Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Mol Cell ; 81(9): 2031-2040.e8, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33909989

RESUMO

Autophagy is a fundamental catabolic process that uses a unique post-translational modification, the conjugation of ATG8 protein to phosphatidylethanolamine (PE). ATG8 lipidation also occurs during non-canonical autophagy, a parallel pathway involving conjugation of ATG8 to single membranes (CASM) at endolysosomal compartments, with key functions in immunity, vision, and neurobiology. It is widely assumed that CASM involves the same conjugation of ATG8 to PE, but this has not been formally tested. Here, we discover that all ATG8s can also undergo alternative lipidation to phosphatidylserine (PS) during CASM, induced pharmacologically, by LC3-associated phagocytosis or influenza A virus infection, in mammalian cells. Importantly, ATG8-PS and ATG8-PE adducts are differentially delipidated by the ATG4 family and bear different cellular dynamics, indicating significant molecular distinctions. These results provide important insights into autophagy signaling, revealing an alternative form of the hallmark ATG8 lipidation event. Furthermore, ATG8-PS provides a specific "molecular signature" for the non-canonical autophagy pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagossomos/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Autofagia , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfatidilserinas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/genética , Autofagossomos/patologia , Família da Proteína 8 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Feminino , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Vírus da Influenza A/patogenicidade , Macrolídeos/farmacologia , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Monensin/farmacologia , Fagocitose , Fosfatidiletanolaminas/metabolismo , Células RAW 264.7 , Transdução de Sinais
2.
Mol Cell ; 76(2): 268-285, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31585693

RESUMO

The clearance of surplus, broken, or dangerous components is key for maintaining cellular homeostasis. The failure to remove protein aggregates, damaged organelles, or intracellular pathogens leads to diseases, including neurodegeneration, cancer, and infectious diseases. Autophagy is the evolutionarily conserved pathway that sequesters cytoplasmic components in specialized vesicles, autophagosomes, which transport the cargo to the degradative compartments (vacuoles or lysosomes). Research during the past few decades has elucidated how autophagosomes engulf their substrates selectively. This type of autophagy involves a growing number of selective autophagy receptors (SARs) (e.g., Atg19 in yeasts, p62/SQSTM1 in mammals), which bind to the cargo and simultaneously engage components of the core autophagic machinery via direct interaction with the ubiquitin-like proteins (UBLs) of the Atg8/LC3/GABARAP family and adaptors, Atg11 (in yeasts) or FIP200 (in mammals). In this Review, we critically discuss the biology of the SARs with special emphasis on their interactions with UBLs.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Proteínas Fúngicas/metabolismo , Transdução de Sinais , Leveduras/metabolismo , Animais , Autofagossomos/patologia , Proteínas Relacionadas à Autofagia/genética , Sítios de Ligação , Proteínas Fúngicas/genética , Humanos , Ligantes , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ubiquitinação , Ubiquitinas/metabolismo , Leveduras/genética
3.
Mol Cell ; 73(4): 788-802.e7, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30704899

RESUMO

mTORC1 and GSK3 play critical roles in early stages of (macro)autophagy, but how they regulate late steps of autophagy remains poorly understood. Here we show that mTORC1 and GSK3-TIP60 signaling converge to modulate autophagosome maturation through Pacer, an autophagy regulator that was identified in our recent study. Hepatocyte-specific Pacer knockout in mice results in impaired autophagy flux, glycogen and lipid accumulation, and liver fibrosis. Under nutrient-rich conditions, mTORC1 phosphorylates Pacer at serine157 to disrupt the association of Pacer with Stx17 and the HOPS complex and thus abolishes Pacer-mediated autophagosome maturation. Importantly, dephosphorylation of Pacer under nutrient-deprived conditions promotes TIP60-mediated Pacer acetylation, which facilitates HOPS complex recruitment and is required for autophagosome maturation and lipid droplet clearance. This work not only identifies Pacer as a regulator in hepatic autophagy and liver homeostasis in vivo but also reveals a signal integration mechanism involved in late stages of autophagy and lipid metabolism.


Assuntos
Autofagossomos/enzimologia , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Quinase 3 da Glicogênio Sintase/metabolismo , Metabolismo dos Lipídeos , Fígado/enzimologia , Lisina Acetiltransferase 5/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Transativadores/metabolismo , Acetilação , Animais , Autofagossomos/patologia , Proteínas Relacionadas à Autofagia/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Quinase 3 da Glicogênio Sintase/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Gotículas Lipídicas/metabolismo , Fígado/patologia , Lisina Acetiltransferase 5/genética , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Fosfato/genética , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Transdução de Sinais , Transativadores/genética , Proteínas Supressoras de Tumor
4.
Mol Cell ; 67(1): 84-95.e5, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28602638

RESUMO

Autophagy traditionally sustains metabolism in stressed cells by promoting intracellular catabolism and nutrient recycling. Here, we demonstrate that in response to stresses requiring increased glycolytic demand, the core autophagy machinery also facilitates glucose uptake and glycolytic flux by promoting cell surface expression of the glucose transporter GLUT1/Slc2a1. During metabolic stress, LC3+ autophagic compartments bind and sequester the RabGAP protein TBC1D5 away from its inhibitory interactions with the retromer complex, thereby enabling retromer recruitment to endosome membranes and GLUT1 plasma membrane translocation. In contrast, TBC1D5 inhibitory interactions with the retromer are maintained in autophagy-deficient cells, leading to GLUT1 mis-sorting into endolysosomal compartments. Furthermore, TBC1D5 depletion in autophagy-deficient cells rescues retromer recruitment to endosomal membranes and GLUT1 surface recycling. Hence, TBC1D5 shuttling to autophagosomes during metabolic stress facilitates retromer-dependent GLUT1 trafficking. Overall, our results illuminate key interconnections between the autophagy and endosomal pathways dictating GLUT1 trafficking and extracellular nutrient uptake.


Assuntos
Autofagia , Membrana Celular/metabolismo , Fibroblastos/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Glucose/metabolismo , Glicólise , Estresse Fisiológico , Animais , Autofagossomos/metabolismo , Autofagossomos/patologia , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Endossomos/metabolismo , Endossomos/patologia , Feminino , Fibroblastos/patologia , Proteínas Ativadoras de GTPase/genética , Transportador de Glucose Tipo 1/genética , Células HEK293 , Humanos , Cinética , Lisossomos/metabolismo , Lisossomos/patologia , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Transporte Proteico , Interferência de RNA , Transdução de Sinais , Transfecção , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
5.
Mol Cell ; 65(5): 917-931.e6, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28238651

RESUMO

Autophagy is crucial for maintaining cell homeostasis. However, the precise mechanism underlying autophagy initiation remains to be defined. Here, we demonstrate that glutamine deprivation and hypoxia result in inhibition of mTOR-mediated acetyl-transferase ARD1 S228 phosphorylation, leading to ARD1-dependent phosphoglycerate kinase 1 (PGK1) K388 acetylation and subsequent PGK1-mediated Beclin1 S30 phosphorylation. This phosphorylation enhances ATG14L-associated class III phosphatidylinositol 3-kinase VPS34 activity by increasing the binding of phosphatidylinositol to VPS34. ARD1-dependent PGK1 acetylation and PGK1-mediated Beclin1 S30 phosphorylation are required for glutamine deprivation- and hypoxia-induced autophagy and brain tumorigenesis. Furthermore, PGK1 K388 acetylation levels correlate with Beclin1 S30 phosphorylation levels and poor prognosis in glioblastoma patients. Our study unearths an important mechanism underlying cellular-stress-induced autophagy initiation in which the protein kinase activity of the metabolic enzyme PGK1 plays an instrumental role and reveals the significance of the mutual regulation of autophagy and cell metabolism in maintaining cell homeostasis.


Assuntos
Autofagossomos/enzimologia , Autofagia , Proteína Beclina-1/metabolismo , Neoplasias Encefálicas/enzimologia , Glioblastoma/enzimologia , Fosfoglicerato Quinase/metabolismo , Acetilação , Animais , Autofagossomos/patologia , Proteína Beclina-1/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Glutamina/deficiência , Células HEK293 , Humanos , Camundongos Nus , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , Fosfoglicerato Quinase/genética , Fosforilação , Ligação Proteica , Interferência de RNA , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral , Hipóxia Tumoral
6.
Exp Cell Res ; 411(2): 113001, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973945

RESUMO

Autophagy is involved in the activation of hepatic stellate cells (HSCs) and liver fibrosis. Previous studies have shown that interleukin 10 (IL-10) has a marked therapeutic effect against liver fibrosis. However, few studies have evaluated the effect of IL-10 on autophagy in HSCs and fibrotic livers. The aim of this study was to assess the effect of IL-10 on the autophagy of HSCs in vitro and in vivo and then to explore the underlying pathway. In vitro, The results revealed that IL-10 had inhibitory effects on hydrogen peroxide (H2O2)-induced autophagy, as evidenced by the decreased LC3II/I ratio and Beclin1 expression, increased p62 expression, reduced numbers of autophagosomes, and blocked autophagy initiation in HSCs. Mechanistically, IL-10 significantly promoted the phosphorylation of the signal transducer and activator of transcription 3(STAT3) and mammalian target of rapamycin (mTOR), leading to the activation of STAT3 and mTOR, which in turn inhibited autophagy. In vivo, the increased expression of IL-10 in fibrotic livers inhibited significantly liver fibrosis and decreased the autophagic activity in fibrotic livers and HSCs. Overall, our results indicate that IL-10 suppressed H2O2-induced autophagy in HSCs by activating the STAT3-mTOR signaling pathway. Present study provides a new theoretical basis for the anti-fibrotic effects of IL-10.


Assuntos
Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Interleucina-10/metabolismo , Interleucina-10/farmacologia , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/patologia , Autofagia/efeitos dos fármacos , Linhagem Celular , Células Estreladas do Fígado/patologia , Humanos , Peróxido de Hidrogênio/farmacologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
7.
Hum Mol Genet ; 29(2): 286-294, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31816064

RESUMO

Glycogen storage disease type Ia (GSD Ia) is caused by autosomal mutations in glucose-6-phosphatase α catalytic subunit (G6PC) and can present with severe hypoglycemia, lactic acidosis and hypertriglyceridemia. In both children and adults with GSD Ia, there is over-accumulation of hepatic glycogen and triglycerides that can lead to steatohepatitis and a risk for hepatocellular adenoma or carcinoma. Here, we examined the effects of the commonly used peroxisomal proliferated activated receptor α agonist, fenofibrate, on liver and kidney autophagy and lipid metabolism in 5-day-old G6pc -/- mice serving as a model of neonatal GSD Ia. Five-day administration of fenofibrate decreased the elevated hepatic and renal triglyceride and hepatic glycogen levels found in control G6pc -/- mice. Fenofibrate also induced autophagy and promoted ß-oxidation of fatty acids and stimulated gene expression of acyl-CoA dehydrogenases in the liver. These findings show that fenofibrate can rapidly decrease hepatic glycogen and triglyceride levels and renal triglyceride levels in neonatal G6pc -/- mice. Moreover, since fenofibrate is an FDA-approved drug that has an excellent safety profile, our findings suggest that fenofibrate could be a potential pharmacological therapy for GSD Ia in neonatal and pediatric patients as well as for adults. These findings may also apply to non-alcoholic fatty liver disease, which shares similar pathological and metabolic changes with GSD Ia.


Assuntos
Fenofibrato/farmacologia , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/metabolismo , Glicogênio/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Acil-CoA Desidrogenases/metabolismo , Animais , Animais Recém-Nascidos , Autofagossomos/efeitos dos fármacos , Autofagossomos/patologia , Autofagossomos/ultraestrutura , Autofagia/efeitos dos fármacos , Ácidos Graxos/metabolismo , Fenofibrato/administração & dosagem , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/enzimologia , Doença de Depósito de Glicogênio Tipo I/genética , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/enzimologia , Fígado/patologia , Fígado/ultraestrutura , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , PPAR alfa/genética , PPAR alfa/metabolismo , Triglicerídeos/metabolismo
8.
Circ Res ; 127(7): e148-e165, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32693673

RESUMO

RATIONALE: Impaired autophagic flux contributes to ischemia/reperfusion (I/R)-induced cardiomyocyte death, but the underlying molecular mechanisms remain largely unexplored. OBJECTIVE: To determine the role of LAPTM4B (lysosomal-associated transmembrane protein 4B) in the regulation of autophagic flux and myocardial I/R injury. METHODS AND RESULTS: LAPTM4B was expressed in murine hearts but downregulated in hearts with I/R (30 minutes/2 hours) injury and neonatal rat cardiomyocytes with hypoxia/reoxygenation (6 hours/2 hours) injury. During myocardial reperfusion, LAPTM4B-knockout (LAPTM4B-/-) mice had a significantly increased infarct size and lactate dehydrogenase release, whereas adenovirus-mediated LAPTM4B-overexpression was cardioprotective. Concomitantly, LAPTM4B-/- mice showed higher accumulation of the autophagy markers LC3-II (microtubule-associated protein 1A/1B-light chain 3), but not P62, in the I/R heart, whereas they did not alter chloroquine-induced further increases of LC3-II and P62 in both sham and I/R hearts. Conversely, LAPTM4B-overexpression had opposite effects. The hypoxia/reoxygenation-reduced viability of neonatal rat cardiomyocytes, ratio of autolysosomes/autophagosomes, and function of lysosomes were further decreased by LAPTM4B-knockdown but reversed by LAPTM4B-overexpression. Moreover, the LAPTM4B-overexpression-mediated benefits were abolished by knockdown of lysosome-associated membrane protein-2 (an autophagosome-lysosome fusion protein) in vivo and by the autophagy inhibitor bafilomycin A1 in vivo. In contrast, rapamycin (Rapa) successfully restored the impaired autophagic flux in LAPTM4B-/- mice and the subsequent myocardial I/R injury. Mechanistically, LAPTM4B regulated the activity of mTORC1 (mammalian target of rapamycin complex 1) via interacting with mTOR through its EC3 (extracelluar) domain. Thus, mTORC1 was overactivated in LAPTM4B-/- mice, leading to the repression of TFEB (transcription factor EB), a master regulator of lysosomal and autophagic genes, during myocardial I/R. The mTORC1 inhibition or TFEB-overexpression rescued the LAPTM4B-/--induced impairment in autophagic flux and I/R injury, whereas TFEB-knockdown abolished the LAPTM4B-overexpression-mediated recovery of autophagic flux and cardioprotection. CONCLUSIONS: The downregulation of LAPTM4B contributes to myocardial I/R-induced impairment of autophagic flux via modulation of the mTORC1/TFEB pathway. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Autofagossomos/metabolismo , Autofagia , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Autofagossomos/genética , Autofagossomos/patologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Lisossomos/genética , Lisossomos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais
9.
Arterioscler Thromb Vasc Biol ; 41(2): e82-e96, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33356389

RESUMO

OBJECTIVE: Atherosclerotic lesions are often characterized by accumulation of OxLDL (oxidized low-density lipoprotein), which is associated with vascular inflammation and lesion vulnerability to rupture. Extracellular AIBP (apolipoprotein A-I binding protein; encoded by APOA1BP gene), when secreted, promotes cholesterol efflux and regulates lipid rafts dynamics, but its role as an intracellular protein in mammalian cells remains unknown. The aim of this work was to determine the function of intracellular AIBP in macrophages exposed to OxLDL and in atherosclerotic lesions. Approach and Results: Using a novel monoclonal antibody against human and mouse AIBP, which are highly homologous, we demonstrated robust AIBP expression in human and mouse atherosclerotic lesions. We observed significantly reduced autophagy in bone marrow-derived macrophages, isolated from Apoa1bp-/- compared with wild-type mice, which were exposed to OxLDL. In atherosclerotic lesions from Apoa1bp-/- mice subjected to Ldlr knockdown and fed a Western diet, autophagy was reduced, whereas apoptosis was increased, when compared with that in wild-type mice. AIBP expression was necessary for efficient control of reactive oxygen species and cell death and for mitochondria quality control in macrophages exposed to OxLDL. Mitochondria-localized AIBP, via its N-terminal domain, associated with E3 ubiquitin-protein ligase PARK2 (Parkin), MFN (mitofusin)1, and MFN2, but not BNIP3 (Bcl2/adenovirus E1B 19-kDa-interacting protein-3), and regulated ubiquitination of MFN1 and MFN2, key components of mitophagy. CONCLUSIONS: These data suggest that intracellular AIBP is a new regulator of autophagy in macrophages. Mitochondria-localized AIBP augments mitophagy and participates in mitochondria quality control, protecting macrophages against cell death in the context of atherosclerosis.


Assuntos
Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Lipoproteínas LDL/toxicidade , Macrófagos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Fosfoproteínas/metabolismo , Racemases e Epimerases/metabolismo , Animais , Doenças da Aorta/genética , Doenças da Aorta/patologia , Apoptose/efeitos dos fármacos , Aterosclerose/genética , Aterosclerose/patologia , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/patologia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Modelos Animais de Doenças , Células HEK293 , Células Hep G2 , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosfoproteínas/genética , Racemases e Epimerases/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
10.
Biochem J ; 478(10): 1959-1976, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34047789

RESUMO

Amphisomes are intermediate/hybrid organelles produced through the fusion of endosomes with autophagosomes within cells. Amphisome formation is an essential step during a sequential maturation process of autophagosomes before their ultimate fusion with lysosomes for cargo degradation. This process is highly regulated with multiple protein machineries, such as SNAREs, Rab GTPases, tethering complexes, and ESCRTs, are involved to facilitate autophagic flux to proceed. In neurons, autophagosomes are robustly generated in axonal terminals and then rapidly fuse with late endosomes to form amphisomes. This fusion event allows newly generated autophagosomes to gain retrograde transport motility and move toward the soma, where proteolytically active lysosomes are predominantly located. Amphisomes are not only the products of autophagosome maturation but also the intersection of the autophagy and endo-lysosomal pathways. Importantly, amphisomes can also participate in non-canonical functions, such as retrograde neurotrophic signaling or autophagy-based unconventional secretion by fusion with the plasma membrane. In this review, we provide an updated overview of the recent discoveries and advancements on the molecular and cellular mechanisms underlying amphisome biogenesis and the emerging roles of amphisomes. We discuss recent developments towards the understanding of amphisome regulation as well as the implications in the context of major neurodegenerative diseases, with a comparative focus on Alzheimer's disease and Parkinson's disease.


Assuntos
Autofagossomos/patologia , Autofagia , Endossomos/patologia , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Animais , Autofagossomos/metabolismo , Endossomos/metabolismo , Humanos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo
11.
Proc Natl Acad Sci U S A ; 116(2): 556-565, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30584088

RESUMO

Mutations in lysosomal-associated membrane protein 2 (LAMP-2) gene are associated with Danon disease, which often leads to cardiomyopathy/heart failure through poorly defined mechanisms. Here, we identify the LAMP-2 isoform B (LAMP-2B) as required for autophagosome-lysosome fusion in human cardiomyocytes (CMs). Remarkably, LAMP-2B functions independently of syntaxin 17 (STX17), a protein that is essential for autophagosome-lysosome fusion in non-CMs. Instead, LAMP-2B interacts with autophagy related 14 (ATG14) and vesicle-associated membrane protein 8 (VAMP8) through its C-terminal coiled coil domain (CCD) to promote autophagic fusion. CMs derived from induced pluripotent stem cells (hiPSC-CMs) from Danon patients exhibit decreased colocalization between ATG14 and VAMP8, profound defects in autophagic fusion, as well as mitochondrial and contractile abnormalities. This phenotype was recapitulated by LAMP-2B knockout in non-Danon hiPSC-CMs. Finally, gene correction of LAMP-2 mutation rescues the Danon phenotype. These findings reveal a STX17-independent autophagic fusion mechanism in human CMs, providing an explanation for cardiomyopathy in Danon patients and a foundation for targeting defective LAMP-2B-mediated autophagy to treat this patient population.


Assuntos
Autofagossomos/metabolismo , Doença de Depósito de Glicogênio Tipo IIb/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Fusão de Membrana , Miócitos Cardíacos/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Autofagossomos/patologia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Técnicas de Inativação de Genes , Doença de Depósito de Glicogênio Tipo IIb/genética , Doença de Depósito de Glicogênio Tipo IIb/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Proteína 2 de Membrana Associada ao Lisossomo/genética , Lisossomos/genética , Lisossomos/patologia , Miócitos Cardíacos/patologia , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo
12.
Biochem Cell Biol ; 99(3): 364-373, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33347391

RESUMO

The neuronal dystonin protein (DST-a) is a large cytoskeletal linker important for integrating the various components of the cytoskeleton. Recessive Dst mutations lead to a sensory neuropathy in mice, known as dystonia musculorum (Dstdt). The disease is characterized by ataxia, autonomic disturbances, and ultimately, death, which are associated with massive degeneration of the sensory neurons in the dorsal root ganglion (DRG). Recent investigation of Dstdt sensory neurons revealed an accumulation of autophagosomes and a disruption in autophagic flux, which was believed to be due to insufficient availability of motor protein. Motor protein levels and the endolysosomal pathway were assessed in pre-symptomatic (postnatal day 5; P5) and symptomatic (P15) stage wild-type and Dstdt DRGs. Levels of mRNA encoding molecular motors were reduced, although no significant reduction in the protein level was detected. An increase in lysosomal marker LAMP1 in medium-large size Dstdt-27J sensory neurons was observed, along with an accumulation of electron-light single-membraned vesicles in Dstdt-27J DRG tissue at the late stages of disease. These vesicles are likely to have been autolysosomes, and their presence in only late-stage Dstdt-27J sensory neurons is suggestive of a pathological defect in autophagy. Further investigation is necessary to confirm vesicle identity, and to determine the role of Dst-a in normal autophagic flux.


Assuntos
Autofagossomos/patologia , Autofagia , Distonina/fisiologia , Endossomos/patologia , Mutação com Perda de Função , Lisossomos/patologia , Neurônios/patologia , Animais , Autofagossomos/metabolismo , Endossomos/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo
13.
Cell Physiol Biochem ; 55(S4): 68-95, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34523304

RESUMO

Protein homeostasis strongly depends on the targeted and selective removal of unneeded or flawed proteins, of protein aggregates, and of damaged or excess organelles by the two main intracellular degradative systems, namely the ubiquitin proteasomal system (UPS) and the autophagosomal lysosomal system. Despite representing completely distinct mechanisms of degradation, which underlie differing regulatory mechanisms, growing evidence suggests that the UPS and autophagy strongly interact especially in situations of overwhelming and impairment, and that both are involved in podocyte proteostasis and in the pathogenesis of podocyte injury. The differential impact of autophagy and the UPS on podocyte biology and on podocyte disease development and progression is not understood. Recent advances in understanding the role of the UPS and autophagy in podocyte biology are reviewed here.


Assuntos
Autofagia , Nefropatias , Podócitos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Autofagossomos/metabolismo , Autofagossomos/patologia , Humanos , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/fisiopatologia , Lisossomos/metabolismo , Lisossomos/patologia , Podócitos/metabolismo , Podócitos/patologia
14.
J Cell Mol Med ; 24(16): 8998-9011, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32579303

RESUMO

Farnesyltransferase (FTase) is an important enzyme that catalyses the modification of protein isoprene downstream of the mevalonate pathway. Previous studies have shown that the tissue of the heart in the suprarenal abdominal aortic coarctation (AAC) group showed overexpression of FTaseß (FNTB) and the activation of the downstream protein Ras was enhanced. FTase inhibitor (FTI) can alleviate myocardial fibrosis and partly improve cardiac remodelling in spontaneously hypertensive rats. However, the exact role and mechanism of FTase in myocardial hypertrophy and remodelling are not fully understood. Here, we used recombinant adenovirus to transfect neonatal rat ventricular cardiomyocytes to study the effect of FNTB overexpression on myocardial remodelling and explore potential mechanisms. The results showed that overexpression of FNTB induces neonatal rat ventricular myocyte hypertrophy and reduces the survival rate of cardiomyocytes. FNTB overexpression induced a decrease in mitochondrial membrane potential and increased apoptosis in cardiomyocytes. FNTB overexpression also promotes autophagosome formation and the accumulation of autophagy substrate protein, LC3II. Transmission electron microscopy (TEM) and mCherry-GFP tandem fluorescent-tagged LC3 (tfLC3) showed that FNTB overexpression can activate autophagy flux by enhancing autophagosome conversion to autophagolysosome. Overactivated autophagy flux can be blocked by bafilomycin A1. In addition, salirasib (a Ras farnesylcysteine mimetic) can alleviate the hypertrophic phenotype of cardiomyocytes and inhibit the up-regulation of apoptosis and autophagy flux induced by FNTB overexpression. These results suggest that FTase may have a potential role in future treatment strategies to limit the adverse consequences of cardiac hypertrophy, cardiac dysfunction and heart failure.


Assuntos
Apoptose/fisiologia , Morte Celular Autofágica/fisiologia , Cardiomegalia/metabolismo , Farnesiltranstransferase/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas ras/metabolismo , Animais , Autofagossomos/metabolismo , Autofagossomos/patologia , Autofagia/fisiologia , Cardiomegalia/patologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Potencial da Membrana Mitocondrial/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Miocárdio , Miócitos Cardíacos/patologia , Ratos , Ratos Endogâmicos SHR/metabolismo , Ratos Sprague-Dawley , Remodelação Ventricular/fisiologia
15.
BMC Cardiovasc Disord ; 20(1): 56, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019530

RESUMO

BACKGROUND: Autophagy plays a crucial role in the pathological process of cardiovascular diseases. However, little is known about the pathological mechanism underlying autophagy regulation in dilated cardiomyopathy (DCM). METHODS: We explored whether up-regulating autophagy could improve cardiac function in mice with experimental DCM through the mTOR-4EBP1 pathway. Animal model of DCM was established in BALB/c mice by immunization with porcine cardiac myosin. Both up- or down-regulation of autophagy were studied by administration of rapamycin or 3-MA in parallel. Morphology, Western blotting, and echocardiography were applied to confirm the pathological mechanisms. RESULTS: Autophagy was activated and autophagosomes were significantly increased in the rapamycin group. The collagen volume fraction (CVF) was decreased in the rapamycin group compared with the DCM group (9.21 ± 0.82% vs 14.38 ± 1.24%, P < 0.01). The expression of p-mTOR and p-4EBP1 were significantly decreased in rapamycin-induced autophagy activation, while the levels were increased by down-regulating autophagy with 3-MA. In the rapamycin group, the LVEF and FS were significantly increased compared with the DCM group (54.12 ± 6.48% vs 45.29 ± 6.68%, P < 0.01; 26.89 ± 4.04% vs 22.17 ± 2.82%, P < 0.05). As the inhibitor of autophagy, 3-MA aggravated the progress of maladaptive cardiac remodeling and declined cardiac function in DCM mice. CONCLUSIONS: The study indicated a possible mechanism for improving cardiac function in mice with experimental DCM by up-regulating autophagy via the mTOR-4EBP1 pathway, which could be a promising therapeutic strategy for DCM.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/efeitos dos fármacos , Cardiomiopatia Dilatada/tratamento farmacológico , Proteínas de Ciclo Celular/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/enzimologia , Autofagossomos/patologia , Cardiomiopatia Dilatada/enzimologia , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Modelos Animais de Doenças , Fibrose , Masculino , Camundongos Endogâmicos BALB C , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Recuperação de Função Fisiológica , Transdução de Sinais
16.
Int J Med Sci ; 17(17): 2869-2878, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162815

RESUMO

Objective: Uncoupling protein 2 (UCP2) is a member of inner mitochondrial membrane proteins and deletion of UCP2 exacerbates brain damage after cerebral ischemia/reperfusion (I/R). Nevertheless, its functional role during cerebral I/R is not entirely understood. The objective of present study was to explore the influence of UCP2 deletion on mitochondrial autophagy (mitophagy) and mitochondria-mediated cell death pathway after cerebral I/R. Methods: UCP2-/- and wildtype (WT) mice were subjected to 60 min middle cerebral artery occlusion (MCAO) and allowed reperfusion for 24 hours. Infarct volume and histological outcomes were assessed, reactive oxygen species (ROS) and autophagy markers were measured, and mitochondrial ultrastructure was examined. Results: Deletion of UCP2 enlarged infarct volume, increased numbers of necrotic and TUNEL positive cells, and significantly increased pro-apoptotic protein levels in UCP2-/- mice compared with WT mice subjected to the same duration of I/R. Further, deletion of UCP2 increased ROS production, elevated LC3, Beclin1 and PINK1, while it suppressed p62 compared with respective WT ischemic controls. Electron microscopic study demonstrated the number of autophagosomes was higher in the UCP2-/- group, compared with the WT group. Conclusions: It is concluded that deletion of UCP2 exacerbates cerebral I/R injury via reinforcing mitophagy and cellular apoptosis in mice.


Assuntos
Isquemia Encefálica/complicações , Encéfalo/patologia , Infarto da Artéria Cerebral Média/complicações , Traumatismo por Reperfusão/patologia , Proteína Desacopladora 2/deficiência , Animais , Apoptose , Autofagossomos/patologia , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Feminino , Humanos , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/patologia , Mitofagia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/etiologia , Proteína Desacopladora 2/genética
17.
Proc Natl Acad Sci U S A ; 114(9): 2389-2394, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28193887

RESUMO

Parkinson disease (PD) is a neurodegenerative disorder pathologically characterized by nigrostriatal dopamine neuron loss and the postmortem presence of Lewy bodies, depositions of insoluble α-synuclein, and other proteins that likely contribute to cellular toxicity and death during the disease. Genetic and biochemical studies have implicated impaired lysosomal and mitochondrial function in the pathogenesis of PD. Transmembrane protein 175 (TMEM175), the lysosomal K+ channel, is centered under a major genome-wide association studies peak for PD, making it a potential candidate risk factor for the disease. To address the possibility that variation in TMEM175 could play a role in PD pathogenesis, TMEM175 function was investigated in a neuronal model system. Studies confirmed that TMEM175 deficiency results in unstable lysosomal pH, which led to decreased lysosomal catalytic activity, decreased glucocerebrosidase activity, impaired autophagosome clearance by the lysosome, and decreased mitochondrial respiration. Moreover, TMEM175 deficiency in rat primary neurons resulted in increased susceptibility to exogenous α-synuclein fibrils. Following α-synuclein fibril treatment, neurons deficient in TMEM175 were found to have increased phosphorylated and detergent-insoluble α-synuclein deposits. Taken together, data from these studies suggest that TMEM175 plays a direct and critical role in lysosomal and mitochondrial function and PD pathogenesis and highlight this ion channel as a potential therapeutic target for treating PD.


Assuntos
Autofagossomos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Canais de Potássio/genética , alfa-Sinucleína/química , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/patologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/efeitos dos fármacos , Lisossomos/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Modelos Biológicos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Canais de Potássio/deficiência , Cultura Primária de Células , Agregados Proteicos/efeitos dos fármacos , Ratos , alfa-Sinucleína/farmacologia
18.
Ecotoxicol Environ Saf ; 195: 110403, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32193019

RESUMO

BACKGROUND: Evidence shows that individuals who are under long-term exposure to environmental PM2.5 are at increased risk of chronic kidney disease. Various laboratory experiments also suggest several mechanistic links between PM2.5 exposure and kidney injury. Polycyclic aromatic hydrocarbons (PAHs) are common organic chemicals existing in PM2.5. However, whether benzo [b]fluoranthene (BbF), the most potent carcinogens and the highest content of PAHs, plays an important role in podocyte injury via reducing autophagy, have not been reported. METHODS: Podocytes were exposed to different concentrations and times of BbF. Cell viability was assessed by using CCK-8. Morphological phenotypes were detected by using optical microscopy. Cytoskeletons were detected by using immunofluorescence assay. Expression of podocyte injury markers were determined by Western blot. Podocytes were observed under TEM, autophagic activity was evaluated by Western blot analysis and immunofluorescence assay. A possible effect of an inhibitor (CQ, chloroquine) or an inducer (rapamycin) of autophagy on BbF-induced podocyte injury also was examined. RESULTS: BbF changed cellular morphology, decreased cell viability and rearranged cytoskeleton. The proteins' expression level of autophagy and the numbers of autophagosomes under TEM was decreased and the proteins' expression level of slit diaphragm was increased in a dose- and time-dependent manner. In addition, BbF-induced podocyte injury was enhanced by inhibition of autophagy and inhibited by activation of autophagy in podocytes. CONCLUSIONS: Taken together, our data suggest that BbF is toxic to podocytes, as well as reduce autophagy. Furthermore, inhibition of autophagy plays a regulatory role in BbF-induced podocyte injury.


Assuntos
Poluentes Atmosféricos/toxicidade , Autofagia/efeitos dos fármacos , Fluorenos/toxicidade , Material Particulado/toxicidade , Podócitos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Autofagossomos/efeitos dos fármacos , Autofagossomos/patologia , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Podócitos/patologia , Sirolimo/farmacologia
19.
Ecotoxicol Environ Saf ; 205: 111188, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32836151

RESUMO

Increasing evidence indicates autophagy and apoptosis are involved in the toxicity mechanism of heavy metals. Our previous studies showed that cadmium (Cd) could induce autophagy and apoptosis in duck kidneys in vivo, nevertheless, the interaction between them has yet to be elucidated. Herein, the cells were either treated with 3CdSO4·8H2O (0, 1.25, 2.5, 5.0 µM Cd) or/and 3-methyladenine (3-MA) (2.5 µM) for 12 h and the indictors related autophagy and apoptosis were detected to assess the correlation between autophagy and apoptosis induced by Cd in duck renal tubular epithelial cells. The results demonstrated that Cd exposure notably elevated intracellular and extracellular Cd contents, the number of autophagosomes and LC3 puncta, up-regulated LC3A, LC3B, Beclin-1, Atg5 mRNA levels, and Beclin-1 and LC3II/LC3I protein levels, down-regulated mTOR, p62 and Dynein mRNA levels and p62 protein level. Additionally, autophagy inhibitor 3-MA decreased Beclin-1, LC3II/LC3I protein levels and increased p62 protein level. Moreover, co-treatment with Cd and 3-MA could notably elevate Caspase-3, Cyt C, Bax, and Bak-1 mRNA levels, Caspase-3 and cleaved Caspase-3 protein levels, and cell apoptotic rate as well as cell damage, decreased mitochondrial membrane potential (MMP), Bcl-2 mRNA level and the ratio of Bcl-2 to Bax compared to treatment with Cd alone. Overall, these results indicate Cd exposure can induce autophagy in duck renal tubular epithelial cells, and inhibition of autophagy might aggravate Cd-induced apoptosis through mitochondria-mediated pathway.


Assuntos
Apoptose/efeitos dos fármacos , Autofagossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cádmio/toxicidade , Patos , Células Epiteliais/efeitos dos fármacos , Túbulos Renais/efeitos dos fármacos , Animais , Autofagossomos/metabolismo , Autofagossomos/patologia , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos
20.
Am J Physiol Cell Physiol ; 317(2): C209-C225, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31116585

RESUMO

We hypothesized that a functional apolipoprotein LI (APOL1)-miR193a axis (inverse relationship) preserves, but disruption alters, the podocyte molecular phenotype through the modulation of autophagy flux. Podocyte-expressing APOL1G0 (G0-podocytes) showed downregulation but podocyte-expressing APOL1G1 (G1-podocytes) and APOL1G2 (G2-podocytes) displayed enhanced miR193a expression. G0-, G1-, and G2-podocytes showed enhanced expression of light chain (LC) 3-II and beclin-1, but a disparate expression of p62 (low in wild-type but high in risk alleles). G0-podocytes showed enhanced, whereas G1- and G2-podocytes displayed decreased, phosphorylation of Unc-51-like autophagy-activating kinase (ULK)1 and class III phosphatidylinositol 3-kinase (PI3KC3). Podocytes overexpressing miR193a (miR193a-podocytes), G1, and G2 showed decreased transcription of PIK3R3 (PI3KC3's regulatory unit). Since 3-methyladenine (3-MA) enhanced miR193a expression but inhibited PIK3R3 transcription, it appears that 3-MA inhibits autophagy and induces podocyte dedifferentiation via miR193a generation. miR193a-, G1-, and G2-podocytes also showed decreased phosphorylation of mammalian target of rapamycin (mTOR) that could repress lysosome reformation. G1- and G2-podocytes showed enhanced expression of run domain beclin-1-interacting and cysteine-rich domain-containing protein (Rubicon); however, its silencing prevented their dedifferentiation. Docking, protein-protein interaction, and immunoprecipitation studies with antiautophagy-related gene (ATG)14L, anti-UV radiation resistance-associated gene (UVRAG), or Rubicon antibodies suggested the formation of ATG14L complex I and UVRAG complex II in G0-podocytes and the formation of Rubicon complex III in G1- and G2-podocytes. These findings suggest that the APOL1 risk alleles favor podocyte dedifferentiation through blockade of multiple autophagy pathways.


Assuntos
Apolipoproteína L1/metabolismo , Autofagia , Desdiferenciação Celular , MicroRNAs/metabolismo , Podócitos/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Apolipoproteína L1/genética , Autofagossomos/metabolismo , Autofagossomos/patologia , Proteínas Relacionadas à Autofagia/metabolismo , Linhagem Celular Transformada , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , Simulação de Dinâmica Molecular , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Podócitos/patologia , Mapas de Interação de Proteínas , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa