Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.528
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Cell ; 181(4): 784-799.e19, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32413299

RESUMO

Swelling of the brain or spinal cord (CNS edema) affects millions of people every year. All potential pharmacological interventions have failed in clinical trials, meaning that symptom management is the only treatment option. The water channel protein aquaporin-4 (AQP4) is expressed in astrocytes and mediates water flux across the blood-brain and blood-spinal cord barriers. Here we show that AQP4 cell-surface abundance increases in response to hypoxia-induced cell swelling in a calmodulin-dependent manner. Calmodulin directly binds the AQP4 carboxyl terminus, causing a specific conformational change and driving AQP4 cell-surface localization. Inhibition of calmodulin in a rat spinal cord injury model with the licensed drug trifluoperazine inhibited AQP4 localization to the blood-spinal cord barrier, ablated CNS edema, and led to accelerated functional recovery compared with untreated animals. We propose that targeting the mechanism of calmodulin-mediated cell-surface localization of AQP4 is a viable strategy for development of CNS edema therapies.


Assuntos
Aquaporina 4/metabolismo , Edema/metabolismo , Edema/terapia , Animais , Aquaporina 4/fisiologia , Astrócitos/metabolismo , Encéfalo/metabolismo , Edema Encefálico/metabolismo , Calmodulina/metabolismo , Sistema Nervoso Central/metabolismo , Edema/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Trifluoperazina/farmacologia
2.
Cell ; 169(6): 1042-1050.e9, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575668

RESUMO

KCNQ1 is the pore-forming subunit of cardiac slow-delayed rectifier potassium (IKs) channels. Mutations in the kcnq1 gene are the leading cause of congenital long QT syndrome (LQTS). Here, we present the cryoelectron microscopy (cryo-EM) structure of a KCNQ1/calmodulin (CaM) complex. The conformation corresponds to an "uncoupled," PIP2-free state of KCNQ1, with activated voltage sensors and a closed pore. Unique structural features within the S4-S5 linker permit uncoupling of the voltage sensor from the pore in the absence of PIP2. CaM contacts the KCNQ1 voltage sensor through a specific interface involving a residue on CaM that is mutated in a form of inherited LQTS. Using an electrophysiological assay, we find that this mutation on CaM shifts the KCNQ1 voltage-activation curve. This study describes one physiological form of KCNQ1, depolarized voltage sensors with a closed pore in the absence of PIP2, and reveals a regulatory interaction between CaM and KCNQ1 that may explain CaM-mediated LQTS.


Assuntos
Calmodulina/química , Canal de Potássio KCNQ1/química , Síndrome do QT Longo/metabolismo , Sequência de Aminoácidos , Animais , Calmodulina/metabolismo , Microscopia Crioeletrônica , Humanos , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Modelos Moleculares , Mutação , Alinhamento de Sequência , Xenopus laevis
3.
Cell ; 163(5): 1214-1224, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26590423

RESUMO

Circadian clocks integrate light and temperature input to remain synchronized with the day/night cycle. Although light input to the clock is well studied, the molecular mechanisms by which circadian clocks respond to temperature remain poorly understood. We found that temperature phase shifts Drosophila circadian clocks through degradation of the pacemaker protein TIM. This degradation is mechanistically distinct from photic CRY-dependent TIM degradation. Thermal TIM degradation is triggered by cytosolic calcium increase and CALMODULIN binding to TIM and is mediated by the atypical calpain protease SOL. This thermal input pathway and CRY-dependent light input thus converge on TIM, providing a molecular mechanism for the integration of circadian light and temperature inputs. Mammals use body temperature cycles to keep peripheral clocks synchronized with their brain pacemaker. Interestingly, downregulating the mammalian SOL homolog SOLH blocks thermal mPER2 degradation and phase shifts. Thus, we propose that circadian thermosensation in insects and mammals share common principles.


Assuntos
Relógios Circadianos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Relógios Biológicos , Sinalização do Cálcio , Calmodulina/metabolismo , Calpaína , Ritmo Circadiano , Masculino , Mamíferos/fisiologia , Proteólise
4.
Cell ; 163(5): 1237-1251, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26590425

RESUMO

K-Ras and H-Ras share identical effectors and have similar properties; however, the high degree of tumor-type specificity associated with K-Ras and H-Ras mutations suggests that they have unique roles in oncogenesis. Here, we report that oncogenic K-Ras, but not H-Ras, suppresses non-canonical Wnt/Ca(2+) signaling, an effect that contributes strongly to its tumorigenic properties. K-Ras does this by binding to calmodulin and so reducing CaMKii activity and expression of Fzd8. Restoring Fzd8 in K-Ras mutant pancreatic cells suppresses malignancy, whereas depletion of Fzd8 in H-Ras(V12)-transformed cells enhances their tumor initiating capacity. Interrupting K-Ras-calmodulin binding using genetic means or by treatment with an orally active protein kinase C (PKC)-activator, prostratin, represses tumorigenesis in K-Ras mutant pancreatic cancer cells. These findings provide an alternative way to selectively target this "undruggable" protein.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores de Superfície Celular/metabolismo , Via de Sinalização Wnt , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Calmodulina/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Genes ras , Humanos , Camundongos , Dados de Sequência Molecular , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Papiloma/metabolismo , Ésteres de Forbol/administração & dosagem , Fosforilação , Ligação Proteica/efeitos dos fármacos
5.
Mol Cell ; 82(24): 4712-4726.e7, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423631

RESUMO

Programmed cell death and caspase proteins play a pivotal role in host innate immune response combating pathogen infections. Blocking cell death is employed by many bacterial pathogens as a universal virulence strategy. CopC family type III effectors, including CopC from an environmental pathogen Chromobacterium violaceum, utilize calmodulin (CaM) as a co-factor to inactivate caspases by arginine ADPR deacylization. However, the molecular basis of the catalytic and substrate/co-factor binding mechanism is unknown. Here, we determine successive cryo-EM structures of CaM-CopC-caspase-3 ternary complex in pre-reaction, transition, and post-reaction states, which elucidate a multistep enzymatic mechanism of CopC-catalyzed ADPR deacylization. Moreover, we capture a snapshot of the detachment of modified caspase-3 from CopC. These structural insights are validated by mutagenesis analyses of CopC-mediated ADPR deacylization in vitro and animal infection in vivo. Our study offers a structural framework for understanding the molecular basis of arginine ADPR deacylization catalyzed by the CopC family.


Assuntos
Calmodulina , Caspases , Animais , Calmodulina/genética , Calmodulina/metabolismo , Caspases/metabolismo , Caspase 3/metabolismo , Arginina , Catálise , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
6.
Cell ; 159(3): 608-22, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25417111

RESUMO

The Ca(2+)-free form of calmodulin (apoCaM) often appears inert, modulating target molecules only upon conversion to its Ca(2+)-bound form. This schema has appeared to govern voltage-gated Ca(2+) channels, where apoCaM has been considered a dormant Ca(2+) sensor, associated with channels but awaiting the binding of Ca(2+) ions before inhibiting channel opening to provide vital feedback inhibition. Using single-molecule measurements of channels and chemical dimerization to elevate apoCaM, we find that apoCaM binding on its own markedly upregulates opening, rivaling the strongest forms of modulation. Upon Ca(2+) binding to this CaM, inhibition may simply reverse the initial upregulation. As RNA-edited and -spliced channel variants show different affinities for apoCaM, the apoCaM-dependent control mechanisms may underlie the functional diversity of these variants and explain an elongation of neuronal action potentials by apoCaM. More broadly, voltage-gated Na channels adopt this same modulatory principle. ApoCaM thus imparts potent and pervasive ion-channel regulation. PAPERCLIP:


Assuntos
Calmodulina/metabolismo , Animais , Canais de Cálcio/química , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Fenômenos Eletrofisiológicos , Humanos , Camundongos , Ratos , Canais de Sódio/química , Canais de Sódio/metabolismo
7.
Cell ; 159(2): 281-94, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25303525

RESUMO

Activity-dependent CREB phosphorylation and gene expression are critical for long-term neuronal plasticity. Local signaling at CaV1 channels triggers these events, but how information is relayed onward to the nucleus remains unclear. Here, we report a mechanism that mediates long-distance communication within cells: a shuttle that transports Ca(2+)/calmodulin from the surface membrane to the nucleus. We show that the shuttle protein is γCaMKII, its phosphorylation at Thr287 by ßCaMKII protects the Ca(2+)/CaM signal, and CaN triggers its nuclear translocation. Both ßCaMKII and CaN act in close proximity to CaV1 channels, supporting their dominance, whereas γCaMKII operates as a carrier, not as a kinase. Upon arrival within the nucleus, Ca(2+)/CaM activates CaMKK and its substrate CaMKIV, the CREB kinase. This mechanism resolves long-standing puzzles about CaM/CaMK-dependent signaling to the nucleus. The significance of the mechanism is emphasized by dysregulation of CaV1, γCaMKII, ßCaMKII, and CaN in multiple neuropsychiatric disorders.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Calmodulina/metabolismo , Núcleo Celular/metabolismo , Neurônios/metabolismo , Fosforilação , Ratos Sprague-Dawley , Transcrição Gênica
8.
Cell ; 157(7): 1657-70, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24949975

RESUMO

Voltage-gated Na and Ca2+ channels comprise distinct ion channel superfamilies, yet the carboxy tails of these channels exhibit high homology, hinting at a long-shared and purposeful module. For different Ca2+ channels, carboxyl-tail interactions with calmodulin do elaborate robust and similar forms of Ca2+ regulation. However, Na channels have only shown subtler Ca2+ modulation that differs among reports, challenging attempts at unified understanding. Here, by rapid Ca2+ photorelease onto Na channels, we reset this view of Na channel regulation. For cardiac-muscle channels (NaV1.5), reported effects from which most mechanistic proposals derive, we observe no Ca2+ modulation. Conversely, for skeletal-muscle channels (NaV1.4), we uncover fast Ca2+ regulation eerily similar to that of Ca2+ channels. Channelopathic myotonia mutations halve NaV1.4 Ca2+ regulation, and transplanting the NaV1.4 carboxy tail onto Ca2+ channels recapitulates Ca2+ regulation. Thus, we argue for the persistence and physiological relevance of an ancient Ca2+ regulatory module across Na and Ca2+ channels.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Calmodulina/química , Canais de Sódio Disparados por Voltagem/química , Sequência de Aminoácidos , Animais , Canais de Cálcio/genética , Calmodulina/metabolismo , Cobaias , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Células Musculares/metabolismo , Mioblastos/metabolismo , Filogenia , Ratos , Alinhamento de Sequência , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo
9.
Nature ; 615(7954): 884-891, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922596

RESUMO

Calcium imaging with protein-based indicators1,2 is widely used to follow neural activity in intact nervous systems, but current protein sensors report neural activity at timescales much slower than electrical signalling and are limited by trade-offs between sensitivity and kinetics. Here we used large-scale screening and structure-guided mutagenesis to develop and optimize several fast and sensitive GCaMP-type indicators3-8. The resulting 'jGCaMP8' sensors, based on the calcium-binding protein calmodulin and a fragment of endothelial nitric oxide synthase, have ultra-fast kinetics (half-rise times of 2 ms) and the highest sensitivity for neural activity reported for a protein-based calcium sensor. jGCaMP8 sensors will allow tracking of large populations of neurons on timescales relevant to neural computation.


Assuntos
Sinalização do Cálcio , Cálcio , Calmodulina , Neurônios , Óxido Nítrico Sintase Tipo III , Fragmentos de Peptídeos , Cálcio/análise , Cálcio/metabolismo , Calmodulina/metabolismo , Neurônios/metabolismo , Cinética , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/metabolismo , Fatores de Tempo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo
10.
Mol Cell ; 81(2): 323-339.e11, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33321095

RESUMO

The phosphorylation of G protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) facilitates arrestin binding and receptor desensitization. Although this process can be regulated by Ca2+-binding proteins such as calmodulin (CaM) and recoverin, the molecular mechanisms are poorly understood. Here, we report structural, computational, and biochemical analysis of a CaM complex with GRK5, revealing how CaM shapes GRK5 response to calcium. The CaM N and C domains bind independently to two helical regions at the GRK5 N and C termini to inhibit GPCR phosphorylation, though only the C domain interaction disrupts GRK5 membrane association, thereby facilitating cytoplasmic translocation. The CaM N domain strongly activates GRK5 via ordering of the amphipathic αN-helix of GRK5 and allosteric disruption of kinase-RH domain interaction for phosphorylation of cytoplasmic GRK5 substrates. These results provide a framework for understanding how two functional effects, GRK5 activation and localization, can cooperate under control of CaM for selective substrate targeting by GRK5.


Assuntos
Cálcio/metabolismo , Calmodulina/química , Quinase 5 de Receptor Acoplado a Proteína G/química , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Sítios de Ligação , Calmodulina/genética , Calmodulina/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Quinase 5 de Receptor Acoplado a Proteína G/genética , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Cinética , Simulação de Dinâmica Molecular , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Células Sf9 , Spodoptera , Especificidade por Substrato , Termodinâmica
11.
Trends Biochem Sci ; 49(2): 169-182, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38103971

RESUMO

The α-kinase eukaryotic elongation factor 2 kinase (eEF-2K) regulates translational elongation by phosphorylating its ribosome-associated substrate, the GTPase eEF-2. eEF-2K is activated by calmodulin (CaM) through a distinctive mechanism unlike that in other CaM-dependent kinases (CAMK). We describe recent structural insights into this unique activation process and examine the effects of specific regulatory signals on this mechanism. We also highlight key unanswered questions to guide future structure-function studies. These include structural mechanisms which enable eEF-2K to interact with upstream/downstream partners and facilitate its integration of diverse inputs, including Ca2+ transients, phosphorylation mediated by energy/nutrient-sensing pathways, pH changes, and metabolites. Answering these questions is key to establishing how eEF-2K harmonizes translation with cellular requirements within the boundaries of its molecular landscape.


Assuntos
Quinase do Fator 2 de Elongação , Biossíntese de Proteínas , Quinase do Fator 2 de Elongação/química , Quinase do Fator 2 de Elongação/genética , Quinase do Fator 2 de Elongação/metabolismo , Fosforilação , Calmodulina/química , Calmodulina/genética , Calmodulina/metabolismo
12.
Nat Rev Neurosci ; 23(11): 666-682, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36056211

RESUMO

Calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII) is the most abundant protein in excitatory synapses and is central to synaptic plasticity, learning and memory. It is activated by intracellular increases in calcium ion levels and triggers molecular processes necessary for synaptic plasticity. CaMKII phosphorylates numerous synaptic proteins, thereby regulating their structure and functions. This leads to molecular events crucial for synaptic plasticity, such as receptor trafficking, localization and activity; actin cytoskeletal dynamics; translation; and even transcription through synapse-nucleus shuttling. Several new tools affording increasingly greater spatiotemporal resolution have revealed the link between CaMKII activity and downstream signalling processes in dendritic spines during synaptic and behavioural plasticity. These technologies have provided insights into the function of CaMKII in learning and memory.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Calmodulina , Humanos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/análise , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/análise , Calmodulina/metabolismo , Cálcio/metabolismo , Actinas/análise , Actinas/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Hipocampo
13.
Proc Natl Acad Sci U S A ; 121(39): e2318900121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39288178

RESUMO

Small-conductance Ca2+-activated K+ channels (SK, KCa2) are gated solely by intracellular microdomain Ca2+. The channel has emerged as a therapeutic target for cardiac arrhythmias. Calmodulin (CaM) interacts with the CaM binding domain (CaMBD) of the SK channels, serving as the obligatory Ca2+ sensor to gate the channels. In heterologous expression systems, phosphatidylinositol 4,5-bisphosphate (PIP2) coordinates with CaM in regulating SK channels. However, the roles and mechanisms of PIP2 in regulating SK channels in cardiomyocytes remain unknown. Here, optogenetics, magnetic nanoparticles, combined with Rosetta structural modeling, and molecular dynamics (MD) simulations revealed the atomistic mechanisms of how PIP2 works in concert with Ca2+-CaM in the SK channel activation. Our computational study affords evidence for the critical role of the amino acid residue R395 in the S6 transmembrane segment, which is localized in propinquity to the intracellular hydrophobic gate. This residue forms a salt bridge with residue E398 in the S6 transmembrane segment from the adjacent subunit. Both R395 and E398 are conserved in all known isoforms of SK channels. Our findings suggest that the binding of PIP2 to R395 residue disrupts the R395:E398 salt bridge, increasing the flexibility of the transmembrane segment S6 and the activation of the channel. Importantly, our findings serve as a platform for testing of structural-based drug designs for therapeutic inhibitors and activators of the SK channel family. The study is timely since inhibitors of SK channels are currently in clinical trials to treat atrial arrhythmias.


Assuntos
Calmodulina , Simulação de Dinâmica Molecular , Fosfatidilinositol 4,5-Difosfato , Canais de Potássio Ativados por Cálcio de Condutância Baixa , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/química , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Animais , Calmodulina/metabolismo , Calmodulina/química , Humanos , Ativação do Canal Iônico , Cálcio/metabolismo , Ligação Proteica , Miócitos Cardíacos/metabolismo
14.
Proc Natl Acad Sci U S A ; 121(31): e2400078121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39058580

RESUMO

Current treatments of anxiety and depressive disorders are plagued by considerable side effects and limited efficacies, underscoring the need for additional molecular targets that can be leveraged to improve medications. Here, we have identified a molecular cascade triggered by chronic stress that exacerbates anxiety- and depressive-like behaviors. Specifically, chronic stress enhances Src kinase activity and tyrosine phosphorylation of calmodulin, which diminishes MyosinVa (MyoVa) interaction with Neuroligin2 (NL2), resulting in decreased inhibitory transmission and heightened anxiety-like behaviors. Importantly, pharmacological inhibition of Src reinstates inhibitory synaptic deficits and effectively reverses heightened anxiety-like behaviors in chronically stressed mice, a process requiring the MyoVa-NL2 interaction. These data demonstrate the reversibility of anxiety- and depressive-like phenotypes at both molecular and behavioral levels and uncover a therapeutic target for anxiety and depressive disorders.


Assuntos
Ansiedade , Calmodulina , Transdução de Sinais , Estresse Psicológico , Animais , Camundongos , Transdução de Sinais/efeitos dos fármacos , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Estresse Psicológico/metabolismo , Calmodulina/metabolismo , Quinases da Família src/metabolismo , Fosforilação , Miosinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Depressão/tratamento farmacológico , Depressão/metabolismo , Humanos
15.
EMBO J ; 41(4): e106523, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34935159

RESUMO

Excitatory synapses of principal hippocampal neurons are frequently located on dendritic spines. The dynamic strengthening or weakening of individual inputs results in structural and molecular diversity of dendritic spines. Active spines with large calcium ion (Ca2+ ) transients are frequently invaded by a single protrusion from the endoplasmic reticulum (ER), which is dynamically transported into spines via the actin-based motor myosin V. An increase in synaptic strength correlates with stable anchoring of the ER, followed by the formation of an organelle referred to as the spine apparatus. Here, we show that myosin V binds the Ca2+ sensor caldendrin, a brain-specific homolog of the well-known myosin V interactor calmodulin. While calmodulin is an essential activator of myosin V motor function, we found that caldendrin acts as an inhibitor of processive myosin V movement. In mouse and rat hippocampal neurons, caldendrin regulates spine apparatus localization to a subset of dendritic spines through a myosin V-dependent pathway. We propose that caldendrin transforms myosin into a stationary F-actin tether that enables the localization of ER tubules and formation of the spine apparatus in dendritic spines.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Espinhas Dendríticas/metabolismo , Retículo Endoplasmático/metabolismo , Miosina Tipo V/metabolismo , Actinas/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Calmodulina/metabolismo , Retículo Endoplasmático Liso/metabolismo , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Espectrometria de Massas , Camundongos Knockout , Miosina Tipo V/genética , Domínios e Motivos de Interação entre Proteínas , Ratos Wistar
16.
Cell ; 147(7): 1576-88, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22196732

RESUMO

Metazoans secrete an extensive array of small proteins essential for intercellular communication, defense, and physiologic regulation. Their synthesis takes mere seconds, leaving minimal time for recognition by the machinery for cotranslational protein translocation into the ER. The pathway taken by these substrates to enter the ER is not known. Here, we show that both in vivo and in vitro, small secretory proteins can enter the ER posttranslationally via a transient cytosolic intermediate. This intermediate contained calmodulin selectively bound to the signal peptides of small secretory proteins. Calmodulin maintained the translocation competence of small-protein precursors, precluded their aggregation and degradation, and minimized their inappropriate interactions with other cytosolic polypeptide-binding proteins. Acute inhibition of calmodulin specifically impaired small-protein translocation in vitro and in cells. These findings establish a mammalian posttranslational pathway for small-protein secretion and identify an unexpected role for calmodulin in chaperoning these precursors safely through the cytosol.


Assuntos
Calmodulina/metabolismo , Proteínas/metabolismo , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Células HeLa , Humanos , Redes e Vias Metabólicas , Prolactina/química , Prolactina/metabolismo , Processamento de Proteína Pós-Traducional , Sinais Direcionadores de Proteínas , Transporte Proteico , Proteínas/química , Leveduras/metabolismo
17.
Mol Cell ; 70(1): 136-149.e7, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625034

RESUMO

Insect herbivory causes severe damage to plants and threatens the world's food production. During evolutionary adaptation, plants have evolved sophisticated mechanisms to rapidly accumulate a key defense hormone, jasmonate (JA), that triggers plant defense against herbivory. However, little is known about how plants initially activate JA biosynthesis at encounter with herbivory. Here, we uncover that a novel JAV1-JAZ8-WRKY51 (JJW) complex controls JA biosynthesis to defend against insect attack. In healthy plants, the JJW complex represses JA biosynthesis to restrain JA at a low basal level to ensure proper plant growth. When plants are injured by insect attack, injury rapidly triggers calcium influxes to activate calmodulin-dependent phosphorylation of JAV1, which disintegrates JJW complex and activates JA biosynthesis, giving rise to the rapid burst of JA for plant defense. Our findings offer new insights into the highly sophisticated defense systems evolved by plants to defend against herbivory.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas Correpressoras/metabolismo , Ciclopentanos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/enzimologia , Plantas Geneticamente Modificadas/enzimologia , Spodoptera/fisiologia , Fatores de Transcrição/metabolismo , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sinalização do Cálcio , Calmodulina/genética , Proteínas Correpressoras/genética , Regulação da Expressão Gênica de Plantas , Herbivoria , Peptídeos e Proteínas de Sinalização Intracelular/genética , Complexos Multiproteicos , Fosforilação , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética
18.
Mol Cell Proteomics ; 23(3): 100738, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364992

RESUMO

Wind is one of the most prevalent environmental forces entraining plants to develop various mechano-responses, collectively called thigmomorphogenesis. Largely unknown is how plants transduce these versatile wind force signals downstream to nuclear events and to the development of thigmomorphogenic phenotype or anemotropic response. To identify molecular components at the early steps of the wind force signaling, two mechanical signaling-related phosphoproteins, identified from our previous phosphoproteomic study of Arabidopsis touch response, mitogen-activated protein kinase kinase 1 (MKK1) and 2 (MKK2), were selected for performing in planta TurboID (ID)-based quantitative proximity-labeling (PL) proteomics. This quantitative biotinylproteomics was separately performed on MKK1-ID and MKK2-ID transgenic plants, respectively, using the genetically engineered TurboID biotin ligase expression transgenics as a universal control. This unique PTM proteomics successfully identified 11 and 71 MKK1 and MKK2 putative interactors, respectively. Biotin occupancy ratio (BOR) was found to be an alternative parameter to measure the extent of proximity and specificity between the proximal target proteins and the bait fusion protein. Bioinformatics analysis of these biotinylprotein data also found that TurboID biotin ligase favorably labels the loop region of target proteins. A WInd-Related Kinase 1 (WIRK1), previously known as rapidly accelerated fibrosarcoma (Raf)-like kinase 36 (RAF36), was found to be a putative common interactor for both MKK1 and MKK2 and preferentially interacts with MKK2. Further molecular biology studies of the Arabidopsis RAF36 kinase found that it plays a role in wind regulation of the touch-responsive TCH3 and CML38 gene expression and the phosphorylation of a touch-regulated PATL3 phosphoprotein. Measurement of leaf morphology and shoot gravitropic response of wirk1 (raf36) mutant revealed that the WIRK1 gene is involved in both wind-triggered rosette thigmomorphogenesis and gravitropism of Arabidopsis stems, suggesting that the WIRK1 (RAF36) protein probably functioning upstream of both MKK1 and MKK2 and that it may serve as the crosstalk point among multiple mechano-signal transduction pathways mediating both wind mechano-response and gravitropism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Gravitropismo , Biotina/metabolismo , Vento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfoproteínas/metabolismo , Ligases/metabolismo , Calmodulina/metabolismo
19.
Proc Natl Acad Sci U S A ; 120(15): e2206217120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011198

RESUMO

RNA-binding protein (RBP) dysfunction is a fundamental hallmark of amyotrophic lateral sclerosis (ALS) and related neuromuscular disorders. Abnormal neuronal excitability is also a conserved feature in ALS patients and disease models, yet little is known about how activity-dependent processes regulate RBP levels and functions. Mutations in the gene encoding the RBP Matrin 3 (MATR3) cause familial disease, and MATR3 pathology has also been observed in sporadic ALS, suggesting a key role for MATR3 in disease pathogenesis. Here, we show that glutamatergic activity drives MATR3 degradation through an NMDA receptor-, Ca2+-, and calpain-dependent mechanism. The most common pathogenic MATR3 mutation renders it resistant to calpain degradation, suggesting a link between activity-dependent MATR3 regulation and disease. We also demonstrate that Ca2+ regulates MATR3 through a nondegradative process involving the binding of Ca2+/calmodulin to MATR3 and inhibition of its RNA-binding ability. These findings indicate that neuronal activity impacts both the abundance and function of MATR3, underscoring the effect of activity on RBPs and providing a foundation for further study of Ca2+-coupled regulation of RBPs implicated in ALS and related neurological diseases.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Calpaína/genética , Calpaína/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo
20.
Proc Natl Acad Sci U S A ; 120(17): e2300902120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068230

RESUMO

Protein translation, one of the most energy-consumptive processes in a eukaryotic cell, requires robust regulation, especially under energy-deprived conditions. A critical component of this regulation is the suppression of translational elongation through reduced ribosome association of the GTPase eukaryotic elongation factor 2 (eEF-2) resulting from its specific phosphorylation by the calmodulin (CaM)-activated α-kinase eEF-2 kinase (eEF-2K). It has been suggested that the eEF-2K response to reduced cellular energy levels is indirect and mediated by the universal energy sensor AMP-activated protein kinase (AMPK) through direct stimulatory phosphorylation and/or downregulation of the eEF-2K-inhibitory nutrient-sensing mTOR pathway. Here, we provide structural, biochemical, and cell-biological evidence of a direct energy-sensing role of eEF-2K through its stimulation by ADP. A crystal structure of the nucleotide-bound complex between CaM and the functional core of eEF-2K phosphorylated at its primary stimulatory site (T348) reveals ADP bound at a unique pocket located on the face opposite that housing the kinase active site. Within this basic pocket (BP), created at the CaM/eEF-2K interface upon complex formation, ADP is stabilized through numerous interactions with both interacting partners. Biochemical analyses using wild-type eEF-2K and specific BP mutants indicate that ADP stabilizes CaM within the active complex, increasing the sensitivity of the kinase to CaM. Induction of energy stress through glycolysis inhibition results in significantly reduced enhancement of phosphorylated eEF-2 levels in cells expressing ADP-binding compromised BP mutants compared to cells expressing wild-type eEF-2K. These results suggest a direct energy-sensing role for eEF-2K through its cooperative interaction with CaM and ADP.


Assuntos
Calmodulina , Quinase do Fator 2 de Elongação , Quinase do Fator 2 de Elongação/metabolismo , Calmodulina/metabolismo , Regulação Alostérica , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Fosforilação , Eucariotos/metabolismo , Fator 2 de Elongação de Peptídeos/genética , Fator 2 de Elongação de Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa