Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 786
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Plant J ; 119(2): 762-782, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38722594

RESUMO

Brassica carinata (BBCC) commonly referred to as Ethiopian mustard is a natural allotetraploid containing the genomes of Brassica nigra (BB) and Brassica oleracea (CC). It is an oilseed crop endemic to the northeastern regions of Africa. Although it is under limited cultivation, B. carinata is valuable as it is resistant/highly tolerant to most of the pathogens affecting widely cultivated Brassica species of the U's triangle. We report a chromosome-scale genome assembly of B. carinata accession HC20 using long-read Oxford Nanopore sequencing and Bionano optical maps. The assembly has a scaffold N50 of ~39.8 Mb and covers ~1.11 Gb of the genome. We compared the long-read genome assemblies of the U's triangle species and found extensive gene collinearity between the diploids and allopolyploids with no evidence of major gene losses. Therefore, B. juncea (AABB), B. napus (AACC), and B. carinata can be regarded as strict allopolyploids. We cataloged the nucleotide-binding and leucine-rich repeat immune receptor (NLR) repertoire of B. carinata and, identified 465 NLRs, and compared these with the NLRs in the other Brassica species. We investigated the extent and nature of early-generation genomic interactions between the constituent genomes of B. carinata and B. juncea in interspecific crosses between the two species. Besides the expected recombination between the constituent B genomes, extensive homoeologous exchanges were observed between the A and C genomes. Interspecific crosses, therefore, can be used for transferring disease resistance from B. carinata to B. juncea and broadening the genetic base of the two allotetraploid species.


Assuntos
Brassica , Cromossomos de Plantas , Resistência à Doença , Genoma de Planta , Mostardeira , Doenças das Plantas , Resistência à Doença/genética , Mostardeira/genética , Mostardeira/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Genoma de Planta/genética , Brassica/genética , Brassica/microbiologia , Cromossomos de Plantas/genética , Introgressão Genética , Poliploidia
2.
BMC Plant Biol ; 24(1): 324, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658831

RESUMO

Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) significantly affects the production of cabbage and other cruciferous vegetables. Plant antioxidant system plays an important role in pathogen invasion and is one of the main mechanisms underlying resistance to biological stress. Therefore, it is important to study the resistance mechanisms of the cabbage antioxidant system during the early stages of Xcc. In this study, 108 CFU/mL (OD600 = 0.1) Xcc race1 was inoculated on "zhonggan 11" cabbage using the spraying method. The effects of Xcc infection on the antioxidant system before and after Xcc inoculation (0, 1, 3, and 5 d) were studied by physiological indexes determination, transcriptome and metabolome analyses. We concluded that early Xcc infection can destroy the balance of the active oxygen metabolism system, increase the generation of free radicals, and decrease the scavenging ability, leading to membrane lipid peroxidation, resulting in the destruction of the biofilm system and metabolic disorders. In response to Xcc infection, cabbage clears a series of reactive oxygen species (ROS) produced during Xcc infection via various antioxidant pathways. The activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) increased after Xcc infection, and the ROS scavenging rate increased. The biosynthesis of non-obligate antioxidants, such as ascorbic acid (AsA) and glutathione (GSH), is also enhanced after Xcc infection. Moreover, the alkaloid and vitamin contents increased significantly after Xcc infection. We concluded that cabbage could resist Xcc invasion by maintaining the stability of the cell membrane system and improving the biosynthesis of antioxidant substances and enzymes after infection by Xcc. Our results provide theoretical basis and data support for subsequent research on the cruciferous vegetables resistance mechanism and breeding to Xcc.


Assuntos
Antioxidantes , Brassica , Doenças das Plantas , Xanthomonas campestris , Xanthomonas campestris/fisiologia , Xanthomonas campestris/patogenicidade , Brassica/microbiologia , Brassica/metabolismo , Antioxidantes/metabolismo , Doenças das Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-39016536

RESUMO

A Gram-stain-negative, endospore-forming, rod-shaped, indole-producing bacterial strain, designated YZC6T, was isolated from fermented cabbage. Strain YZC6T grew at 10-37  °C, pH 5.5-8.5, and with up to 2  % (w/v) NaCl. The major cellular fatty acids were C16 : 0 and C18 : 1 cis 11 dimethyl acetal. Phylogenetic analysis of the 16S rRNA gene revealed that strain YZC6T belonged to the genus Lacrimispora and was closely related to Lacrimispora aerotolerans DSM 5434T (98.3  % sequence similarity), Lacrimispora saccharolytica WM1T (98.1  %), and Lacrimispora algidixylanolytica SPL73T (98.1  %). The average nucleotide identity based on blast (below 87.8  %) and digital DNA-DNA hybridization (below 36.1 %) values between the novel isolate and its corresponding relatives showed that strain YZC6T could be readily distinguished from its closely related species. Based on genotypic, phenotypic, and chemotaxonomic data, a novel Lacrimispora species, Lacrimispora brassicae sp. nov., was proposed, with YZC6T as the type strain (=MAFF 212518T=JCM 32810T=DSM 112100T). This study also proposed Clostridium indicum Gundawar et al. 2019 as a later heterotypic synonym of Lacrimispora amygdalina (Parshina et al. 2003) Haas and Blanchard 2020 and Clostridium methoxybenzovorans Mechichi et al. 1999 as a later heterotypic synonym of Lacrimispora indolis (McClung and McCpy 1957) Haas and Blanchard 2020.


Assuntos
Técnicas de Tipagem Bacteriana , Brassica , DNA Bacteriano , Ácidos Graxos , Fermentação , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , Brassica/microbiologia , DNA Bacteriano/genética , Composição de Bases , Clostridiales/classificação , Clostridiales/isolamento & purificação , Clostridiales/genética , Indóis/metabolismo
4.
Physiol Plant ; 176(4): e14432, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38981735

RESUMO

WRKYs play important roles in plant stress resistance. However, the role of WRKYs in non-heading Chinese cabbage (Brassica campestris ssp. chinensis) against Botrytis cinerea (B. cinerea) remains poorly understood. Herein, the expression of BcWRKY1 was induced by B. cinerea. Further, the role of BcWRKY1 in B. cinerea infection was identified. Silencing of BcWRKY1 in non-heading Chinese cabbage enhanced plant resistance to B. cinerea. After B. cinerea inoculation, BcWRKY1-silencing plants exhibited lower reactive oxygen species (ROS) content, higher jasmonic acid (JA) content, and the expression level of JA biosynthesis genes, BcOPR3, BcLOX3-1 and BcLOX3-2 were upregulated. Overexpression of BcWRKY1 in Arabidopsis exhibited a complementary phenotype. By directly targeting W-boxes in the promoter of BcLOX3-2, BcWRKY1 inhibited the transcription of this gene. In addition, 13 candidate interacting proteins of BcWRKY1 were identified by yeast two-hybrid (Y2H) screening, and the interaction between BcWRKY1 and BcCaM6 weakened the inhibition of BcLOX3-2. In summary, our findings suggest that BcWRKY1 interacts with BcCaM6 to negatively regulate disease resistance.


Assuntos
Botrytis , Brassica , Ciclopentanos , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Oxilipinas , Doenças das Plantas , Proteínas de Plantas , Botrytis/fisiologia , Botrytis/patogenicidade , Ciclopentanos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Brassica/microbiologia , Brassica/genética , Brassica/metabolismo , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas
5.
Mol Biol Rep ; 51(1): 682, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796647

RESUMO

BACKGROUND: Control of blackleg disease of canola caused by the fungus Leptosphaeria maculans relies on strategies such as the inhibition of growth with fungicides. However, other chemicals are used during canola cultivation, including fertilizers and herbicides. There is widespread use of herbicides that target the acetolactate synthase (ALS) enzyme involved in branched chain amino acid synthesis and low levels of these amino acids within leaves of Brassica species. In L. maculans the ilv2 gene encodes ALS and thus ALS-inhibiting herbicides may inadvertently impact the fungus. METHODS AND RESULTS: Here, the impact of a commercial herbicide targeting ALS and mutation of the homologous ilv2 gene in L. maculans was explored. Exposure to herbicide had limited impact on growth in vitro but reduced lesion sizes in plant disease experiments. Furthermore, the mutation of the ilv2 gene via CRISPR-Cas9 gene editing rendered the fungus non-pathogenic. CONCLUSION: Herbicide applications can influence disease outcome, but likely to a minor extent.


Assuntos
Acetolactato Sintase , Aminoácidos de Cadeia Ramificada , Herbicidas , Leptosphaeria , Doenças das Plantas , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Doenças das Plantas/microbiologia , Herbicidas/farmacologia , Aminoácidos de Cadeia Ramificada/biossíntese , Aminoácidos de Cadeia Ramificada/metabolismo , Leptosphaeria/genética , Leptosphaeria/patogenicidade , Mutação/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Edição de Genes/métodos , Folhas de Planta/microbiologia , Sistemas CRISPR-Cas/genética , Brassica/microbiologia , Ascomicetos/patogenicidade , Ascomicetos/genética
6.
Plant Dis ; 108(7): 2046-2052, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38345543

RESUMO

Alternaria brassicicola is part of a complex of Alternaria species that causes leaf blight and head rot in brassica crops such as broccoli, kale, cabbage, cauliflower, and collards. Seed can serve as a potential source of inoculum for the transmission of A. brassicicola in broccoli as demonstrated earlier; however, seed-to-seedling transmission of pathogen was never characterized empirically. So, the objectives of this study were to (i) re-evaluate the effect of artificial seed infestation on seed germination and seed-to-seedling transmission of A. brassicicola in broccoli; (ii) determine the effect of A. brassicicola-seed inoculum levels on seed-to-seedling transmission; (iii) evaluate if variations in A. brassicicola aggressiveness affect A. brassicicola seed-to-seedling transmission; and (iv) evaluate seed treatments that can reduce seed-to-seedling transmission of A. brassicicola in broccoli. Artificially infested seedlots were generated by inoculating broccoli seeds with a spore suspension of 1 × 105 conidia/ml of A. brassicicola using the vacuum infiltration method. Inoculated (n = 10 seedlots; 300 seeds/seedlot) or control seedlots in three replicates were planted on two layers of sterile blotter paper saturated with sterile water in transparent plastic boxes and incubated at 20°C and >90% relative humidity (RH) under continuous fluorescent light. Percent seed germination and percent seed-to-seedling transmission were recorded every other day for 21 days. Percent seed germination was significantly affected with artificial pathogen inoculation. One hundred percent of the seedlots transmitted the pathogen to broccoli seedlings, and seed-to-seedling percentages of the seedlots varied considerably. A strong linear and significant relationship between A. brassicicola inoculum level and seed-to-seedling transmission (%) within each seedlot was observed. Interestingly, variations in aggressiveness of A. brassicicola isolates did not affect seed-to-seedling transmission, as 100% of the seedlots were able to transmit the pathogen. Seed treatment with Miravis (a.i. pydiflumetofen 18.3%) significantly increased seed germination and reduced seed-to-seedling transmission percentages in A. brassicicola-inoculated seedlots. These results indicate that artificial seed inoculation with A. brassicicola can result in consistent seed-to-seedling transmission with significant impact on seed germination. Seed inoculum density of ≥104 conidia/ml is necessary for reliable transmission of A. brassicicola. Further seed-to-seedling transmission is not dependent on aggressiveness of A. brassicicola isolates and seed treatment with Miravis can significantly reduce pathogen transmission in broccoli seedings. Overall, this study provides detailed characterization of seed-to-seedling transmission of A. brassicicola in broccoli that can be further used to determine inoculum threshold, which has potential applications in seed-health testing and sample size determination. Furthermore, we also provide options for effective seed treatments that can significantly reduce A. brassicicola seed-to-seedling transmission and may potentially aid in managing seedborne fungal infection.


Assuntos
Alternaria , Brassica , Doenças das Plantas , Plântula , Sementes , Alternaria/fisiologia , Brassica/microbiologia , Sementes/microbiologia , Doenças das Plantas/microbiologia , Plântula/microbiologia , Germinação
7.
Plant Dis ; 108(7): 2154-2161, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38499973

RESUMO

Alternaria brassicicola is a part of the Alternaria complex that causes leaf blight and head rot (ABHR) in brassica crops. Infested broccoli seeds can play an important role in introducing A. brassicicola in transplant houses and production fields. However, characterization of natural seed infestation and seed-to-seedling transmission of A. brassicicola in broccoli is yet to be demonstrated. In this research, we characterized Alternaria spp. isolates from commercial broccoli seedlots for their species identity, pathogenicity, and aggressiveness on broccoli and their sensitivity to a quinone-outside inhibitor (QoI) fungicide (azoxystrobin). Two hundred commercial seedlots from two broccoli cultivars, Cultivar 1 (EC; n = 100 seedlots) and Cultivar 2 (ED; n = 100 seedlots) were, evaluated for the presence of A. brassicicola under in vitro conditions using a seedling grow-out assay. Alternaria spp. was detected in 31 and 28% of the commercial seedlots of Cultivar 1 and Cultivar 2, respectively. The seed-to-seedling transmission (%) varied considerably within each positive-infested seedlot, which ranged from 1.3 to 17.3%. Subsequent molecular identification of single-spore cultures (n = 138) was made by sequencing four housekeeping genes: actin, the major allergen (Alta1), plasma membrane ATPase, and glyceraldehyde-3-phosphate dehydrogenase (GPD), and the sequences were concatenated and compared for the phylogenetic distance with diverse Alternaria species. Ninety-six percent (n = 133) of the isolates formed a cluster with a known A. brassicicola based on a multigene phylogeny, which were later confirmed as A. brassicicola using a species-specific PCR assay. One hundred percent of the A. brassicicola seed isolates (n = 133) were either highly or moderately aggressive on broccoli (cultivar Emerald Crown) based on a detached leaf assay. Sensitivity of representative A. brassicicola isolates (n = 58) to azoxystrobin was evaluated using a spore germination assay, and the EC50 values (effective fungicide concentration [ppm] at which germination of conidia of isolates were reduced by 50% compared to control) for each isolate was determined. A. brassicicola isolates from naturally infested commercial broccoli seeds were sensitive to azoxystrobin with considerably low EC50 values in the range of <0.0001 to 0.33 ppm; however, there were a few isolates (14%) that showed 100-fold reduced sensitivity from the most sensitive isolate (EC50 = 0.0001 ppm). Our results confirm that commercial broccoli seedlots can be naturally contaminated with pathogenic and aggressive A. brassicicola. We also provide evidence for the potential presence of A. brassicicola isolates with reduced azoxystrobin-sensitivity in naturally infested commercial broccoli seedlots, which has never been reported before. Together, these findings may have implications in considerations for seed-health testing, seed treatments, and greenhouse scouting to limit introduction of infested seedlots in commercial broccoli fields.


Assuntos
Alternaria , Brassica , Fungicidas Industriais , Doenças das Plantas , Sementes , Estrobilurinas , Alternaria/efeitos dos fármacos , Alternaria/genética , Alternaria/fisiologia , Brassica/microbiologia , Fungicidas Industriais/farmacologia , Sementes/microbiologia , Doenças das Plantas/microbiologia , Estrobilurinas/farmacologia , Pirimidinas/farmacologia , Metacrilatos/farmacologia , Filogenia
8.
J Basic Microbiol ; 64(6): e2300441, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38470163

RESUMO

High-temperature-requirement protein A (HtrA) family proteins play important roles in controlling protein quality and are recognized as virulence factors in numerous animal and human bacterial pathogens. The role of HtrA family proteins in plant pathogens remains largely unexplored. Here, we investigated the HtrA family protein, DegQ, in the crucifer black rot pathogen Xanthomonas campestris pathovar campestris (Xcc). DegQ is essential for bacterial attachment and full virulence of Xcc. Moreover, the degQ mutant strain showed increased sensitivity to heat treatment and sodium dodecyl sulfate. Expressing the intact degQ gene in trans in the degQ mutant could reverse the observed phenotypic changes. In addition, we demonstrated that the DegQ protein exhibited chaperone-like activity. Transcriptional analysis displayed that degQ expression was induced under heat treatment. Our results contribute to understanding the function and expression of DegQ of Xcc for the first time and provide a novel perspective about HtrA family proteins in plant pathogen.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Doenças das Plantas , Xanthomonas campestris , Xanthomonas campestris/genética , Xanthomonas campestris/patogenicidade , Xanthomonas campestris/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Temperatura Alta , Aderência Bacteriana/genética , Dodecilsulfato de Sódio/farmacologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Brassica/microbiologia , Perfilação da Expressão Gênica , Mutação
9.
World J Microbiol Biotechnol ; 40(9): 258, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954148

RESUMO

The aim of the present study is to develop a pH-sensing biopolymer film based on the immobilization of red cabbage extract (RCE) within bacterial cellulose (BC) to detect contamination and gamma radiation exposure in cucumbers. The results obtained show a sensitivity to pH changes for RCE in its aqueous form and that incorporated within BC films (RCE-BC), both showed color change correlated to bacterial growth (R2 = 0.91), this was supported with increase in pH values from 2 to 12 (R2 = 0.98). RCE and RCE-BC exposure to gamma radiation (0, 2.5, 5, 10, 15, 20, 25 kGy) resulted in gradual decrease in color that was more evident in RCE aqueous samples. To sense bacterial contamination of cucumbers, the total count was followed at 0, 5, 10 and 15 days in cold storage conditions and was found to reach 9.13 and 5.47 log cfu/mL for non-irradiated and 2 kGy irradiated samples, respectively. The main isolates detected throughout this storage period were identified as Pseudomonas fluorescens, Erwinia sp. Pantoea agglomerans using matrix assisted laser desorption ionization-time of flight-ms (MALDI-TOF-MS). Bacterial growth in stored irradiated cucumbers was detected by color change within 5 and 10 days of storage, after which there was no evident change. This is very useful since contamination within the early days of storage cannot be sensed with the naked eye. This study is the first to highlight utilizing RCE and RCE-BC as eco-friendly pH-sensing indicator films for intelligent food packaging to detect both food contamination and gamma preservation for refrigerator stored cucumbers.


Assuntos
Brassica , Celulose , Cucumis sativus , Raios gama , Extratos Vegetais , Brassica/microbiologia , Brassica/química , Celulose/química , Cucumis sativus/microbiologia , Cucumis sativus/química , Cucumis sativus/efeitos da radiação , Concentração de Íons de Hidrogênio , Extratos Vegetais/química , Microbiologia de Alimentos , Bactérias/efeitos da radiação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Embalagem de Alimentos/métodos , Contaminação de Alimentos/análise , Armazenamento de Alimentos , Irradiação de Alimentos/métodos , Contagem de Colônia Microbiana
10.
Rev Argent Microbiol ; 56(2): 187-190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38519396

RESUMO

In August 2018, symptoms of apical and basal rot resembling those caused by Sclerotinia sclerotiorum infection were observed in a commercial Brussels sprouts field in North Patagonia, Argentina. The incidence of apical and basal rot was 23.30% and 2.30%, respectively. Carpogenic germination of sclerotia was detected in shaded, highly humid soil areas. To our knowledge, this is the first report of carpogenic germination of sclerotia from S. sclerotiorum in North Patagonia.


Assuntos
Ascomicetos , Brassica , Doenças das Plantas , Argentina , Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Brassica/microbiologia
11.
Plant Dis ; 107(9): 2751-2762, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36973901

RESUMO

Pectobacterium is one of the most important genera of phytopathogenic bacteria. It can cause soft-rot diseases on a wide range of plant species across the world. In this study, three Pectobacterium strains (KC01, KC02, and KC03) were isolated from soft-rotted Chinese cabbage in Beijing, China. These three strains were identified as Pectobacterium versatile based on phylogenetic analysis of Pectobacterium 16S ribosomal RNA, pmrA, and 504 Pectobacterium core genes, as well as a genomic average nucleotide identity analysis. Their biochemical characteristics were found to be similar to the P. versatile type strain ICMP9168T but differed in response to citric acid, stachyose, D-glucuronic acid, dextrin, and N-acetyl-ß-D-mannosamine. All of the tested P. versatile strains showed different carbohydrate utilization abilities compared with P. carotovorum and P. odoriferum, particularly in their ability to utilize D-arabitol, L-rhamnose, and L-serine. Under laboratory conditions, the maceration ability of P. versatile on Chinese cabbage was the highest at 28°C, compared with those at 13, 28, 23, and 33°C. Additionally, P. versatile could infect all of the 17 known Pectobacterium host plants, except for Welsh onion (Allium fistulosum). A SYBR Green quantitative PCR (qPCR) detection system was developed to distinguish P. versatile from other soft-rot bacteria based on the combined performance of melting curve (with a single melting peak at around 85°C) and fluorescence curve (with cycle threshold <30) when the bacterial genomic DNA concentration was in the range of 10 pg/µl to 10 ng/µl. This study is the first to report the presence of P. versatile on Chinese cabbage in China, as well as a specific and sensitive qPCR assay that can be used to quickly identify P. versatile. The work contributes to a better understanding of P. versatile and will facilitate the effective diagnosis of soft-rot disease, ultimately benefitting commercial crop production.


Assuntos
Brassica , Pectobacterium , Pectobacterium carotovorum/genética , Filogenia , Pectobacterium/genética , Brassica/microbiologia , China , Plantas , Bactérias/genética , DNA Bacteriano/genética , Reação em Cadeia da Polimerase
12.
Appl Environ Microbiol ; 88(19): e0076122, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36165651

RESUMO

Pectobacterium carotovorum subsp. carotovorum is a necrotrophic plant pathogen that secretes plant cell wall-degrading enzymes (PCWDEs) that cause soft rot disease in various crops. Bacteriophages have been under consideration as harmless antibacterial agents to replace antibiotics and copper-based pesticides. However, the emergence of bacteriophage resistance is one of the main concerns that should be resolved for practical phage applications. In this study, we developed a phage cocktail with three lytic phages that recognize colanic acid (phage POP12) or flagella (phages POP15 and POP17) as phage receptors to minimize phage resistance. The phage cocktail effectively suppressed the emergence of phage-resistant P. carotovorum subsp. carotovorum compared with single phages in in vitro challenge assays. The application of the phage cocktail to napa cabbage (Brassica rapa subsp. pekinensis) resulted in significant growth retardation of P. carotovorum subsp. carotovorum (P < 0.05) and prevented the symptoms of soft rot disease. Furthermore, phage cocktail treatments of young napa cabbage leaves in a greenhouse environment indicated effective prevention of soft rot disease compared to that in the nonphage negative control. We isolated 15 phage-resistant mutants after a phage cocktail treatment to assess the virulence-associated phenotypes compared to those of wild-type (WT) strain Pcc27. All mutants showed reduced production of four different PCWDEs, leading to lower levels of tissue softening. Ten of the 15 phage-resistant mutants additionally exhibited decreased swimming motility. Taken together, these results show that the phage cocktail developed here, which targets two different types of phage receptors, provides an effective strategy for controlling P. carotovorum subsp. carotovorum in agricultural products, with a potential ability to attenuate P. carotovorum subsp. carotovorum virulence. IMPORTANCE Pectobacterium carotovorum subsp. carotovorum is a phytopathogen that causes soft rot disease in various crops by producing plant cell wall-degrading enzymes (PCWDEs). Although antibiotics and copper-based pesticides have been extensively applied to inhibit P. carotovorum subsp. carotovorum, the emergence of antibiotic-resistant bacteria and demand for harmless antimicrobial products have emphasized the necessity of finding alternative therapeutic strategies. To address this problem, we developed a phage cocktail consisting of three P. carotovorum subsp. carotovorum-specific phages that recognize colanic acids and flagella of P. carotovorum subsp. carotovorum. The phage cocktail treatments significantly decreased P. carotovorum subsp. carotovorum populations, as well as soft rot symptoms in napa cabbage. Simultaneously, they resulted in virulence attenuation in phage-resistant P. carotovorum subsp. carotovorum, which was represented by decreased PCWDE production and decreased flagellum-mediated swimming motility. These results suggested that preparations of phage cocktails targeting multiple receptors would be an effective approach to biocontrol of P. carotovorum subsp. carotovorum in crops.


Assuntos
Bacteriófagos , Brassica , Pectobacterium , Praguicidas , Antibacterianos , Receptores de Bacteriófagos , Bacteriófagos/genética , Brassica/microbiologia , Cobre , Pectobacterium carotovorum , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Virulência
13.
New Phytol ; 236(1): 235-248, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35706385

RESUMO

Plant diseases are an important threat to food production. While major pathogenicity determinants required for disease have been extensively studied, less is known on how pathogens thrive during host colonization, especially at early infection stages. Here, we used randomly barcoded-transposon insertion site sequencing (RB-TnSeq) to perform a genome-wide screen and identify key bacterial fitness determinants of the vascular pathogen Xanthomonas campestris pv campestris (Xcc) during infection of the cauliflower host plant (Brassica oleracea). This high-throughput analysis was conducted in hydathodes, the natural entry site of Xcc, in xylem sap and in synthetic media. Xcc did not face a strong bottleneck during hydathode infection. In total, 181 genes important for fitness were identified in plant-associated environments with functional enrichment in genes involved in metabolism but only few genes previously known to be involved in virulence. The biological relevance of 12 genes was independently confirmed by phenotyping single mutants. Notably, we show that XC_3388, a protein with no known function (DUF1631), plays a key role in the adaptation and virulence of Xcc possibly through c-di-GMP-mediated regulation. This study revealed yet unsuspected social behaviors adopted by Xcc individuals when confined inside hydathodes at early infection stages.


Assuntos
Brassica , Xanthomonas campestris , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brassica/microbiologia , Doenças das Plantas/microbiologia , Virulência/genética , Xilema/metabolismo
14.
Food Microbiol ; 102: 103913, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34809939

RESUMO

Prophage distribution and phage characteristics based on the genome of Lactobacillus plantarum derived from kimchi were investigated. Prophage genomes retrieved from a database were analyzed in silico with prophage inducibility. Twenty-one kimchi-derived L. plantarum had at least one intact prophage, including a putative cryptic state on the chromosome. They were all confirmed to belong to the Siphoviridae family. Intact prophages can be classified into three different groups: PM411-like, Sha1-like, and unclassified phage groups. Some prophage regions were encoded with superinfection exclusion proteins and orphan methylases, suggesting that the phages co-evolved with their hosts. Interestingly, prophage inducibility showed that only DNA damage could induce prophages and that pH stresses by organic acids could not. Therefore, the prophage of L. plantarum did not affect the host unless DNA was damaged, and it would hardly affect the viability of the host through phage induction during kimchi fermentation. Our results might provide insights into the distribution and non-inducibility of prophages, existence of phage-immunity genes, and role of plant-derived L. plantarum prophages in host survival during late acidic kimchi fermentation.


Assuntos
Brassica/microbiologia , Alimentos Fermentados , Lactobacillus plantarum/virologia , Prófagos , Alimentos Fermentados/microbiologia , Genoma Viral , Prófagos/classificação , Prófagos/genética
15.
Food Microbiol ; 102: 103886, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34809929

RESUMO

Enterococcus faecium ST20Kc and ST41Kc were isolated from kimchi, a traditional Korean fermented cabbage. Bacteriocins produced by both strains exhibited strong activity against Listeria monocytogenes and various Enterococcus spp., including 30 vancomycin-resistant enterococcal strains, but not against other lactic acid bacteria (LAB) on the evaluated test panel. The antimicrobials produced by the strains were found to be proteinaceous and stable even after exposure to varying pH, temperature, and chemicals used in the industry and laboratory processes. Antimicrobial activity of both strains was evaluated as bactericidal against exponentially growing cultures of L. monocytogenes ATCC® 15313™ and Enterococcus faecalis 200A. Based on tricine-SDS-PAGE, the molecular weights of the bacteriocins produced by the strains were between 4 and 6 kDa. Additionally, both strains were susceptible to antibiotics, including vancomycin, kanamycin, gentamycin, ampicillin, streptomycin, tylosin, chloramphenicol, clindamycin, and tetracycline. Adhesion genes, map, mub, and EF-Tu, were also detected in the genomes of both strains. With gastrointestinal stress induction, both strains showed high individual survival rates, and capability to reduce viable counts of L. monocytogenes ATCC® 15313™ and Enterococcus faecalis 200A in mixed cultures. Based on the metabolomics analysis, both strains were found to produce additional antimicrobial compounds, particularly, lactic acid, phenyllactic acid, and phenethylamine, which can be potentially involved in the antimicrobial interaction with pathogenic microorganisms.


Assuntos
Antibacterianos , Bacteriocinas , Brassica , Enterococcus faecium , Alimentos Fermentados , Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Brassica/microbiologia , Hidrocarbonetos Aromáticos com Pontes , Enterococcus faecalis , Alimentos Fermentados/microbiologia , Listeria monocytogenes , Testes de Sensibilidade Microbiana , República da Coreia
16.
Proc Natl Acad Sci U S A ; 116(7): 2767-2773, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30692254

RESUMO

Arabidopsis thaliana accessions are universally resistant at the adult leaf stage to white rust (Albugo candida) races that infect the crop species Brassica juncea and Brassica oleracea We used transgressive segregation in recombinant inbred lines to test if this apparent species-wide (nonhost) resistance in A. thaliana is due to natural pyramiding of multiple Resistance (R) genes. We screened 593 inbred lines from an Arabidopsis multiparent advanced generation intercross (MAGIC) mapping population, derived from 19 resistant parental accessions, and identified two transgressive segregants that are susceptible to the pathogen. These were crossed to each MAGIC parent, and analysis of resulting F2 progeny followed by positional cloning showed that resistance to an isolate of A. candida race 2 (Ac2V) can be explained in each accession by at least one of four genes encoding nucleotide-binding, leucine-rich repeat (NLR) immune receptors. An additional gene was identified that confers resistance to an isolate of A. candida race 9 (AcBoT) that infects B. oleracea Thus, effector-triggered immunity conferred by distinct NLR-encoding genes in multiple A. thaliana accessions provides species-wide resistance to these crop pathogens.


Assuntos
Arabidopsis/imunologia , Brassica/microbiologia , Oomicetos/patogenicidade , Doenças das Plantas/imunologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Haplótipos , Imunidade Inata , Doenças das Plantas/microbiologia
17.
PLoS Genet ; 15(9): e1008395, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31527910

RESUMO

Many microbes exhibit quorum sensing (QS) to cooperate, share and perform a social task in unison. Recent studies have shown the emergence of reversible phenotypic heterogeneity in the QS-responding pathogenic microbial population under laboratory conditions as a possible bet-hedging survival strategy. However, very little is known about the dynamics of QS-response and the nature of phenotypic heterogeneity in an actual host-pathogen interaction environment. Here, we investigated the dynamics of QS-response of a Gram-negative phytopathogen Xanthomonas pv. campestris (Xcc) inside its natural host cabbage, that communicate through a fatty acid signal molecule called DSF (diffusible signal factor) for coordination of several social traits including virulence functions. In this study, we engineered a novel DSF responsive whole-cell QS dual-bioreporter to measure the DSF mediated QS-response in Xcc at the single cell level inside its natural host plant in vivo. Employing the dual-bioreporter strain of Xcc, we show that QS non-responsive cells coexist with responsive cells in microcolonies at the early stage of the disease; whereas in the late stages, the QS-response is more homogeneous as the QS non-responders exhibit reduced fitness and are out competed by the wild-type. Furthermore, using the wild-type Xcc and its QS mutants in single and mixed infection studies, we show that QS mutants get benefit to some extend at the early stage of disease and contribute to localized colonization. However, the QS-responding cells contribute to spread along xylem vessel. These results contrast with the earlier studies describing that expected cross-induction and cooperative sharing at high cell density in vivo may lead to synchronize QS-response. Our findings suggest that the transition from heterogeneity to homogeneity in QS-response within a bacterial population contributes to its overall virulence efficiency to cause disease in the host plant under natural environment.


Assuntos
Interações Hospedeiro-Patógeno/genética , Percepção de Quorum/genética , Xanthomonas/genética , Proteínas de Bactérias/genética , Variação Biológica da População/genética , Brassica/genética , Brassica/microbiologia , Doenças das Plantas/microbiologia , Transdução de Sinais , Virulência , Xanthomonas/metabolismo , Xanthomonas/patogenicidade
18.
Plant Dis ; 106(1): 174-181, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34353128

RESUMO

Cruciferous weeds have been shown to harbor diverse Xanthomonas campestris pathovars, including the agronomically damaging black rot of cabbage pathogen, X. campestris pv. campestris. However, the importance of weeds as inoculum sources for X. campestris pv. campestris outbreaks in New York remains unknown. To determine if cruciferous weeds act as primary reservoirs for X. campestris pv. campestris, fields that were rotating between cabbage or had severe black rot outbreaks were chosen for evaluation. Over a consecutive 3-year period, 148 cruciferous and noncruciferous weed samples were collected at 34 unique sites located across five New York counties. Of the 148 weed samples analyzed, 48 X. campestris isolates were identified, with a subset characterized using multilocus sequence analysis. All X. campestris isolates originated from weeds belonging to the Brassicaceae family, with predominant weed hosts being shepherd's purse (Capsella bursa-pastoris), wild mustard (Sinapis arvensis), yellow rocket (Barbarea vulgaris), and pennycress (Thlaspi arvense). Identifying pathogenic X. campestris weed isolates was rare, with only eight isolates causing brown necrotic leaf spots or typical V-shaped lesions on cabbage. There was no evidence of cabbage-infecting weed isolates persisting in an infected field by overwintering in weed hosts; however, similar cabbage and weed X. campestris haplotypes were identified in the same field during an active black rot outbreak. X. campestris weed isolates are genetically diverse both within and between fields, but our findings indicate that X. campestris weed isolates do not appear to act as primary sources of inoculum for B. oleracea fields in New York.


Assuntos
Brassica , Doenças das Plantas/microbiologia , Plantas Daninhas/microbiologia , Xanthomonas campestris , Barbarea/microbiologia , Brassica/microbiologia , Capsella/microbiologia , Tipagem de Sequências Multilocus , New York , Sinapis/microbiologia , Thlaspi/microbiologia , Xanthomonas campestris/genética
19.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163500

RESUMO

Glucosinolates are an important class of secondary metabolites in Brassicales plants with a critical role in chemical defense. Glucosinolates are chemically inactive but can be hydrolyzed by myrosinases to produce a range of chemically active compounds toxic to herbivores and pathogens, thereby constituting the glucosinolate-myrosinase defense system or the mustard oil bomb. During the evolution, Brassicales plants have developed not only complex biosynthetic pathways for production of a large number of glucosinolate structures but also different classes of myrosinases that differ in catalytic mechanisms and substrate specificity. Studies over the past several decades have made important progress in the understanding of the cellular and subcellular organization of the glucosinolate-myrosinase system for rapid and timely detonation of the mustard oil bomb upon tissue damage after herbivore feeding and pathogen infection. Progress has also been made in understanding the mechanisms that herbivores and pathogens have evolved to counter the mustard oil bomb. In this review, we summarize our current understanding of the function and organization of the glucosinolate-myrosinase system in Brassicales plants and discuss both the progresses and future challenges in addressing this complex defense system as an excellent model for analyzing plant chemical defense.


Assuntos
Brassica/metabolismo , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/metabolismo , Animais , Vias Biossintéticas , Brassica/microbiologia , Brassica/parasitologia , Resistência à Doença , Hidrólise , Insetos/fisiologia , Proteínas de Plantas/metabolismo
20.
J Sci Food Agric ; 102(11): 4685-4696, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35191049

RESUMO

BACKGROUND: In order to prolong the storage and inhibit microorganisms of pakchoi, the antibacterial activity and mechanism of ultrasound combined with sodium hypochlorite (NaClO-US), the efficiency of NaClO-US in reducing Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa as well as preserving quality of pakchoi were investigated. RESULTS: Ultrasound treatment could significantly reduce the usage of NaClO solution from 800 ppm to 500 ppm. NaClO-US decreased the counts of E. coli, S. aureus and P. aeruginosa, which disrupted the bacterial cell membrane with cytoplasmic leakage. In addition, NaClO-US significantly increased cell membrane permeability, while cell membrane integrity decreased, the secondary structure of bacterial proteins showed several obvious changes, such as the increase of random coil content, as well as the decrease of α-helix content. The bacterial counts, E. coli, S. aureus and P. aeruginosa population in pakchoi treated with NaClO-US reduced by 1.89, 1.40, 1.60, 1.72 log CFU g-1 , respectively compared to control sample after storage for 15 days. NaClO-US resulted in minimum chlorophyll depletion, flavor and sensory deterioration. CONCLUSION: NaClO-US solution treatment inhibited microorganisms and prolonged storage of pakchoi. © 2022 Society of Chemical Industry.


Assuntos
Brassica , Desinfetantes , Antibacterianos/farmacologia , Brassica/microbiologia , Desinfetantes/farmacologia , Escherichia coli , Pseudomonas aeruginosa , Hipoclorito de Sódio/farmacologia , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa