Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.003
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(42): e2305208120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37816049

RESUMO

Polyploidization is important to the evolution of plants. Subgenome dominance is a distinct phenomenon associated with most allopolyploids. A gene on the dominant subgenome tends to express to higher RNA levels in all organs as compared to the expression of its syntenic paralogue (homoeolog). The mechanism that underlies the formation of subgenome dominance remains unknown, but there is evidence for the involvement of transposon/DNA methylation density differences nearby the genes of parents as being causal. The subgenome with lower density of transposon and methylation near genes is positively associated with subgenome dominance. Here, we generated eight generations of allotetraploid progenies from the merging of parental genomes Brassica rapa and Brassica oleracea. We found that transposon/methylation density differ near genes between the parental (rapa:oleracea) existed in the wide hybrid, persisted in the neotetraploids (the synthetic Brassica napus), but these neotetraploids expressed no expected subgenome dominance. This absence of B. rapa vs. B. oleracea subgenome dominance is particularly significant because, while there is no negative relationship between transposon/methylation level and subgenome dominance in the neotetraploids, the more ancient parental subgenomes for all Brassica did show differences in transposon/methylation densities near genes and did express, in the same samples of cells, biased gene expression diagnostic of subgenome dominance. We conclude that subgenome differences in methylated transposon near genes are not sufficient to initiate the biased gene expressions defining subgenome dominance. Our result was unexpected, and we suggest a "nuclear chimera" model to explain our data.


Assuntos
Brassica napus , Brassica rapa , Brassica , Brassica/genética , Genoma de Planta/genética , Brassica rapa/genética , Brassica napus/genética , Metilação de DNA/genética , Poliploidia
2.
Plant J ; 118(2): 373-387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38159103

RESUMO

Petals in rapeseed (Brassica napus) serve multiple functions, including protection of reproductive organs, nutrient acquisition, and attraction of pollinators. However, they also cluster densely at the top, forming a thick layer that absorbs and reflects a considerable amount of photosynthetically active radiation. Breeding genotypes with large, small, or even petal-less varieties, requires knowledge of primary genes for allelic selection and manipulation. However, our current understanding of petal-size regulation is limited, and the lack of markers and pre-breeding materials hinders targeted petal-size breeding. Here, we conducted a genome-wide association study on petal size using 295 diverse accessions. We identified 20 significant single nucleotide polymorphisms and 236 genes associated with petal-size variation. Through a cross-analysis of genomic and transcriptomic data, we focused on 14 specific genes, from which molecular markers for diverging petal-size features can be developed. Leveraging CRISPR-Cas9 technology, we successfully generated a quadruple mutant of Far-Red Elongated Hypocotyl 3 (q-bnfhy3), which exhibited smaller petals compared to the wild type. Our study provides insights into the genetic basis of petal-size regulation in rapeseed and offers abundant potential molecular markers for breeding. The q-bnfhy3 mutant unveiled a novel role of FHY3 orthologues in regulating petal size in addition to previously reported functions.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Estudo de Associação Genômica Ampla , Sistemas CRISPR-Cas , Melhoramento Vegetal , Brassica rapa/genética , Mutagênese
3.
Plant J ; 113(4): 866-880, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36575585

RESUMO

Induced mutations are an essential source of genetic variation in plant breeding. Ethyl methanesulfonate (EMS) mutagenesis has been frequently applied, and mutants have been detected by phenotypic or genotypic screening of large populations. In the present study, a rapeseed M2 population was derived from M1 parent cultivar 'Express' treated with EMS. Whole genomes were sequenced from fourfold (4×) pools of 1988 M2 plants representing 497 M2 families. Detected mutations were not evenly distributed and displayed distinct patterns across the 19 chromosomes with lower mutation rates towards the ends. Mutation frequencies ranged from 32/Mb to 48/Mb. On average, 284 442 single nucleotide polymorphisms (SNPs) per M2 DNA pool were found resulting from EMS mutagenesis. 55% of the SNPs were C → T and G → A transitions, characteristic for EMS induced ('canonical') mutations, whereas the remaining SNPs were 'non-canonical' transitions (15%) or transversions (30%). Additionally, we detected 88 725 high confidence insertions and deletions per pool. On average, each M2 plant carried 39 120 canonical mutations, corresponding to a frequency of one mutation per 23.6 kb. Approximately 82% of such mutations were located either 5 kb upstream or downstream (56%) of gene coding regions or within intergenic regions (26%). The remaining 18% were located within regions coding for genes. All mutations detected by whole genome sequencing could be verified by comparison with known mutations. Furthermore, all sequences are accessible via the online tool 'EMSBrassica' (http://www.emsbrassica.plantbreeding.uni-kiel.de), which enables direct identification of mutations in any target sequence. The sequence resource described here will further add value for functional gene studies in rapeseed breeding.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Genoma de Planta/genética , Melhoramento Vegetal , Mutação , Mutagênese , Metanossulfonato de Etila/farmacologia , Sequenciamento Completo do Genoma , Brassica rapa/genética
4.
Plant J ; 114(1): 142-158, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36710652

RESUMO

Polyploidy has played an extensive role in the evolution of flowering plants. Allopolyploids, with subgenomes containing duplicated gene pairs called homeologs, can show rapid transcriptome changes including novel alternative splicing (AS) patterns. The extent to which abiotic stress modulates AS of homeologs is a nascent topic in polyploidy research. We subjected both resynthesized and natural lines of polyploid Brassica napus, along with the progenitors Brassica rapa and Brassica oleracea, to infection with the fungal pathogen Sclerotinia sclerotiorum. RNA-sequencing analyses revealed widespread divergence between polyploid subgenomes in both gene expression and AS patterns. Resynthesized B. napus displayed significantly more A and C subgenome biased homeologs under pathogen infection than during uninfected growth. Differential AS (DAS) in response to infection was highest in natural B. napus (12 709 DAS events) and lower in resynthesized B. napus (8863 DAS events). Natural B. napus had more upregulated events and fewer downregulated events. There was a global expression bias towards the B. oleracea-derived (C) subgenome in both resynthesized and natural B. napus, enhanced by widespread non-parental downregulation of the B. rapa-derived (A) homeolog. In the resynthesized B. napus, this resulted in a disproportionate C subgenome contribution to the pathogen defense response, characterized by biases in both transcript expression levels and the proportion of induced genes. Our results elucidate the complex ways in which Sclerotinia infection affects expression and AS of homeologous genes in resynthesized and natural B. napus.


Assuntos
Ascomicetos , Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Processamento Alternativo/genética , Brassica rapa/genética , Poliploidia
5.
Plant J ; 113(2): 246-261, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36424891

RESUMO

Sinapis alba and Sinapis arvensis are mustard crops within the Brassiceae tribe of the Brassicaceae family, and represent an important genetic resource for crop improvement. We performed the de novo assembly of Brassica nigra, S. alba, and S. arvensis, and conducted comparative genomics to investigate the pattern of genomic evolution since an ancient whole-genome triplication event. Both Sinapis species retained evidence of the Brassiceae whole-genome triplication approximately 20.5 million years ago (Mya), with subgenome dominance observed in gene density, gene expression, and selective constraint. While S. alba diverged from the ancestor of Brassica and Raphanus at approximately 12.5 Mya, the divergence time of S. arvensis and B. nigra was approximately 6.5 Mya. S. arvensis and B. nigra had greater collinearity compared with their relationship to either Brassica rapa or Brassica oleracea. Two chromosomes of S. alba (Sal03 and Sal08) were completely collinear with two ancestral chromosomes proposed in the Ancestral Crucifer Karyotype (ACK) genomic block model, the first time this has been observed in the Brassiceae. These results are consistent with S. alba representing a relatively ancient lineage of the species evolved from the common ancestor of tribe Brassiceae, and suggest that the phylogeny of the Brassica and Sinapis genera requires some revision. Our study provides new insights into the genome evolution and phylogenetic relationships of Brassiceae and provides genomic information for genetic improvement of these plants.


Assuntos
Brassica rapa , Sinapis , Sinapis/genética , Filogenia , Mostardeira/genética , Brassica rapa/genética , Genoma de Planta/genética
6.
BMC Genomics ; 25(1): 546, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824587

RESUMO

BACKGROUND: Purple flowering stalk (Brassica rapa var. purpuraria) is a widely cultivated plant with high nutritional and medicinal value and exhibiting strong adaptability during growing. Mitochondrial (mt) play important role in plant cells for energy production, developing with an independent genetic system. Therefore, it is meaningful to assemble and annotate the functions for the mt genome of plants independently. Though there have been several reports referring the mt genome of in Brassica species, the genome of mt in B. rapa var. purpuraria and its functional gene variations when compared to its closely related species has not yet been addressed. RESULTS: The mt genome of B. rapa var. purpuraria was assembled through the Illumina and Nanopore sequencing platforms, which revealed a length of 219,775 bp with a typical circular structure. The base composition of the whole B. rapa var. purpuraria mt genome revealed A (27.45%), T (27.31%), C (22.91%), and G (22.32%). 59 functional genes, composing of 33 protein-coding genes (PCGs), 23 tRNA genes, and 3 rRNA genes, were annotated. The sequence repeats, codon usage, RNA editing, nucleotide diversity and gene transfer between the cp genome and mt genome were examined in the B. rapa var. purpuraria mt genome. Phylogenetic analysis show that B. rapa var. Purpuraria was closely related to B. rapa subsp. Oleifera and B. juncea. Ka/Ks analysis reflected that most of the PCGs in the B. rapa var. Purpuraria were negatively selected, illustrating that those mt genes were conserved during evolution. CONCLUSIONS: The results of our findings provide valuable information on the B.rapa var. Purpuraria genome, which might facilitate molecular breeding, genetic variation and evolutionary researches for Brassica species in the future.


Assuntos
Brassica rapa , Genoma Mitocondrial , Filogenia , Brassica rapa/genética , Anotação de Sequência Molecular , Genoma de Planta , RNA de Transferência/genética , Composição de Bases
7.
BMC Genomics ; 25(1): 704, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030492

RESUMO

The growth, yield, and seed quality of rapeseed are negatively affected by drought stress. Therefore, it is of great value to understand the molecular mechanism behind this phenomenon. In a previous study, long non-coding RNAs (lncRNAs) were found to play a key role in the response of rapeseed seedlings to drought stress. However, many questions remained unanswered. This study was the first to investigate the expression profile of lncRNAs not only under control and drought treatment, but also under the rehydration treatment. A total of 381 differentially expressed lncRNA and 10,253 differentially expressed mRNAs were identified in the comparison between drought stress and control condition. In the transition from drought stress to rehydration, 477 differentially expressed lncRNAs and 12,543 differentially expressed mRNAs were detected. After identifying the differentially expressed (DE) lncRNAs, the comprehensive lncRNAs-engaged network with the co-expressed mRNAs in leaves under control, drought and rehydration was investigated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of co-expressed mRNAs identified the most significant pathways related with plant hormones (expecially abscisic acid, auxin, cytokinins, and gibberellins) in the signal transduction. The genes, co-expressed with the most-enriched DE-lncRNAs, were considered as the most effective candidates in the water-loss and water-recovery processes, including protein phosphatase 2 C (PP2C), ABRE-binding factors (ABFs), and SMALL AUXIN UP-REGULATED RNAs (SAURs). In summary, these analyses clearly demonstrated that DE-lncRNAs can act as a regulatory hub in plant-water interaction by controlling phytohormone signaling pathways and provided an alternative way to explore the complex mechanisms of drought tolerance in rapeseed.


Assuntos
Secas , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas , RNA Longo não Codificante , Plântula , Transdução de Sinais , Estresse Fisiológico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Plântula/genética , Plântula/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Brassica napus/genética , Brassica napus/metabolismo , Transcriptoma , Redes Reguladoras de Genes , Brassica rapa/genética , Brassica rapa/metabolismo
8.
BMC Plant Biol ; 24(1): 206, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509484

RESUMO

BACKGROUND: Plants mediate several defense mechanisms to withstand abiotic stresses. Several gene families respond to stress as well as multiple transcription factors to minimize abiotic stresses without minimizing their effects on performance potential. RNA helicase (RH) is one of the foremost critical gene families that can play an influential role in tolerating abiotic stresses in plants. However, little knowledge is present about this protein family in rapeseed (canola). Here, we performed a comprehensive survey analysis of the RH protein family in rapeseed (Brassica napus L.). RESULTS: A total of 133 BnRHs genes have been discovered in this study. By phylogenetic analysis, RHs genes were divided into one main group and a subgroup. Examination of the chromosomal position of the identified genes showed that most of the genes (27%) were located on chromosome 3. All 133 identified sequences contained the main DEXDC domain, the HELICC domain, and a number of sub-domains. The results of biological process studies showed that about 17% of the proteins acted as RHs, 22% as ATP binding, and 14% as mRNA binding. Each part of the conserved motifs, communication network, and three-dimensional structure of the proteins were examined separately. The results showed that the RWC in leaf tissue decreased with higher levels of drought stress and in both root and leaf tissues sodium concentration was increased upon increased levels of salt stress treatments. The proline content were found to be increased in leaf and root with the increased level of stress treatment. Finally, the expression patterns of eight selected RHs genes that have been exposed to drought, salinity, cold, heat and cadmium stresses were investigated by qPCR. The results showed the effect of genes under stress. Examination of gene expression in the Hayola #4815 cultivar showed that all primers except primer #79 had less expression in both leaves and roots than the control level. CONCLUSIONS: New finding from the study have been presented new insights for better understanding the function and possible mechanism of RH in response to abiotic stress in rapeseed.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/metabolismo , Filogenia , Brassica rapa/genética , Estresse Fisiológico/genética , RNA/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
BMC Plant Biol ; 24(1): 21, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166550

RESUMO

Rapeseed (Brassica napus L.) with short or no dormancy period are easy to germinate before harvest (pre-harvest sprouting, PHS). PHS has seriously decreased seed weight and oil content in B. napus. Short-chain dehydrogenase/ reductase (SDR) genes have been found to related to seed dormancy by promoting ABA biosynthesis in rice and Arabidopsis. In order to clarify whether SDR genes are the key factor of seed dormancy in B. napus, homology sequence blast, protein physicochemical properties, conserved motif, gene structure, cis-acting element, gene expression and variation analysis were conducted in present study. Results shown that 142 BnaSDR genes, unevenly distributed on 19 chromosomes, have been identified in B. napus genome. Among them, four BnaSDR gene clusters present in chromosome A04、A05、C03、C04 were also identified. These 142 BnaSDR genes were divided into four subfamilies on phylogenetic tree. Members of the same subgroup have similar protein characters, conserved motifs, gene structure, cis-acting elements and tissue expression profiles. Specially, the expression levels of genes in subgroup A, B and C were gradually decreased, but increased in subgroup D with the development of seeds. Among seven higher expressed genes in group D, six BnaSDR genes were significantly higher expressed in weak dormancy line than that in nondormancy line. And the significant effects of BnaC01T0313900ZS and BnaC03T0300500ZS variation on seed dormancy were also demonstrated in present study. These findings provide a key information for investigating the function of BnaSDRs on seed dormancy in B. napus.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Dormência de Plantas/genética , Perfilação da Expressão Gênica , Filogenia , Brassica rapa/genética , Sementes/genética , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Planta ; 260(1): 27, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865018

RESUMO

MAIN CONCLUSION: In Brassica rapa, the epigenetic modifier BraA.CLF orchestrates flowering by modulating H3K27me3 levels at the floral integrator genes FT, SOC1, and SEP3, thereby influencing their expression. CURLY LEAF (CLF) is the catalytic subunit of the plant Polycomb Repressive Complex 2 that mediates the trimethylation of histone H3 lysine 27 (H3K27me3), an epigenetic modification that leads to gene silencing. While the function of CURLY LEAF (CLF) has been extensively studied in Arabidopsis thaliana, its role in Brassica crops is barely known. In this study, we focused on the Brassica rapa homolog of CLF and found that the loss-of-function mutant braA.clf-1 exhibits an accelerated flowering together with pleiotropic phenotypic alterations compared to wild-type plants. In addition, we carried out transcriptomic and H3K27me3 genome-wide analyses to identify the genes regulated by BraA.CLF. Interestingly, we observed that several floral regulatory genes, including the B. rapa homologs of FT, SOC1 and SEP3, show reduced H3K27me3 levels and increased transcript levels compared to wild-type plants, suggesting that they are direct targets of BraA.CLF and key players in regulating flowering time in this crop. In addition, the results obtained will enhance our understanding of the epigenetic mechanisms regulating key developmental traits and will aid to increase crop yield by engineering new Brassica varieties with different flowering time requirements.


Assuntos
Brassica rapa , Flores , Regulação da Expressão Gênica de Plantas , Histonas , Brassica rapa/genética , Brassica rapa/fisiologia , Brassica rapa/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Histonas/metabolismo , Histonas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Epigênese Genética , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo
11.
Plant Biotechnol J ; 22(3): 738-750, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37921406

RESUMO

Rapeseed is a crop of global importance but there is a need to broaden the genetic diversity available to address breeding objectives. Radiation mutagenesis, supported by genomics, has the potential to supersede genome editing for both gene knockout and copy number increase, but detailed knowledge of the molecular outcomes of radiation treatment is lacking. To address this, we produced a genome re-sequenced panel of 1133 M2 generation rapeseed plants and analysed large-scale deletions, single nucleotide variants and small insertion-deletion variants affecting gene open reading frames. We show that high radiation doses (2000 Gy) are tolerated, gamma radiation and fast neutron radiation have similar impacts and that segments deleted from the genomes of some plants are inherited as additional copies by their siblings, enabling gene dosage decrease. Of relevance for species with larger genomes, we showed that these large-scale impacts can also be detected using transcriptome re-sequencing. To test the utility of the approach for predictive alteration of oil fatty acid composition, we produced lines with both decreased and increased copy numbers of Bna.FAE1 and confirmed the anticipated impacts on erucic acid content. We detected and tested a 21-base deletion expected to abolish function of Bna.FAD2.A5, for which we confirmed the predicted reduction in seed oil polyunsaturated fatty acid content. Our improved understanding of the molecular effects of radiation mutagenesis will underpin genomics-led approaches to more efficient introduction of novel genetic variation into the breeding of this crop and provides an exemplar for the predictive improvement of other crops.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Melhoramento Vegetal , Brassica rapa/genética , Genômica , Mutagênese/genética , Sementes/genética , Óleos de Plantas
12.
Plant Biotechnol J ; 22(6): 1636-1648, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38308663

RESUMO

Branch angle (BA) is a critical morphological trait that significantly influences planting density, light interception and ultimately yield in plants. Despite its importance, the regulatory mechanism governing BA in rapeseed remains poorly understood. In this study, we generated 109 transcriptome data sets for 37 rapeseed accessions with divergent BA phenotypes. Relative to adaxial branch segments, abaxial segments accumulated higher levels of auxin and exhibited lower expression of six TCP1 homologues and one GA20ox3. A co-expression network analysis identified two modules highly correlated with BA. The modules contained homologues to known BA control genes, such as FUL, YUCCA6, TCP1 and SGR3. Notably, a homoeologous exchange (HE), occurring at the telomeres of A09, was prevalent in large BA accessions, while an A02-C02 HE was common in small BA accessions. In their corresponding regions, these HEs explained the formation of hub gene hotspots in the two modules. QTL-seq analysis confirmed that the presence of a large A07-C06 HE (~8.1 Mb) was also associated with a small BA phenotype, and BnaA07.WRKY40.b within it was predicted as candidate gene. Overexpressing BnaA07.WRKY40.b in rapeseed increased BA by up to 20°, while RNAi- and CRISPR-mediated mutants (BnaA07.WRKY40.b and BnaC06.WRKY40.b) exhibited decreased BA by up to 11.4°. BnaA07.WRKY40.b was exclusively localized to the nucleus and exhibited strong expression correlations with many genes related to gravitropism and plant architecture. Taken together, our study highlights the influence of HEs on rapeseed plant architecture and confirms the role of WRKY40 homologues as novel regulators of BA.


Assuntos
Locos de Características Quantitativas , Transcriptoma , Transcriptoma/genética , Locos de Características Quantitativas/genética , Brassica rapa/genética , Regulação da Expressão Gênica de Plantas , Brassica napus/genética , Brassica napus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Fenótipo , Genes de Plantas/genética
13.
New Phytol ; 243(3): 1220-1230, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38853408

RESUMO

Shifts in pollinator occurrence and their pollen transport effectiveness drive the evolution of mating systems in flowering plants. Understanding the genomic basis of these changes is essential for predicting the persistence of a species under environmental changes. We investigated the genomic changes in Brassica rapa over nine generations of pollination by hoverflies associated with rapid morphological evolution toward the selfing syndrome. We combined a genotyping-by-sequencing (GBS) approach with a genome-wide association study (GWAS) to identify candidate genes, and assessed their functional role in the observed morphological changes by studying mutations of orthologous genes in the model plant Arabidopsis thaliana. We found 31 candidate genes involved in a wide range of functions from DNA/RNA binding to transport. Our functional assessment of orthologous genes in A. thaliana revealed that two of the identified genes in B. rapa are involved in regulating the size of floral organs. We found a protein kinase superfamily protein involved in petal width, an important trait in plant attractiveness to pollinators. Moreover, we found a histone lysine methyltransferase (HKMT) associated with stamen length. Altogether, our study shows that hoverfly pollination leads to rapid evolution toward the selfing syndrome mediated by polygenic changes.


Assuntos
Evolução Biológica , Brassica rapa , Genes de Plantas , Polinização , Polinização/genética , Brassica rapa/genética , Brassica rapa/fisiologia , Animais , Estudo de Associação Genômica Ampla , Autofertilização/genética , Flores/genética , Flores/fisiologia , Flores/anatomia & histologia , Reprodução/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Mutação/genética , Dípteros/genética , Dípteros/fisiologia , Fenótipo , Pólen/genética , Pólen/fisiologia
14.
Plant Physiol ; 191(1): 352-368, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36179100

RESUMO

The degradation products of glucosinolates (GSLs) greatly lower the nutritional value of rapeseed (Brassica napus) meal; thus, reduction of seed GSL content (SGC) has become an important objective of rapeseed breeding. In our previous study, we finely mapped a major QTL (qGSL-C2) for SGC to a 49-kb collinear region on B. rapa chromosome A2. Here, we experimentally validated that BnaC2.MYB28, encoding an R2R3-MYB transcription factor, is the causal gene of qGSL-C2. BnaC2.MYB28 is a nucleus-localized protein mainly expressed in vegetative tissues. Knockout of BnaC2.MYB28 in the high-SGC parent G120 reduced SGC to a value lower than that in the low-SGC parent ZY50, while overexpression of BnaC2.MYB28 in both parental lines (G120 and ZY50) led to extremely high SGC, indicating that BnaC2.MYB28 acts as a positive regulator of SGC in both parents. Molecular characterization revealed that BnaC2.MYB28 forms a homodimer and specifically interacts with BnaMYC3. Moreover, BnaC2.MYB28 can directly activate the expression of GSL biosynthesis genes. Differential expression abundance resulting from the polymorphic promoter sequences, in combination with the different capability in activating downstream genes involved in aliphatic GSL biosynthesis, caused the functional divergence of BnaC2.MYB28 in SGC regulation between the parents. Natural variation of BnaC2.MYB28 was highly associated with SGC in natural germplasm and has undergone artificial selection in modern low-GSL breeding. This study provides important insights into the core function of BnaC2.MYB28 in regulating SGC and a promising strategy for manipulating SGC in rapeseed.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Glucosinolatos/metabolismo , Melhoramento Vegetal , Brassica rapa/genética , Sementes/genética , Sementes/metabolismo
15.
Plant Physiol ; 191(3): 1836-1856, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36494098

RESUMO

Rapeseed (Brassica napus), an important oil crop worldwide, provides large amounts of lipids for human requirements. Calcineurin B-like (CBL)-interacting protein kinase 9 (CIPK9) was reported to regulate seed oil content in the plant. Here, we generated gene-silenced lines through RNA interference biotechnology and loss-of-function mutant bnacipk9 using CRISPR/Cas9 to further study BnaCIPK9 functions in the seed oil metabolism of rapeseeds. We discovered that compared with wild-type (WT) lines, gene-silenced and bnacipk9 lines had substantially different oil contents and fatty acid compositions: seed oil content was improved by 3%-5% and 1%-6% in bnacipk9 lines and gene-silenced lines, respectively; both lines were with increased levels of monounsaturated fatty acids and decreased levels of polyunsaturated fatty acids. Additionally, hormone and glucose content analyses revealed that compared with WT lines the bnacipk9 lines showed significant differences: in bnacipk9 seeds, indoleacetic acid and abscisic acid (ABA) levels were higher; glucose and sucrose contents were higher with a higher hexose-to-sucrose ratio in bnacipk9 mid-to-late maturation development seeds. Furthermore, the bnacipk9 was less sensitive to glucose and ABA than the WT according to stomatal aperture regulation assays and the expression levels of genes involved in glucose and ABA regulating pathways in rapeseeds. Notably, in Arabidopsis (Arabidopsis thaliana), exogenous ABA and glucose imposed on developing seeds revealed the effects of ABA and glucose signaling on seed oil accumulation. Altogether, our results strongly suggest a role of CIPK9 in mediating the interaction between glucose flux and ABA hormone signaling to regulate seed oil metabolism in rapeseed.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica napus , Brassica rapa , Humanos , Ácido Abscísico/metabolismo , Glucose/metabolismo , Brassica rapa/genética , Brassica rapa/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Óleos de Plantas/metabolismo , Sacarose/metabolismo , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/metabolismo
16.
J Exp Bot ; 75(5): 1347-1363, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37991105

RESUMO

Breeding for disease resistance in major crops is of crucial importance for global food security and sustainability. However, common biotechnologies such as traditional transgenesis or genome editing do not provide an ideal solution, whereas transgenic crops free of selection markers such as cisgenic/intragenic crops might be suitable. In this study, after cloning and functional verification of the Rcr1 gene for resistance to clubroot (Plasmodiophora brassicae), we confirmed that the genes Rcr1, Rcr2, Rcr4, and CRa from Brassica rapa crops and the resistance gene from B. napus oilseed rape cv. 'Mendel' on chromosome A03 were identical in their coding regions. We also determined that Rcr1 has a wide distribution in Brassica breeding materials and renders potent resistance against multiple representative clubroot strains in Canada. We then modified a CRISPR/Cas9-based cisgenic vector system and found that it enabled the fast breeding of selection-marker-free transgenic crops with add-on traits, with selection-marker-free canola (B. napus) germplasms with Rcr1-rendered stable resistance to clubroot disease being successfully developed within 2 years. In the B. napus background, the intragenic vector system was able to remove unwanted residue sequences from the final product with high editing efficiency, and off-target mutations were not detected. Our study demonstrates the potential of applying this breeding strategy to other crops that can be transformed by Agrobacterium. Following the streamlined working procedure, intragenic germplasms can be developed within two generations, which could significantly reduce the breeding time and labor compared to traditional introgression whilst still achieving comparable or even better breeding results.


Assuntos
Brassica napus , Brassica rapa , Brassica , Sistemas CRISPR-Cas , Melhoramento Vegetal , Brassica napus/genética , Brassica/genética , Brassica rapa/genética
17.
Theor Appl Genet ; 137(1): 16, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189816

RESUMO

KEY MESSAGE: Simulation planned pre-breeding can increase the efficiency of starting a hybrid breeding program. Starting a hybrid breeding program commonly comprises a grouping of the initial germplasm in two pools and subsequent selection on general combining ability. Investigations on pre-breeding steps before starting the selection on general combining ability are not available. Our goals were (1) to use computer simulations on the basis of DNA markers and testcross data to plan crosses that separate genetically two initial germplasm pools of rapeseed, (2) to carry out the planned crosses, and (3) to verify experimentally the pool separation as well as the increase in testcross performance. We designed a crossing program consisting of four cycles of recombination. In each cycle, the experimentally generated material was used to plan the subsequent crossing cycle with computer simulations. After finishing the crossing program, the initially overlapping pools were clearly separated in principal coordinate plots. Doubled haploid lines derived from the material of crossing cycles 1 and 2 showed an increase in relative testcross performance for yield of about 5% per cycle. We conclude that simulation-designed pre-breeding crossing schemes, that were carried out before the general combining ability-based selection of a newly started hybrid breeding program, can save time and resources, and in addition conserve more of the initial genetic variation than a direct start of a hybrid breeding program with general combining ability-based selection.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Melhoramento Vegetal , Brassica rapa/genética , Simulação por Computador , Haploidia
18.
Theor Appl Genet ; 137(3): 63, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427048

RESUMO

KEY MESSAGE: The gene BrABCG26 responsible for male sterility of Chinese cabbage was confirmed by two allelic mutants. Male-sterile lines are an important way of heterosis utilization in Chinese cabbage. In this study, two allelic male-sterile mutants msm3-1 and msm3-2 were obtained from a Chinese cabbage double haploid (DH) line 'FT' by using EMS-mutagenesis. Compared to the wild-type 'FT,' the stamens of mutants were completely degenerated and had no pollen, and other characters had no obvious differences. Cytological observation revealed that the failure of vacuolation of the mononuclear microspore, accompanied by abnormal tapetal degradation, resulted in anther abortion in mutants. Genetic analysis showed that a recessive gene controlled the mutant trait. MutMap combined with kompetitive allele specific PCR genotyping analyses showed that BraA01g038270.3C, encoding a transporter ABCG26 that played a vital role in pollen wall formation, was the candidate gene for msm3-1, named BrABCG26. Compared with wild-type 'FT,' the mutations existed on the second exon (C to T) and the sixth exon (C to T) of BrABCG26 gene in mutants msm3-1 and msm3-2, leading to the loss-of-function truncated protein, which verified the BrABCG26 function in stamen development. Subcellular localization and expression pattern analysis indicated that BrABCG26 was localized in the nucleus and was expressed in all organs, with the highest expression in flower buds. Compared to the wild-type 'FT,' the expressions of BrABCG26 were significantly reduced in flower buds and anthers of mutants. Promoter activity analysis showed that a strong GUS signal was detected in flower buds. These results indicated that BrABCG26 is responsible for the male sterility of msm3 mutants in Chinese cabbage.


Assuntos
Brassica rapa , Brassica , Infertilidade das Plantas , Transportadores de Cassetes de Ligação de ATP/genética , Brassica/genética , Brassica rapa/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Mutação , Infertilidade das Plantas/genética , Proteínas de Plantas/genética
19.
Plant Cell Rep ; 43(4): 86, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453734

RESUMO

KEY MESSAGE: The BrrFT paralogues exhibit distinct expression patterns and play different roles in regulating flowering time, and BrrFT4 competes with BrrFT1 and BrrFT2 to interact with BrrFD proteins. Flowering time is an important agricultural trait for Brassica crops, and early bolting strongly affects the yield and quality of Brassica rapa ssp. rapa. Flowering Locus T paralogues play an important role in regulating flowering time. In this study, we identified FT-related genes in turnip by phylogenetic classification, and four BrrFT homoeologs that shared with high identities with BraFT genes were isolated. The different gene structures, promoter binding sites, and expression patterns observed indicated that these genes may play different roles in flowering time regulation. Further genetic and biochemical experiments showed that as for FT-like paralogues, BrrFT2 acted as the key floral inducer, and BrrFT1 seems to act as a mild 'florigen' protein. However, BrrFT4 acts as a floral repressor and antagonistically regulates flowering time by competing with BrrFT1 and BrrFT2 to bind BrrFD proteins. BrrFT3 may have experienced loss of function via base shift mutation. Our results revealed the potential roles of FT-related genes in flowering time regulation in turnip.


Assuntos
Brassica napus , Brassica rapa , Brassica , Brassica/genética , Brassica rapa/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/metabolismo , Brassica napus/genética , Regulação da Expressão Gênica de Plantas/genética
20.
J Basic Microbiol ; 64(5): e2300664, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38436477

RESUMO

Cauliflower mosaic virus (CaMV) has a double-stranded DNA genome and is globally distributed. The phylogeny tree of 121 CaMV isolates was categorized into two primary groups, with Iranian isolates showing the greatest genetic variations. Nucleotide A demonstrated the highest percentage (36.95%) in the CaMV genome and the dinucleotide odds ratio analysis revealed that TC dinucleotide (1.34 ≥ 1.23) and CG dinucleotide (0.63 ≤ 0.78) are overrepresented and underrepresented, respectively. Relative synonymous codon usage (RSCU) analysis confirmed codon usage bias in CaMV and its hosts. Brassica oleracea and Brassica rapa, among the susceptible hosts of CaMV, showed a codon adaptation index (CAI) value above 0.8. Additionally, relative codon deoptimization index (RCDI) results exhibited the highest degree of deoptimization in Raphanus sativus. These findings suggest that the genes of CaMV underwent codon adaptation with its hosts. Among the CaMV open reading frames (ORFs), genes that produce reverse transcriptase and virus coat proteins showed the highest CAI value of 0.83. These genes are crucial for the creation of new virion particles. The results confirm that CaMV co-evolved with its host to ensure the optimal expression of its genes in the hosts, allowing for easy infection and effective spread. To detect the force behind codon usage bias, an effective number of codons (ENC)-plot and neutrality plot were conducted. The results indicated that natural selection is the primary factor influencing CaMV codon usage bias.


Assuntos
Caulimovirus , Uso do Códon , Evolução Molecular , Genoma Viral , Filogenia , Doenças das Plantas , Genoma Viral/genética , Caulimovirus/genética , Doenças das Plantas/virologia , Fases de Leitura Aberta/genética , Códon/genética , Variação Genética , Brassica rapa/genética , Brassica rapa/virologia , Interações Hospedeiro-Patógeno/genética , Brassica/genética , Brassica/virologia , Raphanus/genética , Raphanus/virologia , Irã (Geográfico)
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa