Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
BMC Plant Biol ; 24(1): 455, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789917

RESUMO

BACKGROUND: The tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most economically important woody crops. Plastic greenhouse covering cultivation has been widely used in tea areas of northern China. Chlorophyll is not only the crucial pigment for green tea, but also plays an important role in the growth and development of tea plants. Currently, little is known about the effect of plastic greenhouse covering cultivation on chlorophyll in tea leaves. RESULTS: To investigate the effect of plastic greenhouse covering cultivation on chlorophyll in tea leaves, color difference values, chlorophyll contents, gene expression, enzyme activities and photosynthetic parameters were analyzed in our study. Sensory evaluation showed the color of appearance, liquor and infused leaves of greenhouse tea was greener than field tea. Color difference analysis for tea liquor revealed that the value of ∆L, ∆b and b/a of greenhouse tea was significantly higher than field tea. Significant increase in chlorophyll content, intracellular CO2, stomatal conductance, transpiration rate, and net photosynthetic rate was observed in greenhouse tea leaves. The gene expression and activities of chlorophyll-metabolism-related enzymes in tea leaves were also activated by greenhouse covering. CONCLUSION: The higher contents of chlorophyll a, chlorophyll b and total chlorophyll in greenhouse tea samples were primarily due to higher gene expression and activities of chlorophyll-metabolism-related enzymes especially, chlorophyll a synthetase (chlG), pheophorbide a oxygenase (PAO) and chlorophyllide a oxygenase (CAO) in tea leaves covered by greenhouse. In general, our results revealed the molecular basis of chlorophyll metabolism in tea leaves caused by plastic greenhouse covering cultivation, which had great significance in production of greenhouse tea.


Assuntos
Camellia sinensis , Clorofila , Folhas de Planta , Camellia sinensis/genética , Camellia sinensis/enzimologia , Camellia sinensis/crescimento & desenvolvimento , Camellia sinensis/fisiologia , Camellia sinensis/metabolismo , Clorofila/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Fotossíntese , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
2.
Plant Cell Environ ; 46(5): 1596-1609, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36757089

RESUMO

Theanine is an important secondary metabolite endowing tea with umami taste and health effects. It is essential to explore the metabolic pathway and regulatory mechanism of theanine to improve tea quality. Here, we demonstrated that the expression patterns of CsGGT2 (γ-glutamyl-transpeptidase), participated in theanine synthesis in vitro in our previous research, are significantly different in the aboveground and underground tissues of tea plants and regulated by light. Light up-regulated the expression of CsHY5, directly binding to the promoter of CsGGT2 and acting as an activator of CsGGT2, with a negative correlation with theanine accumulation. The enzyme activity assays and transient expression in Nicotiana benthamiana showed that CsGGT2, acting as bifunctional protein, synthesize and degrade theanine in vitro and in planta. The results of enzyme kinetics, Surface plasmon resonance (SPR) assays and targeted gene-silencing assays showed that CsGGT2 had a higher substrate affinity of theanine than that of ethylamine, and performed a higher theanine degradation catalytic efficiency. Therefore, light mediates the degradation of theanine in different tissues by regulating the expression of the theanine hydrolase CsGGT2 in tea plants, and these results provide new insights into the degradation of theanine mediated by light in tea plants.


Assuntos
Camellia sinensis , Regulação da Expressão Gênica de Plantas , Luz , gama-Glutamiltransferase , Camellia sinensis/enzimologia , Camellia sinensis/genética , gama-Glutamiltransferase/genética , gama-Glutamiltransferase/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteólise/efeitos da radiação
3.
BMC Biotechnol ; 21(1): 17, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648478

RESUMO

BACKGROUND: Alanine decarboxylase (AlaDC), specifically present in tea plants, is crucial for theanine biosynthesis. Serine decarboxylase (SDC), found in many plants, is a protein most closely related to AlaDC. To investigate whether the new gene AlaDC originate from gene SDC and to determine the biochemical properties of the two proteins from Camellia sinensis, the sequences of CsAlaDC and CsSDC were analyzed and the two proteins were over-expressed, purified, and characterized. RESULTS: The results showed that exon-intron structures of AlaDC and SDC were quite similar and the protein sequences, encoded by the two genes, shared a high similarity of 85.1%, revealing that new gene AlaDC originated from SDC by gene duplication. CsAlaDC and CsSDC catalyzed the decarboxylation of alanine and serine, respectively. CsAlaDC and CsSDC exhibited the optimal activities at 45 °C (pH 8.0) and 40 °C (pH 7.0), respectively. CsAlaDC was stable under 30 °C (pH 7.0) and CsSDC was stable under 40 °C (pH 6.0-8.0). The activities of the two enzymes were greatly enhanced by the presence of pyridoxal-5'-phosphate. The specific activity of CsSDC (30,488 IU/mg) was 8.8-fold higher than that of CsAlaDC (3467 IU/mg). CONCLUSIONS: Comparing to CsAlaDC, its ancestral enzyme CsSDC exhibited a higher specific activity and a better thermal and pH stability, indicating that CsSDC acquired the optimized function after a longer evolutionary period. The biochemical properties of CsAlaDC might offer reference for theanine industrial production.


Assuntos
Alanina Desidrogenase/genética , Alanina Desidrogenase/metabolismo , Camellia sinensis/enzimologia , Camellia sinensis/genética , Serina/metabolismo , Alanina/metabolismo , Alanina Desidrogenase/química , Carboxiliases/genética , Escherichia coli/genética , Glutamatos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Chá
4.
BMC Plant Biol ; 21(1): 521, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753426

RESUMO

BACKGROUND: Shoot branching is one of the important agronomic traits affecting yields and quality of tea plant (Camellia sinensis). Cytokinins (CTKs) play critical roles in regulating shoot branching. However, whether and how differently alternative splicing (AS) variant of CTKs-related genes can influence shoot branching of tea plant is still not fully elucidated. RESULTS: In this study, five AS variants of CTK biosynthetic gene adenylate isopentenyltransferase (CsA-IPT5) with different 3' untranslated region (3' UTR) and 5' UTR from tea plant were cloned and investigated for their regulatory effects. Transient expression assays showed that there were significant negative correlations between CsA-IPT5 protein expression, mRNA expression of CsA-IPT5 AS variants and the number of ATTTA motifs, respectively. Shoot branching processes induced by exogenous 6-BA or pruning were studied, where CsA-IPT5 was demonstrated to regulate protein synthesis of CsA-IPT5, as well as the biosynthesis of trans-zeatin (tZ)- and isopentenyladenine (iP)-CTKs, through transcriptionally changing ratios of its five AS variants in these processes. Furthermore, the 3' UTR AS variant 2 (3AS2) might act as the predominant AS transcript. CONCLUSIONS: Together, our results indicate that 3AS2 of the CsA-IPT5 gene is potential in regulating shoot branching of tea plant and provides a gene resource for improving the plant-type of woody plants.


Assuntos
Alquil e Aril Transferases/fisiologia , Camellia sinensis/enzimologia , Camellia sinensis/crescimento & desenvolvimento , Regiões 3' não Traduzidas , Alquil e Aril Transferases/genética , Camellia sinensis/genética , Clonagem Molecular , DNA de Plantas , Motivos de Nucleotídeos , Desenvolvimento Vegetal/genética , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Análise de Sequência de DNA
5.
Mol Genet Genomics ; 296(1): 165-177, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33112986

RESUMO

Shading can effectively reduce photoinhibition and improve the quality of tea. Lignin is one of the most important secondary metabolites that play vital functions in plant growth and development. However, little is known about the relationship between shading and xylogenesis in tea plant. To investigate the effects of shading on lignin accumulation in tea plants, 'Longjing 43' was treated with no shading (S0), 40% (S1) and 80% (S2) shading treatments, respectively. The leaf area and lignin content of tea plant leaves decreased under shading treatments (especially S2). The anatomical characteristics showed that lignin is mainly distributed in the xylem of tea leaves. Promoter analysis indicated that the genes involved in lignin pathway contain several light recognition elements. The transcript abundances of 12 lignin-associated genes were altered under shading treatments. Correlation analysis indicated that most genes showed strong positive correlation with lignin content, and CsPAL, Cs4CL, CsF5H, and CsLAC exhibited significant positively correlation under 40% and 80% shading treatments. The results showed that shading may have an important effect on lignin accumulation in tea leaves. This work will potentially helpful to understand the regulation mechanism of lignin pathway under shading treatment, and provide reference for reducing lignin content and improving tea quality through shading treatment in field operation.


Assuntos
Camellia sinensis/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Transdução de Sinal Luminoso/efeitos da radiação , Lignina/biossíntese , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Camellia sinensis/enzimologia , Camellia sinensis/genética , Lignina/antagonistas & inibidores , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Metabolismo Secundário/efeitos da radiação , Luz Solar , Protetores Solares , Xilema/enzimologia , Xilema/genética , Xilema/efeitos da radiação
6.
Genomics ; 112(4): 2866-2874, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32276039

RESUMO

Amino acid permeases (AAPs) are involved in transporting a broad spectrum of amino acids and regulating physiological processes in plants. In this study, 19 AAP genes were identified from the tea plants genome database and named CsAAP1-19. Based on phylogenetic analysis, the CsAAP genes were classified into three groups, having significantly different structures and conserved motifs. In addition, an expression analysis revealed that most of CsAAP genes were specifically expressed in different tissues, especially CsAAP19 was expressed only in root. These genes also were significantly expressed in the Baiye 1 and Huangjinya cultivars. Nitrogen treatments indicated that the CsAAPs were obviously expressed in root. CsAAP2, -6, -12, -13 and - 16 were significantly expressed at 6 d after the glutamate treatment, while the expression trend at 24 h after contained the ammonium. These results improve our understanding of the CsAAP genes and their functions in nitrogen utilization in tea plants.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Camellia sinensis/enzimologia , Proteínas de Plantas/genética , Motivos de Aminoácidos , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/classificação , Sistemas de Transporte de Aminoácidos/metabolismo , Camellia sinensis/química , Camellia sinensis/genética , Expressão Gênica , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Alinhamento de Sequência
7.
Genomics ; 112(5): 3497-3503, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32562829

RESUMO

Nitrogen (N) element is essential nutrient, and affect metabolism of secondary metabolites in higher plants. Ascorbate peroxidase (APX) plays an important role in ascorbic acid (AsA) metabolism of tea plant. However, the roles of cytosolic ascorbate peroxidase 1 (CsAPX1) in AsA metabolism under N deficiency stress in tea plant remains unclear in detail. In this work, nitrogen regulatory protein P-II (CsGLB1) and CsAPX1 were identified by isobaric tags for relative and absolute quantitation (iTRAQ) from tea plant. The cell growth rates in transgenic Escherichia coli overexpressing CsAPX1 and CsGLB1 were higher than empty vector under N sufficiency condition. Phenotype of shoots and roots, AsA accumulation, and expression levels of AtAPX1 and AtGLB1 genes were changed in transgenic Arabidopsis hosting CsAPX1 under N deficiency stress. These findings suggested that cytosolic CsAPX1 acted a regulator in AsA accumulation through cooperating with GLB1 under N deficiency stress in tea plant.


Assuntos
Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Camellia sinensis/metabolismo , Nitrogênio/fisiologia , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascorbato Peroxidases/genética , Camellia sinensis/enzimologia , Camellia sinensis/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas PII Reguladoras de Nitrogênio/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Estresse Fisiológico/genética
8.
Plant J ; 97(5): 825-840, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30447121

RESUMO

Cultivars of purple tea (Camellia sinensis) that accumulate anthocyanins in place of catechins are currently attracting global interest in their use as functional health beverages. RNA-seq of normal (LJ43) and purple Zijuan (ZJ) cultivars identified the transcription factor CsMYB75 and phi (F) class glutathione transferase CsGSTF1 as being associated with anthocyanin hyperaccumulation. Both genes mapped as a quantitative trait locus (QTL) to the purple bud leaf color (BLC) trait in F1 populations, with CsMYB75 promoting the expression of CsGSTF1 in transgenic tobacco (Nicotiana tabacum). Although CsMYB75 elevates the biosynthesis of both catechins and anthocyanins, only anthocyanins accumulate in purple tea, indicating selective downstream regulation. As glutathione transferases in other plants are known to act as transporters (ligandins) of flavonoids, directing them for vacuolar deposition, the role of CsGSTF1 in selective anthocyanin accumulation was investigated. In tea, anthocyanins accumulate in multiple vesicles, with the expression of CsGSTF1 correlated with BLC, but not with catechin content, in diverse germplasm. Complementation of the Arabidopsis tt19-8 mutant, which is unable to express the orthologous ligandin AtGSTF12, restored anthocyanin accumulation, but did not rescue the transparent testa phenotype, confirming that CsGSTF1 did not function in catechin accumulation. Consistent with a ligandin function, transient expression of CsGSTF1 in Nicotiana occurred in the nucleus, cytoplasm and membrane. Furthermore, RNA-Seq of the complemented mutants exposed to 2% sucrose as a stress treatment showed unexpected roles for anthocyanin accumulation in affecting the expression of genes involved in redox responses, phosphate homeostasis and the biogenesis of photosynthetic components, as compared with non-complemented plants.


Assuntos
Antocianinas/metabolismo , Camellia sinensis/genética , Flavonoides/biossíntese , Glutationa Transferase/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Camellia sinensis/enzimologia , Camellia sinensis/fisiologia , Genômica , Glutationa Transferase/genética , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , RNA-Seq , Estresse Fisiológico , Nicotiana/genética , Nicotiana/fisiologia , Fatores de Transcrição/genética
9.
BMC Genomics ; 21(1): 613, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894062

RESUMO

BACKGROUND: Mitogen Activated Protein Kinase (MAPK) cascade is a fundamental pathway in organisms for signal transduction. Though it is well characterized in various plants, there is no systematic study of this cascade in tea. RESULT: In this study, 5 genes of Mitogen Activated Protein Kinase Kinase (MKK) and 16 genes of Mitogen Activated Protein Kinase (MPK) in Camellia sinensis were found through a genome-wide search taking Arabidopsis thaliana as the reference genome. Also, phylogenetic relationships along with structural analysis which includes gene structure, location as well as protein conserved motifs and domains, were systematically examined and further, predictions were validated by the results. The plant species taken for comparative study clearly displayed segmental duplication, which was a significant candidate for MAPK cascade expansion. Also, functional interaction was carried out in C. sinensis based on the orthologous genes in Arabidopsis. The expression profiles linked to various stress treatments revealed wide involvement of MAPK and MAPKK genes from Tea in response to various abiotic factors. In addition, the expression of these genes was analysed in various tissues. CONCLUSION: This study provides the targets for further comprehensive identification, functional study, and also contributed for a better understanding of the MAPK cascade regulatory network in C. sinensis.


Assuntos
Camellia sinensis/genética , Redes Reguladoras de Genes , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas de Plantas/genética , Camellia sinensis/enzimologia , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Plantas/metabolismo
10.
New Phytol ; 226(2): 362-372, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31828806

RESUMO

Plants produce and emit terpenes, including sesquiterpenes, during growth and development, which serve different functions in plants. The sesquiterpene nerolidol has health-promoting properties and adds a floral scent to plants. However, the glycosylation mechanism of nerolidol and its biological roles in plants remained unknown. Sesquiterpene UDP-glucosyltransferases were selected by using metabolites-genes correlation analysis, and its roles in response to cold stress were studied. We discovered the first plant UGT (UGT91Q2) in tea plant, whose expression is strongly induced by cold stress and which specifically catalyzes the glucosylation of nerolidol. The accumulation of nerolidol glucoside was consistent with the expression level of UGT91Q2 in response to cold stress, as well as in different tea cultivars. The reactive oxygen species (ROS) scavenging capacity of nerolidol glucoside was significantly higher than that of free nerolidol. Down-regulation of UGT91Q2 resulted in reduced accumulation of nerolidol glucoside, ROS scavenging capacity and tea plant cold tolerance. Tea plants absorbed airborne nerolidol and converted it to its glucoside, subsequently enhancing tea plant cold stress tolerance. Nerolidol plays a role in response to cold stress as well as in triggering plant-plant communication in response to cold stress. Our findings reveal previously unidentified roles of volatiles in response to abiotic stress in plants.


Assuntos
Camellia sinensis , Glucosiltransferases , Sesquiterpenos , Camellia sinensis/enzimologia , Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Chá
11.
Int J Mol Sci ; 21(2)2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31963919

RESUMO

Terpenoids play vital roles in tea aroma quality and plants defense performance determination, whereas the scenarios of genes to metabolites of terpenes pathway remain uninvestigated in tea plants. Here, we report the use of an integrated approach combining metabolites, target gene transcripts and function analyses to reveal a gene-to-terpene network in tea plants. Forty-one terpenes including 26 monoterpenes, 14 sesquiterpenes and one triterpene were detected and 82 terpenes related genes were identified from five tissues of tea plants. Pearson correlation analysis resulted in genes to metabolites network. One terpene synthases whose expression positively correlated with farnesene were selected and its function was confirmed involved in the biosynthesis of α-farnesene, ß-ocimene and ß-farnesene, a very important and conserved alarm pheromone in response to aphids by both in vitro enzymatic assay in planta function analysis. In summary, we provided the first reliable gene-to-terpene network for novel genes discovery.


Assuntos
Alquil e Aril Transferases/genética , Camellia sinensis/enzimologia , Proteínas de Plantas/genética , Terpenos/isolamento & purificação , Monoterpenos Acíclicos/isolamento & purificação , Alcenos/isolamento & purificação , Alquil e Aril Transferases/metabolismo , Camellia sinensis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Metabolômica , Proteínas de Plantas/metabolismo , Sesquiterpenos/isolamento & purificação , Terpenos/química
12.
BMC Plant Biol ; 19(1): 425, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615403

RESUMO

BACKGROUND: Nitrogen (N) nutrition significantly affected metabolism and accumulation of quality-related compounds in tea plant (Camellia sinensis L.). Little is known about the physiological and molecular mechanisms underlying the effects of short-term repression of N metabolism on tea roots and leaves for a short time. RESULTS: In this study, we subjected tea plants to a specific inhibitor of glutamine synthetase (GS), methionine sulfoximine (MSX), for a short time (30 min) and investigated the effect of the inhibition of N metabolism on the transcriptome and metabolome of quality-related compounds. Our results showed that GS activities in tea roots and leaves were significantly inhibited upon MSX treatment, and both tissue types showed a sensitive metabolic response to GS inhibition. In tea leaves, the hydrolysis of theanine decreased with the increase in theanine and free ammonium content. The biosynthesis of all other amino acids was repressed, and the content of N-containing lipids declined, suggesting that short-term inhibition of GS reduces the level of N reutilization in tea leaves. Metabolites related to glycolysis and the tricarboxylic acid (TCA) cycle accumulated after GS repression, whereas the content of amino acids such as glycine, serine, isoleucine, threonine, leucine, and valine declined in the MXS treated group. We speculate that the biosynthesis of amino acids is affected by glycolysis and the TCA cycle in a feedback loop. CONCLUSIONS: Overall, our data suggest that GS repression in tea plant leads to the reprogramming of amino acid and lipid metabolic pathways.


Assuntos
Aminoácidos/metabolismo , Camellia sinensis/metabolismo , Glutamato-Amônia Ligase/antagonistas & inibidores , Metabolismo dos Lipídeos , Metionina Sulfoximina/farmacologia , Proteínas de Plantas/antagonistas & inibidores , Camellia sinensis/efeitos dos fármacos , Camellia sinensis/enzimologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo
13.
Planta ; 250(1): 281-298, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31025197

RESUMO

MAIN CONCLUSION: The alpha-amylase and beta-amylase genes have been identified from tea plants, and their bioinformatic characteristics and expression patterns provide a foundation for further studies to elucidate their biological functions. Alpha-amylase (AMY)- and beta-amylase (BAM)-mediated starch degradation plays central roles in carbohydrate metabolism and participates extensively in the regulation of a wide range of biological processes, including growth, development and stress response. However, the AMY and BAM genes in tea plants (Camellia sinensis) are poorly understood, and the biological functions of these genes remain to be elucidated. In this study, three CsAMY and nine CsBAM genes from tea plants were identified based on genomic and transcriptomic database analyses, and the genes were subjected to comprehensive bioinformatic characterization. Phylogenetic analysis showed that the CsAMY proteins could be clustered into three different subfamilies, and nine CsBAM proteins could be classified into four groups. Putative catalytically active proteins were identified based on multiple sequence alignments, and the tertiary structures of these proteins were analyzed. Cis-element analysis indicated that CsAMY and CsBAM were extensively involved in tea plant growth, development and stress response. In addition, the CsAMY and CsBAM genes were differentially expressed in various tissues and were regulated by stress treatments (e.g., ABA, cold, drought and salt stress), and the expression patterns of these genes were associated with the postharvest withering and rotation processes. Taken together, our results will enhance the understanding of the roles of the CsAMY and CsBAM gene families in the growth, development and stress response of tea plants and of the potential functions of these genes in determining tea quality during the postharvest processing of tea leaves.


Assuntos
Camellia sinensis/enzimologia , Regulação da Expressão Gênica de Plantas , alfa-Amilases/metabolismo , beta-Amilase/metabolismo , Camellia sinensis/genética , Camellia sinensis/fisiologia , Secas , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Estresse Fisiológico , alfa-Amilases/genética , beta-Amilase/genética
14.
Planta ; 250(4): 1163-1175, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31177387

RESUMO

MAIN CONCLUSION: Biochemical, transgenic, and genetic complementation data demonstrate that three glutathione S-transferases are involved in the storage of anthocyanins, flavonols, and proanthocyanins in plant cells. Flavonoids are compounds in tea (Camellia sinensis) that confer the characteristic astringent taste of tea beverages; these compounds have numerous benefits for human health. In plant cells, flavonoids are synthesized in different locations within the cytoplasm and are then transported and finally stored in vacuoles. To date, the mechanism involved in the intracellular transport of flavonoids in tea has not been well elucidated. In this study, we report the functional characterization of three cDNAs encoding glutathione S-transferases (CsGSTs) of C. sinensis, namely, CsGSTa, CsGSTb, and CsGSTc. The expression profiles of CsGSTa and CsGSTb were positively correlated with the accumulation of flavonols, anthocyanins and proanthocyanins in tea tissues and cultivars. These three recombinant CsGSTs showed a high affinity for flavonols (kaempferol-3-O-glucoside and quercetin-3-O-glucoside) and anthocyanin (cyanidin-3-O-glucoside) in vitro but had no or weak affinity for epicatechin. In vivo, CsGSTa, CsGSTb and CsGSTc fully or partially restored the storage of anthocyanins and proanthocyanidins in transgenic tt19 mutants. Metabolic profiling revealed that the contents of anthocyanins, flavonols, and proanthocyanidins were increased in the transgenic petals of Nicotiana tabacum. Taken together, all data showed that CsGSTa, CsGSTb, and CsGSTc are associated with the storage of anthocyanins, flavonols, and proanthocyanins in C. sinensis cells.


Assuntos
Camellia sinensis/enzimologia , Flavonoides/metabolismo , Glutationa Transferase/metabolismo , Proantocianidinas/metabolismo , Antocianinas/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Camellia sinensis/genética , Camellia sinensis/fisiologia , Flavonóis/metabolismo , Fluorescência , Expressão Gênica , Glutationa Transferase/genética , Mutação , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Vacúolos/metabolismo
15.
Int J Mol Sci ; 20(8)2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31010077

RESUMO

Purple acid phosphatase (PAP) encoding genes are a multigene family. PAPs require iron (Fe) to exert their functions that are involved in diverse biological roles including Fe homeostasis. However, the possible roles of PAPs in response to excess Fe remain unknown. In this study, we attempted to understand the regulation of PAPs by excess Fe in tea plant (Camellia sinensis). A genome-wide investigation of PAP encoding genes identified 19 CsPAP members based on the conserved motifs. The phylogenetic analysis showed that PAPs could be clustered into four groups, of which group II contained two specific cysteine-containing motifs "GGECGV" and "YERTC". To explore the expression patterns of CsPAP genes in response to excessive Fe supply, RNA-sequencing (RNA-seq) analyses were performed to compare their transcript abundances between tea plants that are grown under normal and high iron conditions, respectively. 17 members were shown to be transcribed in both roots and leaves. When supplied with a high amount of iron, the expression levels of four genes were significantly changed. Of which, CsPAP15a, CsPAP23 and CsPAP27c were shown as downregulated, while the highly expressed CsPAP10a was upregulated. Moreover, CsPAP23 was found to be alternatively spliced, suggesting its post-transcriptional regulation. The present work implicates that some CsPAP genes could be associated with the responses of tea plants to the iron regime, which may offer a new direction towards a further understanding of iron homeostasis and provide the potential approaches for crop improvement in terms of iron biofortification.


Assuntos
Fosfatase Ácida/genética , Camellia sinensis/enzimologia , Glicoproteínas/genética , Ferro/metabolismo , Proteínas de Plantas/genética , Fosfatase Ácida/classificação , Fosfatase Ácida/metabolismo , Sequência de Aminoácidos , Camellia sinensis/genética , Genes de Plantas , Glicoproteínas/classificação , Glicoproteínas/metabolismo , Família Multigênica , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Splicing de RNA , Alinhamento de Sequência , Transcriptoma
16.
Molecules ; 24(3)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717241

RESUMO

Theanine, a unique amino acid in Camellia sinensis, accounts for more than 50% of total free amino acids in tea and has a significant contribution to the quality of green tea. Previous research indicated that theanine is synthesized from glutamic acid (Glu) and ethylamine mainly in roots, and that theanine accumulation depends on the availability of ethylamine which is derived from alanine (Ala) decarboxylation catalyzed by alanine decarboxylase (AlaDC). However, the specific gene encoding AlaDC protein remains to be discovered in tea plants or in other species. To explore the gene of AlaDC in tea plants, the differences in theanine contents and gene expressions between pretreatment and posttreatment of long-time nitrogen starvation were analyzed in young roots of two tea cultivars. A novel gene annotated as serine decarboxylase (SDC) was noted for its expression levels, which showed high consistency with theanine content, and the expression was remarkably high in young roots under sufficient nitrogen condition. To verify its function, full-length complementary DNA (cDNA) of this candidate gene was cloned from young roots of tea seedlings, and the target protein was expressed and purified from Escherichia coli (E. coli). The enzymatic activity of the protein for Ala and Ser was measured in vitro using ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS). The results illustrated that the target protein could catalyze the decarboxylation of Ala despite of its high similarity with SDC from other species. Therefore, this novel gene was identified as AlaDC and named CsAlaDC. Furthermore, the gene expression levels of CsAlaDC in different tissues of tea plants were also quantified with quantitative real-time PCR (qRT-PCR). The results suggest that transcription levels of CsAlaDC in root tissues are significantly higher than those in leaf tissues. That may explain why theanine biosynthesis preferentially occurs in the roots of tea plants. The expression of the gene was upregulated when nitrogen was present, suggesting that theanine biosynthesis is regulated by nitrogen supply and closely related to nitrogen metabolism for C. sinensis. The results of this study are significant supplements to the theanine biosynthetic pathway and provide evidence for the differential accumulation of theanine between C. sinensis and other species.


Assuntos
Alanina/metabolismo , Camellia sinensis/genética , Carboxiliases/genética , Regulação da Expressão Gênica de Plantas , Glutamatos/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Camellia sinensis/enzimologia , Carboxiliases/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Etilaminas/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Nitrogênio/deficiência , Nitrogênio/farmacologia , Especificidade de Órgãos , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Plântula/enzimologia , Plântula/genética , Serina/metabolismo , Chá
17.
Plant Cell Physiol ; 59(9): 1765-1781, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29726968

RESUMO

Oxylipins, including jasmonic acid (JA) and volatiles, are important for signaling in plants, and these are formed by the lipoxygenase (LOX) enzyme family. There is a large gap in understanding of the underlying molecular basis of their roles in tea plants. Here, we identified 11 CsLOX genes from the tea plant (Camellia sinensis), and characterized their phylogeny, gene structure and protein features into three subclasses. We then examined their enzymatic activities, LOX expression and alternative splicing of transcripts during development and in response to abiotic or biotic stresses in tea plants. In vitro expressed protein assays showed that the CsLOX2, 3 and 9 enzymatically function to produce 9/13-HPOT, 13-HPOT and 9-HPOT, respectively. CsLOX2 and CsLOX9 green fluorescent protein (GFP) fusion proteins localized to chloroplasts and the cytoplasm, respectively. RNA sequencing, quantitative reverse transcription-PCR and Northern blot analysis suggested that CsLOX5, 6 and 9 were predominantly expressed in seeds, flowers and roots, respectively. CsLOX2, 3, 4, 6 and 7 were up-regulated after attack by the insect Ectropis oblique, while CsLOX1 was induced after infection with the pathogen Glomerella cingulata. CsLOX3, 7 and 10 were up-regulated by JA but not ABA or salicylic acid. Long-term cold stress down-regulated CsLOX expression while a short duration of cold induced the expression of CsLOX1, 6 and 7. Alternatively spliced transcripts of six CsLOX genes were dynamically regulated through time and varied in relative abundances under the investigated stresses; we propose a mechanism of competing or compensating regulation between isoforms. This study improves our understanding of evolution of LOXs and regulation of their diverse functions in plants.


Assuntos
Processamento Alternativo , Camellia sinensis/enzimologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lipoxigenases/metabolismo , Proteínas de Plantas/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Temperatura Baixa , Escherichia coli/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Lipoxigenases/genética , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Estresse Fisiológico
18.
Planta ; 248(5): 1231-1247, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30097722

RESUMO

MAIN CONCLUSION: Four typical ALTERNATIVE OXIDASE genes have been identified in tea plants, and their sequence features and gene expression profiles have provided useful information for further studies on function and regulation. Alternative oxidase (AOX) is a terminal oxidase located in the respiratory electron transport chain. AOX catalyzes the oxidation of quinol and the reduction of oxygen into water. In this study, a genome-wide search and subsequent DNA cloning were performed to identify and characterize AOX genes in tea plant (Camellia sinensis (L.) O. Kuntze cv. Longjing43). Our results showed that tea plant possesses four AOX genes, i.e., CsAOX1a, CsAOX1d, CsAOX2a and CsAOX2b. Gene structure and protein sequence analyses revealed that all CsAOXs share a four-exon/three-intron structure with highly conserved regions and amino acid residues, which are necessary for AOX secondary structures, catalytic activities and post-translational regulations. All CsAOX were shown to localize in mitochondria using the green fluorescent protein (GFP)-targeting assay. Both CsAOX1a and CsAOX1d were induced by cold, salt and drought stresses, and with different expression patterns in young and mature leaves. Reactive oxygen species (ROS) accumulated strongly after 72 and 96 h cold treatments in both young and mature leaves, while the polyphenol and total catechin decreased significantly only in mature leaves. In comparison to AtAOX1a in Arabidopsis thaliana, CsAOX1a lost almost all of the stress-responsive cis-acting regulatory elements in its promoter region (1500 bp upstream), but possesses a flavonoid biosynthesis-related MBSII cis-acting regulatory element. These results suggest a link between CsAOX1a function and the metabolism of some secondary metabolites in tea plant. Our studies provide a basis for the further elucidation of the biological function and regulation of the AOX pathway in tea plants.


Assuntos
Camellia sinensis/genética , Genoma de Planta/genética , Proteínas Mitocondriais/genética , Oxirredutases/genética , Proteínas de Plantas/genética , Camellia sinensis/enzimologia , Camellia sinensis/fisiologia , Clonagem Molecular , Sequência Conservada/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Proteínas Mitocondriais/fisiologia , Oxirredutases/fisiologia , Filogenia , Proteínas de Plantas/fisiologia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Estresse Fisiológico , Transcriptoma
19.
Planta ; 247(1): 139-154, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28887677

RESUMO

MAIN CONCLUSION: LARs promoted the biosynthesis of catechin monomers and inhibited their polymerization. The accumulation of catechin monomers and polymers was increased by up-regulating the expression of NtLAR and NtANR s in CsMYB5b transgenic tobacco. Tea is rich in polyphenolic compounds, and catechins are the major polyphenols in tea. The biosynthesis of polyphenols is closely related to the expression of the leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) genes. In this paper, an evolutionary analysis and functional characterization of three CsLARs were performed. The phylogenetic tree showed that plant LARs could be grouped into three, including gymnosperms, monocotyledons and dicotyledons (clusters I and II). The eighth amino acid residue in a conserved LAR-specific motif is changeable due to a transversion (G â†’ T) and transition (G â†’ C) that occur in the corresponding codon. Therefore, plant LARs can be classified as G-type, A-type and S-type LARs due to this variable amino acid residue. Although (2R, 3S)-trans-flavan-3-ols were the products of recombinant CsLARs proteins expressed in Escherichia coli, both (2R, 3S)-trans and (2R, 3R)-cis-flavan-3-ols were detected in tobacco overexpressing CsLARs. However, a butanol/HCl hydrolysis assay indicated that overexpression of the CsLARs caused a decrease in polymerized catechins. A hybridization experiment with CsLARc + AtPAP1 also showed that no polymers other than epicatechin, catechin and glycoside were detected, although the accumulation of anthocyanins was markedly decreased. CsMYB5b promoted the biosynthesis of both flavan-3-ols and proanthocyanidins (PAs). Therefore, LARs promoted the biosynthesis of catechin monomers and inhibited their polymerization. The accumulation of catechin monomers and polymers was increased by up-regulating the expression of the NtLAR and NtANRs in CsMYB5b transgenic tobacco.


Assuntos
Antocianinas/metabolismo , Camellia sinensis/enzimologia , Catequina/metabolismo , Regulação da Expressão Gênica de Plantas , Oxirredutases/metabolismo , Evolução Biológica , Camellia sinensis/genética , Oxirredutases/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polifenóis/metabolismo , Proantocianidinas/metabolismo , Proteínas Recombinantes , Sementes/enzimologia , Sementes/genética , Nicotiana/enzimologia , Nicotiana/genética , Regulação para Cima
20.
Int J Mol Sci ; 19(12)2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30544591

RESUMO

Tea (Camellia sinensis L.) contains abundant secondary metabolites, which are regulated by numerous enzymes. Hydroxycinnamoyl transferase (HCT) is involved in the biosynthesis pathways of polyphenols and flavonoids, and it can catalyze the transfer of hydroxyconnamoyl coenzyme A to substrates such as quinate, flavanol glycoside, or anthocyanins, thus resulting in the production of chlorogenic acid or acylated flavonol glycoside. In this study, the CsHCT gene was cloned from the Chin-Shin Oolong tea plant, and its protein functions and characteristics were analyzed. The full-length cDNA of CsHCT contains 1311 base pairs and encodes 436 amino acid sequences. Amino acid sequence was highly conserved with other HCTs from Arabidopsis thaliana, Populus trichocarpa, Hibiscus cannabinus, and Coffea canephora. Quantitative real-time polymerase chain reaction analysis showed that CsHCT is highly expressed in the stem tissues of both tea plants and seedlings. The CsHCT expression level was relatively high at high altitudes. The abiotic stress experiment suggested that low temperature, drought, and high salinity induced CsHCT transcription. Furthermore, the results of hormone treatments indicated that abscisic acid (ABA) induced a considerable increase in the CsHCT expression level. This may be attributed to CsHCT involvement in abiotic stress and ABA signaling pathways.


Assuntos
Camellia sinensis/enzimologia , Camellia sinensis/metabolismo , Proteínas de Plantas/metabolismo , Transferases/metabolismo , Ácido Abscísico/farmacologia , Camellia sinensis/efeitos dos fármacos , Camellia sinensis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Transferases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa