RESUMO
Tactile-foraging ducks are specialist birds known for their touch-dependent feeding behavior. They use dabbling, straining, and filtering to find edible matter in murky water, relying on the sense of touch in their bill. Here, we present the molecular characterization of embryonic duck bill, which we show contains a high density of mechanosensory corpuscles innervated by functional rapidly adapting trigeminal afferents. In contrast to chicken, a visually foraging bird, the majority of duck trigeminal neurons are mechanoreceptors that express the Piezo2 ion channel and produce slowly inactivating mechano-current before hatching. Furthermore, duck neurons have a significantly reduced mechano-activation threshold and elevated mechano-current amplitude. Cloning and electrophysiological characterization of duck Piezo2 in a heterologous expression system shows that duck Piezo2 is functionally similar to the mouse ortholog but with prolonged inactivation kinetics, particularly at positive potentials. Knockdown of Piezo2 in duck trigeminal neurons attenuates mechano current with intermediate and slow inactivation kinetics. This suggests that Piezo2 is capable of contributing to a larger range of mechano-activated currents in duck trigeminal ganglia than in mouse trigeminal ganglia. Our results provide insights into the molecular basis of mechanotransduction in a tactile-specialist vertebrate.
Assuntos
Proteínas Aviárias/genética , Bico/fisiologia , Patos/fisiologia , Mecanorreceptores/metabolismo , Percepção do Tato/fisiologia , Tato/fisiologia , Sequência de Aminoácidos , Animais , Proteínas Aviárias/antagonistas & inibidores , Proteínas Aviárias/metabolismo , Bico/citologia , Bico/inervação , Galinhas , Clonagem Molecular , Embrião não Mamífero , Expressão Gênica , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/genética , Canais Iônicos/metabolismo , Cinética , Mecanorreceptores/citologia , Mecanotransdução Celular , Camundongos , Técnicas de Patch-Clamp , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Gânglio Trigeminal/citologia , Gânglio Trigeminal/metabolismoRESUMO
Understanding the molecular and cellular mechanisms that mediate magnetosensation in vertebrates is a formidable scientific problem. One hypothesis is that magnetic information is transduced into neuronal impulses by using a magnetite-based magnetoreceptor. Previous studies claim to have identified a magnetic sense system in the pigeon, common to avian species, which consists of magnetite-containing trigeminal afferents located at six specific loci in the rostral subepidermis of the beak. These studies have been widely accepted in the field and heavily relied upon by both behavioural biologists and physicists. Here we show that clusters of iron-rich cells in the rostro-medial upper beak of the pigeon Columbia livia are macrophages, not magnetosensitive neurons. Our systematic characterization of the pigeon upper beak identified iron-rich cells in the stratum laxum of the subepidermis, the basal region of the respiratory epithelium and the apex of feather follicles. Using a three-dimensional blueprint of the pigeon beak created by magnetic resonance imaging and computed tomography, we mapped the location of iron-rich cells, revealing unexpected variation in their distribution and number--an observation that is inconsistent with a role in magnetic sensation. Ultrastructure analysis of these cells, which are not unique to the beak, showed that their subcellular architecture includes ferritin-like granules, siderosomes, haemosiderin and filopodia, characteristics of iron-rich macrophages. Our conclusion that these cells are macrophages and not magnetosensitive neurons is supported by immunohistological studies showing co-localization with the antigen-presenting molecule major histocompatibility complex class II. Our work necessitates a renewed search for the true magnetite-dependent magnetoreceptor in birds.
Assuntos
Bico/citologia , Columbidae/anatomia & histologia , Ferro/metabolismo , Macrófagos/metabolismo , Campos Magnéticos , Sensação , Migração Animal , Animais , Bico/anatomia & histologia , Columbidae/fisiologia , Plumas/citologia , Plumas/ultraestrutura , Ferrocianetos/análise , Imuno-Histoquímica , Ferro/análise , Macrófagos/ultraestrutura , Imageamento por Ressonância Magnética , Neurônios/metabolismo , Orientação , Mucosa Respiratória/citologia , Mucosa Respiratória/ultraestrutura , Tomografia Computadorizada de Emissão de Fóton ÚnicoRESUMO
Scaffoldin, an S100 fused-type protein (SFTP) with high amino acid sequence similarity to the mammalian hair follicle protein trichohyalin, has been identified in reptiles and birds, but its functions are not yet fully understood. Here, we investigated the expression pattern of scaffoldin and cornulin, a related SFTP, in the developing beaks of birds. We determined the mRNA levels of both SFTPs by reverse transcription polymerase chain reaction (RT-PCR) in the beak and other ectodermal tissues of chicken (Gallus gallus) and quail (Coturnix japonica) embryos. Immunohistochemical staining was performed to localize scaffoldin in tissues. Scaffoldin and cornulin were expressed in the beak and, at lower levels, in other embryonic tissues of both chickens and quails. Immunohistochemistry revealed scaffoldin in the peridermal compartment of the egg tooth, a transitory cornified protuberance (caruncle) on the upper beak which breaks the eggshell during hatching. Furthermore, scaffoldin marked a multilayered peridermal structure on the lower beak. The results of this study suggest that scaffoldin plays an evolutionarily conserved role in the development of the avian beak with a particular function in the morphogenesis of the egg tooth.
Assuntos
Proteínas Aviárias/genética , Bico/metabolismo , Galinhas/genética , Coturnix/genética , Plumas/metabolismo , Casco e Garras/metabolismo , Animais , Proteínas Aviárias/metabolismo , Bico/citologia , Bico/embriologia , Evolução Biológica , Embrião de Galinha , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Sequência Conservada , Coturnix/embriologia , Coturnix/metabolismo , Embrião não Mamífero , Epiderme/embriologia , Epiderme/metabolismo , Plumas/citologia , Plumas/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Casco e Garras/citologia , Casco e Garras/embriologia , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Mamíferos , Morfogênese/genética , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismoRESUMO
During singing in songbirds, the extent of beak opening, like the extent of mouth opening in human singers, is partially correlated with the fundamental frequency of the sounds emitted. Since song in songbirds is under the control of "the song system" (a collection of interconnected forebrain nuclei dedicated to the learning and production of song), it might be expected that beak movements during singing would also be controlled by this system. However, direct neural connections between the telencephalic output of the song system and beak muscle motor neurons in the brainstem are conspicuous by their absence, leaving unresolved the question of how beak movements are affected during singing. By using standard tract tracing methods, we sought to answer this question by defining beak premotor neurons and examining their afferent projections. In the caudal medulla, jaw premotor cell bodies were located adjacent to the terminal field of the output of the song system, into which many premotor neurons extended their dendrites. The premotor neurons also received a novel input from the trigeminal ganglion and an overlapping input from a lateral arcopallial component of a trigeminal sensorimotor circuit that traverses the forebrain. The ganglionic input in songbirds, which is not present in doves and pigeons that vocalize with a closed beak, may modulate the activity of beak premotor neurons in concert with the output of the song system. These inputs to jaw premotor neurons could, together, affect beak movements as a means of modulating filter properties of the upper vocal tract during singing.
Assuntos
Bico/fisiologia , Movimento/fisiologia , Aves Canoras/fisiologia , Telencéfalo/citologia , Telencéfalo/fisiologia , Núcleos do Trigêmeo/fisiologia , Prega Vocal/fisiologia , Vocalização Animal/fisiologia , Animais , Bico/citologia , Arcada Osseodentária/química , Arcada Osseodentária/citologia , Arcada Osseodentária/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Aves Canoras/anatomia & histologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Núcleos do Trigêmeo/citologia , Prega Vocal/citologiaRESUMO
At the tip of the lower beak of the chicken there were found 15-20 specialised dermal papillae containing large numbers of mechanoreceptors. The Merkel or Grandry corpuscles were situated distally in the papillae and at the papillae base was a collection of Herbst corpuscles. The apex of the papillae, under the scanning electron microscope, appeared as a row of shallow pits on the surface of the beak just inside the mouth. These papillae resemble similar structures seen in other birds and are probably necessary for fine tactile discrimination.
Assuntos
Bico/anatomia & histologia , Galinhas/anatomia & histologia , Animais , Bico/citologia , Bico/ultraestrutura , Mecanorreceptores/ultraestruturaRESUMO
A single layer of cell secrets the hard cephalopod beaks. The beccublasts are tall columnar cells that separate the beak from the surrounding buccal muscles, and must serve to attach these muscles to the beak. Within the cell layer there are three types of cells. The first, and most frequently found contain cell-long fibrils. These fibrils may have contractile and tensile properties. Complex trabeculae extend from the beccublasts into the matrix of the beak. The fibrils are attached to these trabeculae and at the other end of the cells they are anchored near to the beccublast-muscle cell interface, closely associated with the muscles that move the beak. The second group of cells contain masses of endoplasmic reticulum the cysternae of which are arranged along the long axis of the cell. These cells also contain dense granules and are probably the major source of beak hard tissue. It is probable that each cell secretes its own column of beak hard tissue. The third group of cells cells contains a mixture of fibrils and secretory tissue. In the beccublast layer there are changes in the proportion of the three types of cells depending upon the region sampled. In the region where growth is most active there are mostly secretory cells, whereas near the biting and wearing tip there are mainly anchoring type cells.
Assuntos
Bico/metabolismo , Decapodiformes/anatomia & histologia , Octopodiformes/anatomia & histologia , Animais , Bico/citologia , Quitina/metabolismo , Retículo Endoplasmático/ultraestruturaRESUMO
Epithelial-mesenchymal transformation plays an important role in the disappearance of the midline line epithelial seam in rodent palate, leading to confluence of the palate. The aim of this study was to test the potential of the naturally cleft chicken palate to become confluent under the influence of growth factors, such as TGFbeta3, which are known to promote epithelial-mesenchymal transformation. After labeling medial edge epithelia with carboxyfluorescein, palatal shelves (E8-9) with or without beak were dissected and cultured on agar gels. TGFbeta1, TGFbeta2 or TGFbeta3 was added to the chemically defined medium. By 24 hours in culture, medial edge epithelia form adherent midline seams in all paired groups without intact beaks. After 72 hours, seams in the TGFbeta3 groups disappear and palates become confluent due to epithelial-mesenchymal transformation, while seams remain mainly epithelial in control, TGFbeta1 and TGFbeta2 groups. Epithelium-derived mesenchymal cells are identified by carboxyfluorescein fluorescence with confocal microscopy and by membrane-bound carboxyfluorescein isolation bodies with electron microscopy. Labeled fibroblasts completely replace the labeled epithelia of origin in TGFbeta3-treated palates without beaks. Single palates are unable to undergo transformation, and paired palatal shelves with intact beaks do not adhere or undergo transformation, even when treated with TGFbeta3. Thus, physical contact of medial edge epithelia and formation of the midline seam are necessary for epithelial-mesenchymal transformation to be triggered. We conclude that there may be no fundamental difference in developmental potential of the medial edge epithelium for transformation to mesenchyme among reptiles, birds and mammals. The bird differs from other amniotes in having developed a beak and associated craniofacial structures that seemingly keep palatal processes separated in vivo. Even control medial edge epithelia partly transform to mesenchyme if placed in close contact. However, exogenous TGFbeta3 is required to achieve complete confluence of the chicken palate.