Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.969
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Nature ; 606(7912): 113-119, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35585233

RESUMO

Cultivated oat (Avena sativa L.) is an allohexaploid (AACCDD, 2n = 6x = 42) thought to have been domesticated more than 3,000 years ago while growing as a weed in wheat, emmer and barley fields in Anatolia1,2. Oat has a low carbon footprint, substantial health benefits and the potential to replace animal-based food products. However, the lack of a fully annotated reference genome has hampered efforts to deconvolute its complex evolutionary history and functional gene dynamics. Here we present a high-quality reference genome of A. sativa and close relatives of its diploid (Avena longiglumis, AA, 2n = 14) and tetraploid (Avena insularis, CCDD, 2n = 4x = 28) progenitors. We reveal the mosaic structure of the oat genome, trace large-scale genomic reorganizations in the polyploidization history of oat and illustrate a breeding barrier associated with the genome architecture of oat. We showcase detailed analyses of gene families implicated in human health and nutrition, which adds to the evidence supporting oat safety in gluten-free diets, and we perform mapping-by-sequencing of an agronomic trait related to water-use efficiency. This resource for the Avena genus will help to leverage knowledge from other cereal genomes, improve understanding of basic oat biology and accelerate genomics-assisted breeding and reanalysis of quantitative trait studies.


Assuntos
Avena , Grão Comestível , Genoma de Planta , Avena/genética , Diploide , Grão Comestível/genética , Genoma de Planta/genética , Mosaicismo , Melhoramento Vegetal , Tetraploidia
2.
Nature ; 602(7896): 280-286, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34937943

RESUMO

Grafting is possible in both animals and plants. Although in animals the process requires surgery and is often associated with rejection of non-self, in plants grafting is widespread, and has been used since antiquity for crop improvement1. However, in the monocotyledons, which represent the second largest group of terrestrial plants and include many staple crops, the absence of vascular cambium is thought to preclude grafting2. Here we show that the embryonic hypocotyl allows intra- and inter-specific grafting in all three monocotyledon groups: the commelinids, lilioids and alismatids. We show functional graft unions through histology, application of exogenous fluorescent dyes, complementation assays for movement of endogenous hormones, and growth of plants to maturity. Expression profiling identifies genes that unify the molecular response associated with grafting in monocotyledons and dicotyledons, but also gene families that have not previously been associated with tissue union. Fusion of susceptible wheat scions to oat rootstocks confers resistance to the soil-borne pathogen Gaeumannomyces graminis. Collectively, these data overturn the consensus that monocotyledons cannot form graft unions, and identify the hypocotyl (mesocotyl in grasses) as a meristematic tissue that allows this process. We conclude that graft compatibility is a shared ability among seed-bearing plants.


Assuntos
Avena , Raízes de Plantas , Brotos de Planta , Transplantes , Triticum , Ascomicetos/patogenicidade , Avena/embriologia , Avena/microbiologia , Hipocótilo , Meristema , Raízes de Plantas/embriologia , Raízes de Plantas/microbiologia , Brotos de Planta/embriologia , Brotos de Planta/microbiologia , Triticum/embriologia , Triticum/microbiologia
3.
Annu Rev Pharmacol Toxicol ; 63: 637-660, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36206988

RESUMO

The coordinated movement of organic anions (e.g., drugs, metabolites, signaling molecules, nutrients, antioxidants, gut microbiome products) between tissues and body fluids depends, in large part, on organic anion transporters (OATs) [solute carrier 22 (SLC22)], organic anion transporting polypeptides (OATPs) [solute carrier organic (SLCO)], and multidrug resistance proteins (MRPs) [ATP-binding cassette, subfamily C (ABCC)]. Depending on the range of substrates, transporters in these families can be considered multispecific, oligospecific, or (relatively) monospecific. Systems biology analyses of these transporters in the context of expression patterns reveal they are hubs in networks involved in interorgan and interorganismal communication. The remote sensing and signaling theory explains how the coordinated functions of drug transporters, drug-metabolizing enzymes, and regulatory proteins play a role in optimizing systemic and local levels of important endogenous small molecules. We focus on the role of OATs, OATPs, and MRPs in endogenous metabolism and how their substrates (e.g., bile acids, short chain fatty acids, urate, uremic toxins) mediate interorgan and interorganismal communication and help maintain and restore homeostasis in healthy and disease states.


Assuntos
Avena , Transportadores de Ânions Orgânicos , Humanos , Avena/metabolismo , Tecnologia de Sensoriamento Remoto , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Trifosfato de Adenosina
4.
Proc Natl Acad Sci U S A ; 120(1): e2211683120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574697

RESUMO

Centromeres are the specialized regions of the chromosomes that direct faithful chromosome segregation during cell division. Despite their functional conservation, centromeres display features of rapidly evolving DNA and wide evolutionary diversity in size and organization. Previous work found that the noncanonical B-form DNA structures are abundant in the centromeres of several eukaryotic species with a possible implication for centromere specification. Thus far, systematic studies into the organization and function of non-B-form DNA in plants remain scarce. Here, we applied the oat system to investigate the role of non-B-form DNA in centromeres. We conducted chromatin immunoprecipitation sequencing using an antibody to the centromere-specific histone H3 variant (CENH3); this accurately positioned oat centromeres with different ploidy levels and identified a series of centromere-specific sequences including minisatellites and retrotransposons. To define genetic characteristics of oat centromeres, we surveyed the repeat sequences and found that dyad symmetries were abundant in oat centromeres and were predicted to form non-B-DNA structures in vivo. These structures including bent DNA, slipped DNA, Z-DNA, G-quadruplexes, and R-loops were prone to form within CENH3-binding regions. Dynamic conformational changes of predicted non-B-DNA occurred during the evolution from diploid to tetraploid to hexaploid oat. Furthermore, we applied the single-molecule technique of AFM and DNA:RNA immunoprecipitation with deep sequencing to validate R-loop enrichment in oat centromeres. Centromeric retrotransposons exhibited strong associations with R-loop formation. Taken together, our study elucidates the fundamental character of non-B-form DNA in the oat genome and reveals its potential role in centromeres.


Assuntos
Avena , Retroelementos , Avena/genética , Avena/metabolismo , Centrômero/genética , Centrômero/metabolismo , Histonas/genética , Histonas/metabolismo , Poliploidia
5.
Proc Natl Acad Sci U S A ; 119(40): e2121248119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161958

RESUMO

The slender wild oat (Avena barbata) was widely studied in California using allozymes in the 1970s and interpreted as a case of ecotypic adaptation to contrasting moisture environments. However, common garden studies suggested that the moist-associated ("mesic") ecotype had high fitness in both moist and dry habitats, thus predicting an adaptive spread into areas occupied by the dry associated ("xeric") ecotype. To test this prediction, we revisited 100 populations of A. barbata that were screened genetically 40 y ago. As expected, mesic allozyme and morphological markers are much more common than in the 1970s. The less-fit xeric ecotype, while still widespread, has declined markedly in range and frequency. Genotyping by sequencing of modern populations reveals striking genetic uniformity within each of the two ecotypes. In recombinants between the two ecotypes, the mesic allele at a major fitness quantitative trait locus (QTL) shows a high frequency but so do many other genomic regions not identified as fitness QTL. Additional introduced genotypes are diverse and more widespread than in the past, and our results show that these have spread into the former range of the xeric ecotype to an even greater extent than the mesic ecotype has. While these results confirm the prediction of contemporary evolution from common gardens, they also suggest that much of the change has been driven by additional waves of introduced genotypes.


Assuntos
Avena , Ecótipo , Isoenzimas , Adaptação Fisiológica/genética , Alelos , Avena/genética , California , Deriva Genética , Aptidão Genética , Genótipo , Isoenzimas/genética , Locos de Características Quantitativas
6.
Proc Natl Acad Sci U S A ; 119(12): e2118709119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35290128

RESUMO

Triterpenoids are biologically active metabolites synthesized from a common linear precursor catalyzed by 2,3-oxidosqualene cyclases (OSCs) to form diverse triterpenoid skeletons. OSCs corresponding to many discovered triterpene alcohols in nature have not been functionally and mechanistically characterized due to the diversity of chemical structures and complexity of the cyclization mechanism. We carried out a genome-wide investigation of OSCs from Avena strigosa and discovered two triterpene synthases, namely, AsHS1 and AsHS2, using a Nicotiana benthamiana expression system. These synthases produce hopenol B and hop-17(21)-en-3ß-ol, which are components of surface wax in oat panicles and sheathes, respectively. We demonstrated that substitutions of two to three amino acid residues in AsHS1 with corresponding residues from AsHS2 allowed it to be completely converted into a hop-17(21)-en-3ß-ol synthase. AsHS2 mutants with a substitution at site 410 could synthesize hopenol B alone or mixed with a side product isomotiol. The combined quantum mechanics and molecular mechanics calculation demonstrated that the side chain size of the residue at site 410 regulated the relative orientations between the hopyl C22 cation and Phe257, leading to a difference in deprotonation positions through providing or not providing cation­π interaction between the aromatic ring of F257 and the carbocation intermediate. A similar mechanism could be applied to a hopenol B synthase from a dicotyledonous plant Aquilegia. This study provided mechanistic insight into triterpenoid synthesis and discovered key amino acid residues acting on hydride transfer and a deprotonation site to differentiate between hopane-type scaffolds in diverse plant species.


Assuntos
Transferases Intramoleculares , Triterpenos , Avena/genética , Transferases Intramoleculares/genética , Plantas
7.
Mol Plant Microbe Interact ; 37(3): 290-303, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37955552

RESUMO

Puccinia coronata f. sp. avenae (Pca) is an important fungal pathogen causing crown rust that impacts oat production worldwide. Genetic resistance for crop protection against Pca is often overcome by the rapid virulence evolution of the pathogen. This study investigated the factors shaping adaptive evolution of Pca using pathogen populations from distinct geographic regions within the United States and South Africa. Phenotypic and genome-wide sequencing data of these diverse Pca collections, including 217 isolates, uncovered phylogenetic relationships and established distinct genetic composition between populations from northern and southern regions from the United States and South Africa. The population dynamics of Pca involve a bidirectional movement of inoculum between northern and southern regions of the United States and contributions from clonality and sexuality. The population from South Africa is solely clonal. A genome-wide association study (GWAS) employing a haplotype-resolved Pca reference genome was used to define 11 virulence-associated loci corresponding to 25 oat differential lines. These regions were screened to determine candidate Avr effector genes. Overall, the GWAS results allowed us to identify the underlying genetic factors controlling pathogen recognition in an oat differential set used in the United States to assign pathogen races (pathotypes). Key GWAS findings support complex genetic interactions in several oat lines, suggesting allelism among resistance genes or redundancy of genes included in the differential set, multiple resistance genes recognizing genetically linked Avr effector genes, or potentially epistatic relationships. A careful evaluation of the composition of the oat differential set accompanied by the development or implementation of molecular markers is recommended. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Basidiomycota , Resistência à Doença , Puccinia , Resistência à Doença/genética , Avena/genética , Avena/microbiologia , Virulência/genética , Estudo de Associação Genômica Ampla , Filogenia , Doenças das Plantas/microbiologia , Basidiomycota/genética , Dinâmica Populacional
8.
BMC Plant Biol ; 24(1): 537, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867157

RESUMO

BACKGROUND: Avena fatua and A. sterilis are challenging to distinguish due to their strong similarities. However, Artificial Neural Networks (ANN) can effectively extract patterns and identify these species. We measured seed traits of Avena species from 122 locations across the Balkans and from some populations from southern, western, and central Europe (total over 22 000 seeds). The inputs for the ANN model included seed mass, size, color, hairiness, and placement of the awn attachment on the lemma. RESULTS: The ANN model achieved high classification accuracy for A. fatua and A. sterilis (R2 > 0.99, RASE < 0.0003) with no misclassification. Incorporating geographic coordinates as inputs also resulted in successful classification (R2 > 0.99, RASE < 0.000001) with no misclassification. This highlights the significant influence of geographic coordinates on the occurrence of Avena species. The models revealed hidden relationships between morphological traits that are not easily detectable through traditional statistical methods. For example, seed color can be partially predicted by other seed traits combined with geographic coordinates. When comparing the two species, A. fatua predominantly had the lemma attachment point in the upper half, while A. sterilis had it in the lower half. A. sterilis exhibited slightly longer seeds and hairs than A. fatua, while seed hairiness and mass were similar in both species. A. fatua populations primarily had brown, light brown, and black colors, while A. sterilis populations had black, brown, and yellow colors. CONCLUSIONS: Distinguishing A. fatua from A. sterilis based solely on individual characteristics is challenging due to their shared traits and considerable variability of traits within each species. However, it is possible to classify these species by combining multiple seed traits. This approach also has significant potential for exploring relationships among different traits that are typically difficult to assess using conventional methods.


Assuntos
Redes Neurais de Computação , Sementes , Sementes/anatomia & histologia , Avena/genética , Avena/anatomia & histologia , Península Balcânica , Europa (Continente)
9.
BMC Plant Biol ; 24(1): 530, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862888

RESUMO

BACKGROUND: Seed aging, a natural and inevitable process occurring during storage. Oats, an annual herb belonging to the Gramineae family and pooideae. In addition to being a healthy food, oats serve as ecological pastures, combating soil salinization and desertification. They also play a role in promoting grassland agriculture and supplementing winter livestock feed. However, the high lipid and fat derivatives contents of oat seeds make them susceptible to deterioration, as fat derivatives are prone to rancidity, affecting oat seed production, storage, development, and germplasm resource utilization. Comparative studies on the effects of aging on physiology and cytological structure in covered and naked oat seeds are limited. Thus, our study aimed to determine the mechanism underlying seed deterioration in artificially aged 'LongYan No. 3' (A. sativa) and 'BaiYan No. 2' (A. nuda) seeds, providing a basis for the physiological evaluation of oat seed aging and serving as a reference for scientifically safe storage and efficient utilization of oats. RESULTS: In both oat varieties, superoxide dismutase and catalase activities in seeds showed increasing and decreasing trends, respectively. Variance analysis revealed significant differences and interaction in all measured indicators of oat seeds between the two varieties at different aging times. 'LongYan No. 3' seeds, aged for 24-96 h, exhibited a germination rate of < 30%, Conductivity, malondialdehyde, soluble sugar, and soluble protein levels increased more significantly than the 'BaiYan No. 2'. With prolonged aging leading to cell membrane degradation, reactive oxygen species accumulation, disrupted antioxidant enzyme system, evident embryo cell swelling, and disordered cell arrangement, blocking the nutrient supply route. Simultaneously, severely concentrated chromatin in the nucleus, damaged mitochondrial structure, and impaired energy metabolism were noted, resulting in the loss of 'LongYan No. 3' seed vitality and value. Conversely, 'BaiYan No. 2' seeds showed a germination rate of 73.33% after 96 h of aging, consistently higher antioxidant enzyme activity during aging, normal embryonic cell shape, and existence of the endoplasmic reticulum. CONCLUSIONS: ROS accumulation and antioxidant enzyme system damage in aged oat seeds, nuclear chromatin condensation, mitochondrial structure damage, nucleic acid metabolism and respiration weakened, oat seed vigor decreased. 'LongYan No. 3' seeds were more severely damaged under artificial aging than 'BaiYan No. 2' seeds, highlighting their heightened susceptibility to aging effects.


Assuntos
Avena , Sementes , Avena/fisiologia , Avena/crescimento & desenvolvimento , Sementes/fisiologia , Sementes/crescimento & desenvolvimento , Temperatura Alta , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Germinação/fisiologia , Antioxidantes/metabolismo
10.
BMC Plant Biol ; 24(1): 632, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970019

RESUMO

BACKGROUND: The myeloblastosis (MYB) transcription factor (TF) family is one of the largest and most important TF families in plants, playing an important role in a life cycle and abiotic stress. RESULTS: In this study, 268 Avena sativa MYB (AsMYB) TFs from Avena sativa were identified and named according to their order of location on the chromosomes, respectively. Phylogenetic analysis of the AsMYB and Arabidopsis MYB proteins were performed to determine their homology, the AsMYB1R proteins were classified into 5 subgroups, and the AsMYB2R proteins were classified into 34 subgroups. The conserved domains and gene structure were highly conserved among the subgroups. Eight differentially expressed AsMYB genes were screened in the transcriptome of transcriptional data and validated through RT-qPCR. Three genes in AsMYB2R subgroup, which are related to the shortened growth period, stomatal closure, and nutrient and water transport by PEG-induced drought stress, were investigated in more details. The AsMYB1R subgroup genes LHY and REV 1, together with GST, regulate ROS homeostasis to ensure ROS signal transduction and scavenge excess ROS to avoid oxidative damage. CONCLUSION: The results of this study confirmed that the AsMYB TFs family is involved in the homeostatic regulation of ROS under drought stress. This lays the foundation for further investigating the involvement of the AsMYB TFs family in regulating A. sativa drought response mechanisms.


Assuntos
Avena , Secas , Homeostase , Filogenia , Proteínas de Plantas , Espécies Reativas de Oxigênio , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Avena/genética , Avena/metabolismo , Regulação da Expressão Gênica de Plantas , Polietilenoglicóis/farmacologia , Família Multigênica , Estresse Fisiológico/genética , Estudo de Associação Genômica Ampla , Genoma de Planta
11.
Planta ; 259(6): 126, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635035

RESUMO

MAIN CONCLUSION: The dormancy release by KAR1 is associated with a reduction of coleorhiza and radicle sensitivity to ABA as well as with reduction the ABA/GAs ratio in the coleorhiza, by a decrease content of ABA, and in the radicle, by a decrease the ABA and an increase of the GAs contents. Both, karrikin 1 (KAR1) and gibberellin A3 (GA3), release dormancy in Avena fatua caryopses, resulting in the emergence of coleorhiza (CE) and radicle (RE). Moreover, KAR1 and GA3 stimulate CE and RE in the presence of abscisic acid (ABA), the stimulation being more effective in CE. The stimulatory effects of KAR1 and GA3 involve also the CE and RE rates. A similar effect was observed at KAR1 concentrations much lower than those of GA3. KAR1 increased the levels of bioactive GA5 and GA6 in embryos and the levels of GA1, GA5, GA3, GA6 and GA4 in radicles. The stimulatory effect of KAR1 on germination, associated with increased levels of gibberellins (GAs) and reduced levels of ABA in embryos, was counteracted by paclobutrazol (PAC), commonly regarded as a GAs biosynthesis inhibitor. Consequently, KAR1 decreased the ABA/GAs ratio, whereas PAC, used alone or in combination with KAR1, increased it. The ABA/GAs ratio was reduced by KAR1 in both coleorhiza and radicle, the effect being stronger in the latter. We present the first evidence that KAR1-induced dormancy release requires a decreased ABA/GAs ratio in coleorhiza and radicle. It is concluded that the dormancy-releasing effect of KAR1 in A. fatua caryopses includes (i) a reduction of the coleorhiza and radicle sensitivity to ABA, and (2) a reduction of the ABA/GAs ratio (i) in the coleorhiza, by decreasing the ABA content, and (ii) in the radicle, by decreasing the ABA and increasing the content GAs, particularly GA1. The results may suggest different mechanisms of dormancy release by KAR1 in monocot and dicot seeds.


Assuntos
Ácido Abscísico , Avena , Germinação , Giberelinas , Sementes
12.
Planta ; 260(1): 8, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789631

RESUMO

MAIN CONCLUSION: A gene-to-metabolite approach afforded new insights regarding defence mechanisms in oat plants that can be incorporated into plant breeding programmes for the selection of markers and genes related to disease resistance. Monitoring metabolite levels and changes therein can complement and corroborate transcriptome (mRNA) data on plant-pathogen interactions, thus revealing mechanisms involved in pathogen attack and host defence. A multi-omics approach thus adds new layers of information such as identifying metabolites with antimicrobial properties, elucidating metabolomic profiles of infected and non-infected plants, and reveals pathogenic requirements for infection and colonisation. In this study, two oat cultivars (Dunnart and SWK001) were inoculated with Pseudomonas syringae pathovars, pathogenic and non-pathogenic on oat. Following inoculation, metabolites were extracted with methanol from leaf tissues at 2, 4 and 6 days post-infection and analysed by multiple reaction monitoring (MRM) on a triple quadrupole mass spectrometer system. Relatedly, mRNA was isolated at the same time points, and the cDNA analysed by quantitative PCR (RT-qPCR) for expression levels of selected gene transcripts associated with avenanthramide (Avn) biosynthesis. The targeted amino acids, hydroxycinnamic acids and Avns were successfully quantified. Distinct cultivar-specific differences in the metabolite responses were observed in response to pathogenic and non-pathogenic strains. Trends in aromatic amino acids and hydroxycinnamic acids seem to indicate stronger activation and flux through these pathways in Dunnart as compared to SWK001. A positive correlation between hydroxycinnamoyl-CoA:hydroxyanthranilate N-hydroxycinnamoyl transferase (HHT) gene expression and the abundance of Avn A in both cultivars was documented. However, transcript profiling of selected genes involved in Avn synthesis did not reveal a clear pattern to distinguish between the tolerant and susceptible cultivars.


Assuntos
Avena , Perfilação da Expressão Gênica , Metaboloma , Doenças das Plantas , Pseudomonas syringae , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia , Avena/microbiologia , Avena/genética , Avena/metabolismo , Metaboloma/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Compostos Fitoquímicos/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/genética , Regulação da Expressão Gênica de Plantas , Resistência à Doença/genética , Interações Hospedeiro-Patógeno , Transcriptoma , ortoaminobenzoatos/metabolismo
13.
New Phytol ; 242(4): 1661-1675, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38358052

RESUMO

Arbuscular mycorrhizal fungi (AMF) transport substantial plant carbon (C) that serves as a substrate for soil organisms, a precursor of soil organic matter (SOM), and a driver of soil microbial dynamics. Using two-chamber microcosms where an air gap isolated AMF from roots, we 13CO2-labeled Avena barbata for 6 wk and measured the C Rhizophagus intraradices transferred to SOM and hyphosphere microorganisms. NanoSIMS imaging revealed hyphae and roots had similar 13C enrichment. SOM density fractionation, 13C NMR, and IRMS showed AMF transferred 0.77 mg C g-1 of soil (increasing total C by 2% relative to non-mycorrhizal controls); 33% was found in occluded or mineral-associated pools. In the AMF hyphosphere, there was no overall change in community diversity but 36 bacterial ASVs significantly changed in relative abundance. With stable isotope probing (SIP)-enabled shotgun sequencing, we found taxa from the Solibacterales, Sphingobacteriales, Myxococcales, and Nitrososphaerales (ammonium oxidizing archaea) were highly enriched in AMF-imported 13C (> 20 atom%). Mapping sequences from 13C-SIP metagenomes to total ASVs showed at least 92 bacteria and archaea were significantly 13C-enriched. Our results illustrate the quantitative and ecological impact of hyphal C transport on the formation of potentially protective SOM pools and microbial roles in the AMF hyphosphere soil food web.


Assuntos
Carbono , Minerais , Micorrizas , Micorrizas/fisiologia , Carbono/metabolismo , Minerais/metabolismo , Cadeia Alimentar , Hifas , Microbiologia do Solo , Isótopos de Carbono , Avena/microbiologia , Compostos Orgânicos/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Raízes de Plantas/microbiologia , Solo/química
14.
Plant Physiol ; 194(1): 168-189, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37862163

RESUMO

Oat (Avena sativa) is a cereal crop whose grains are rich in (1,3;1,4)-ß-D-glucan (mixed-linkage glucan or MLG), a soluble dietary fiber. In our study, we analyzed oat endosperm development in 2 Canadian varieties with differing MLG content and nutritional value. We confirmed that oat undergoes a nuclear type of endosperm development but with a shorter cellularization phase than barley (Hordeum vulgare). Callose and cellulose were the first polysaccharides to be detected in the early anticlinal cell walls at 11 days postemergence (DPE) of the panicle. Other polysaccharides such as heteromannan and homogalacturonan were deposited early in cellularization around 12 DPE after the first periclinal walls are laid down. In contrast to barley, heteroxylan deposition coincided with completion of cellularization and was detected from 14 DPE but was only detectable after demasking. Notably, MLG was the last polysaccharide to be laid down at 18 DPE within the differentiation phase, rather than during cellularization. In addition, differences in the spatiotemporal patterning of MLG were also observed between the 2 varieties. The lower MLG-containing cultivar AC Morgan (3.5% w/w groats) was marked by the presence of a discontinuous pattern of MLG labeling, while labeling in the same walls in CDC Morrison (5.6% w/w groats) was mostly even and continuous. RNA-sequencing analysis revealed higher transcript levels of multiple MLG biosynthetic cellulose synthase-like F (CSLF) and CSLH genes during grain development in CDC Morrison compared with AC Morgan that likely contributes to the increased abundance of MLG at maturity in CDC Morrison. CDC Morrison was also observed to have smaller endosperm cells with thicker walls than AC Morgan from cellularization onwards, suggesting the processes controlling cell size and shape are established early in development. This study has highlighted that the molecular processes influencing MLG content and deposition are more complex than previously imagined.


Assuntos
Endosperma , Hordeum , Endosperma/metabolismo , Avena , Grão Comestível/genética , Grão Comestível/metabolismo , Canadá , Polissacarídeos/metabolismo , Glucanos/metabolismo , Hordeum/genética , Hordeum/metabolismo , Parede Celular/metabolismo
15.
Phytopathology ; 114(6): 1356-1365, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38114076

RESUMO

Puccinia coronata f. sp. avenae is the causal agent of the disease known as crown rust, which represents a bottleneck in oat production worldwide. Characterization of pathogen populations often involves race (pathotype) assignments using differential sets, which are not uniform across countries. This study compared the virulence profiles of 25 P. coronata f. sp. avenae isolates from Australia using two host differential sets, one from Australia and one from the United States. These differential sets were also genotyped using diversity arrays technology sequencing technology. Phenotypic and genotypic discrepancies were detected on 8 out of 29 common lines between the two sets, indicating that pathogen race assignments based on those lines are not comparable. To further investigate molecular markers that could assist in the stacking of rust resistance genes important for Australia, four published Pc91-linked markers were validated across the differential sets and then screened across a collection of 150 oat cultivars. Drover, Aladdin, and Volta were identified as putative carriers of the Pc91 locus. This is the first report to confirm that the cultivar Volta carries Pc91 and demonstrates the value of implementing molecular markers to characterize materials in breeding pools of oat. Overall, our findings highlight the necessity of examining seed stocks using pedigree and molecular markers to ensure seed uniformity and bring robustness to surveillance methodologies. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Avena , Resistência à Doença , Genótipo , Doenças das Plantas , Puccinia , Avena/microbiologia , Avena/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Austrália , Puccinia/genética , Fenótipo , Virulência/genética , Estados Unidos , Marcadores Genéticos/genética , Basidiomycota/genética , Basidiomycota/fisiologia
16.
J Toxicol Environ Health A ; 87(13): 533-540, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38660981

RESUMO

Seed conditioning with ultraviolet light (UV-C) might (1) improve crop yield and quality, (2) reduce the use of agrochemicals during cultivation, and (3) increase plant survival in high salinity environments. The aim of this study was to examine the effects of UV-C conditioning of white oat seeds at two doses (0.85 and 3.42 kJ m-2) under salinity stress (100 mM NaCl). Seeds were sown on germination paper and kept in a germination chamber at 20°C. Germination and seedling growth parameters were evaluated after 5 and 10 days. Data demonstrated that excess salt reduced germination and initial growth of white oat seedlings. In all the variables analyzed, exposure of seeds to UV-C under salt stress exerted a positive effect compared to non-irradiated control. The attenuating influence of UV-C in germination was greater at 0.85 than at 3.42 kJ m-2. Thus, data indicate that conditioning white oat seeds in UV-C light produced greater tolerance to salt stress. These findings suggest that UV-C conditioning of white oat seeds may be considered as a simple and economical strategy to alleviate salt-induced stress.


Assuntos
Avena , Germinação , Sementes , Raios Ultravioleta , Avena/efeitos dos fármacos , Avena/efeitos da radiação , Avena/crescimento & desenvolvimento , Sementes/efeitos da radiação , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Germinação/efeitos da radiação , Estresse Salino/efeitos dos fármacos , Plântula/efeitos da radiação , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Cloreto de Sódio
17.
Food Microbiol ; 118: 104427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38049267

RESUMO

The production of plant-based dairy alternatives has been majorly focused on the improvement of sensorial, technological and nutritional properties, to be able to mimic and replace milk-based fermented products. The presence of off-flavours and antinutrients, the lack of production of dairy-like flavours or the metabolic inaccessibility of plant proteins are some of the challenges to overcome to generate plant-based dairy alternatives. However, in the present study, it is demonstrated how the synergistic effect of two LAB strains, when cocultured, can simultaneously solve those challenges when fermenting in four different plant-based raw materials: soy, pea, oat, and potato drinks (SPOP). The fermentation was performed through the mono- and co-culture of the two LAB strains isolated from Apis mellifera (honeybee): Leuconostoc pseudomesenteroides NFICC 2004 and Lactococcus lactis NFICC 2005. Firstly, the coculture of both strains demonstrated to increase the acidification rate of the four plant matrices. Moreover, L. pseudomesenteroides (LP) demonstrated to in situ produce high concentrations of mannitol when fructose was present as C-source. Furthermore, L. pseudomesenteroides, which encoded for PII-proteinase, demonstrated to break down SPOP proteins, releasing free amino acids that were used by L.lactis (LL) for growth and metabolism. Lastly, the analysis of their co-metabolic volatile performance showed the principal ability of removal of the main off-flavours found in SPOP, such as hexanal, 1-octen-3-ol, 2-pentylfuran, pentanal, octanal, heptanal, and nonanal, mainly led by L. pseudomesenteroides, as well as the production of dairy-like flavours, such as diacetyl and 3-methyl-1-butanol, triggered by L. lactis metabolism. Overall, these findings endorsed the use of honeybee isolated strains as starter cultures, demonstrated the potential of coupling genotypes and phenotypes of multiple strains to improve the organoleptic properties suggesting a potential of combining plant-based matrices for the generation of future high-quality plant-based dairy alternatives.


Assuntos
Lactococcus lactis , Solanum tuberosum , Abelhas , Animais , Avena , Técnicas de Cocultura , Pisum sativum , Fermentação , Plantas
18.
PLoS Genet ; 17(5): e1009544, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33999957

RESUMO

Here we describe the development and characterization of the photo-N-degron, a peptide tag that can be used in optogenetic studies of protein function in vivo. The photo-N-degron can be expressed as a genetic fusion to the amino termini of other proteins, where it undergoes a blue light-dependent conformational change that exposes a signal for the class of ubiquitin ligases, the N-recognins, which mediate the N-end rule mechanism of proteasomal degradation. We demonstrate that the photo-N-degron can be used to direct light-mediated degradation of proteins in Saccharomyces cerevisiae and Drosophila melanogaster with fine temporal control. In addition, we compare the effectiveness of the photo-N-degron with that of two other light-dependent degrons that have been developed in their abilities to mediate the loss of function of Cactus, a component of the dorsal-ventral patterning system in the Drosophila embryo. We find that like the photo-N-degron, the blue light-inducible degradation (B-LID) domain, a light-activated degron that must be placed at the carboxy terminus of targeted proteins, is also effective in eliciting light-dependent loss of Cactus function, as determined by embryonic dorsal-ventral patterning phenotypes. In contrast, another previously described photosensitive degron (psd), which also must be located at the carboxy terminus of associated proteins, has little effect on Cactus-dependent phenotypes in response to illumination of developing embryos. These and other observations indicate that care must be taken in the selection and application of light-dependent and other inducible degrons for use in studies of protein function in vivo, but importantly demonstrate that N- and C-terminal fusions to the photo-N-degron and the B-LID domain, respectively, support light-dependent degradation in vivo.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/efeitos da radiação , Optogenética/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos da radiação , Animais , Arginina/metabolismo , Avena , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Escuridão , Drosophila melanogaster/embriologia , Embrião não Mamífero/metabolismo , Embrião não Mamífero/efeitos da radiação , Feminino , Fluorescência , Lasers , Luz , Mutação com Perda de Função , Masculino , Proteínas de Neoplasias/metabolismo , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios Proteicos/efeitos da radiação , Proteínas Serina-Treonina Quinases/química , Proteólise/efeitos da radiação , Ubiquitina-Proteína Ligases/metabolismo
19.
Plant Dis ; 108(7): 1959-1963, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38277650

RESUMO

Puccinia coronata f. sp. avenae (Pca) is an important foliar pathogen of oat which causes crown rust disease. The virulence profile of 48 Pca isolates derived from different locations in Australia was characterized using a collection of oat lines often utilized in rust surveys in the United States and Australia. This analysis indicates that Pca populations in Eastern Australia are broadly virulent, which contrasts with the population in Western Australia (WA). Several oat lines/Pc genes are effective against all rust samples collected from WA, suggesting they may provide useful resistance in this region if deployed in combination. We identified 19 lines from the United States oat differential set that display disease resistance to Pca in WA, with some in agreement with previous rust survey reports. We adopted the 10-letter nomenclature system to define oat crown rust races in Australia and compare the frequency of those virulence traits to published data from the United States. Based on this nomenclature, 42 unique races were detected among the 48 isolates, reflecting the high diversity of virulence phenotypes for Pca in Australia. Nevertheless, the Pca population in the United States is substantially more broadly virulent than that of Australia. Close examination of resistance profiles for the oat differential set lines after infection with Pca supports hypotheses of allelism or redundancy among Pc genes or the presence of several resistance genes in some oat differential lines. These findings illustrate the need to deconvolute the oat differential set using molecular tools.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Avena , Doenças das Plantas , Puccinia , Avena/microbiologia , Doenças das Plantas/microbiologia , Austrália , Virulência/genética , Puccinia/patogenicidade , Puccinia/genética , Resistência à Doença/genética , Estados Unidos , Basidiomycota/genética , Basidiomycota/patogenicidade , Basidiomycota/fisiologia
20.
Plant Dis ; 108(1): 175-181, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37606959

RESUMO

The Eurasian crown rust fungus Puccinia coronata var. coronata (Pcc) was recently reported in North America and is widespread across the Midwest and Northeast United States. Pcc is a close relative of major pathogens of oats, barley, and turfgrasses. It infects two highly invasive wetland plants, glossy buckthorn (Frangula alnus) and reed canarygrass (Phalaris arundinacea), and could be useful as an augmentative biological control agent. We conducted large greenhouse trials to assess the host specificity of Pcc and determine any threat to cultivated cereals, turfgrasses, or native North American species. A total of 1,830 accessions of cereal crop species and 783 accessions of 110 other gramineous species were evaluated. Young plants were first inoculated with a composite uredinial inoculum derived from aecia. Accessions showing sporulation were further tested with pure urediniospore isolates. Sixteen potential aecial hosts in the families Rhamnaceae and Elaeagnaceae were tested for susceptibility through inoculation with germinating teliospores. Thirteen grass species within five genera in the tribe Poeae (Apera, Calamagrostis, Lamarckia, Phalaris, and Puccinellia) and four species in Rhamnaceae (Frangula alnus, F. californica, F. caroliniana, and Rhamnus lanceolata) were found to be susceptible to Pcc, with some species native to North America. All assessed crop species and turfgrasses were resistant. Limited sporulation, however, was observed on some resistant species within Poeae and four other tribes: Brachypodieae, Bromeae, Meliceae, and Triticeae. Among these species are oats, barley, and Brachypodium distachyon, suggesting the possible use of Pcc in studies of nonhost resistance.


Assuntos
Basidiomycota , Hordeum , Puccinia , Humanos , Áreas Alagadas , Doenças das Plantas/microbiologia , Especificidade de Hospedeiro , Avena/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa