Algoritmos , Reprodutibilidade dos Testes , Modelos Biológicos , Sensibilidade e Especificidade , Interpretação de Imagem Assistida por Computador/métodos , Água/química , Osso e Ossos/diagnóstico por imagem , Aumento da Imagem/métodos , Análise de Elementos Finitos
20.
Magn Reson Med ; 92(2): 519-531, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38623901

RESUMO

PURPOSE: Diffusion-weighted (DW) imaging provides a useful clinical contrast, but is susceptible to motion-induced dephasing caused by the application of strong diffusion gradients. Phase navigators are commonly used to resolve shot-to-shot motion-induced phase in multishot reconstructions, but poor phase estimates result in signal dropout and Apparent Diffusion Coefficient (ADC) overestimation. These artifacts are prominent in the abdomen, a region prone to involuntary cardiac and respiratory motion. To improve the robustness of DW imaging in the abdomen, region-based shot rejection schemes that selectively weight regions where the shot-to-shot phase is poorly estimated were evaluated. METHODS: Spatially varying weights for each shot, reflecting both the accuracy of the estimated phase and the degree of subvoxel dephasing, were estimated from the phase navigator magnitude images. The weighting was integrated into a multishot reconstruction using different formulations and phase navigator resolutions and tested with different phase navigator resolutions in multishot DW-echo Planar Imaging acquisitions of the liver and pancreas, using conventional monopolar and velocity-compensated diffusion encoding. Reconstructed images and ADC estimates were compared qualitatively. RESULTS: The proposed region-based shot rejection reduces banding and signal dropout artifacts caused by physiological motion in the liver and pancreas. Shot rejection allows conventional monopolar diffusion encoding to achieve median ADCs in the pancreas comparable to motion-compensated diffusion encoding, albeit with a greater spread of ADCs. CONCLUSION: Region-based shot rejection is a linear reconstruction that improves the motion robustness of multi-shot DWI and requires no sequence modifications.


Assuntos
Abdome , Algoritmos , Artefatos , Imagem de Difusão por Ressonância Magnética , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Abdome/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Pâncreas/diagnóstico por imagem , Fígado/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Movimento (Física) , Imagem Ecoplanar/métodos , Aumento da Imagem/métodos , Adulto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa