Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Mol Biol Rep ; 46(1): 343-354, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30443823

RESUMO

Cysteine (Cys) is the first identified molecule in plant metabolism which includes both sulfur and nitrogen. It can be synthesized in three cellular compartments, containing chloroplast, cytoplasm and mitochondrion. The final step of cysteine biosynthesis is catalyzed by the O-acetylserine(thiol)lyase enzyme (OASTL, E.C. 4.2.99). In the present study, seven members of the OASTL gene family in the sorghum (Sorghum bicolor) genome were identified at a genome-wide scale and comparative bioinformatics analyses were performed between sorghum and Arabidopsis OASTLs. In all OASTL proteins, a pyridoxal-phosphate dependent domain structure (PALP, PF00291) was identified. The gene ontology annotations also revealed that all sorghum OASTL genes have KOG1252 (Cystathionine beta-synthase and related enzyme) and K01738 (cysteine synthase A) activities. In promotor sequences of OASTL genes, diverse cis-acting elements were found, including hormone and light responsiveness, abiotic stress responsiveness, and tissue-specific ones (meristem and endosperm). Sorghum OASTL genes demonstrated medium or high level expressions in anatomical parts and developmental stages based on the digital expression data. Expression of OASTL genes were also analyzed under cadmium (Cd) stress in sorghum by Real Time-quantitative PCR (RT-qPCR). The results exclusively showed that OASTL A1-2 gene was 1.12 fold up-regulated in roots, whereas cysteine synthase 26 was 2.25 fold down-regulated in leaves. The predicted 3D structure of OASTLs indicated some structural diversities as well as variations in the secondary structures.


Assuntos
Carbono-Oxigênio Liases/genética , Sorghum/genética , Arabidopsis/genética , Cádmio/efeitos adversos , Cádmio/farmacologia , Carbono-Oxigênio Liases/fisiologia , Cloroplastos/metabolismo , Cisteína/biossíntese , Ontologia Genética , Genoma de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Sorghum/metabolismo , Estresse Fisiológico/genética , Compostos de Sulfidrila/metabolismo , Transcriptoma/genética
2.
Plant J ; 73(1): 118-30, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22974487

RESUMO

O-acetylserine (thiol) lyases (OASTLs) are evolutionarily conserved proteins among many prokaryotes and eukaryotes that perform sulfur acquisition and synthesis of cysteine. A mutation in the cytosolic OASTL-A1 protein ONSET OF LEAF DEATH3 (OLD3) was previously shown to reduce the OASTL activity of the old3-1 protein in vitro and cause auto-necrosis in specific Arabidopsis accessions. Here we investigated why a mutation in this protein causes auto-necrosis in some but not other accessions. The auto-necrosis was found to depend on Recognition of Peronospora Parasitica 1 (RPP1)-like disease resistance R gene(s) from an evolutionarily divergent R gene cluster that is present in Ler-0 but not the reference accession Col-0. RPP1-like gene(s) show a negative epistatic interaction with the old3-1 mutation that is not linked to reduced cysteine biosynthesis. Metabolic profiling and transcriptional analysis further indicate that an effector triggered-like immune response and metabolic disorder are associated with auto-necrosis in old3-1 mutants, probably activated by an RPP1-like gene. However, the old3-1 protein in itself results in largely neutral changes in primary plant metabolism, stress defence and immune responses. Finally, we showed that lack of a functional OASTL-A1 results in enhanced disease susceptibility against infection with virulent and non-virulent Pseudomonas syringae pv. tomato DC3000 strains. These results reveal an interaction between the cytosolic OASTL and components of plant immunity.


Assuntos
Arabidopsis/fisiologia , Carbono-Oxigênio Liases/fisiologia , Doenças das Plantas/imunologia , Imunidade Vegetal/fisiologia , Arabidopsis/genética , Arabidopsis/imunologia , Morte Celular/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , Mutação/genética , Imunidade Vegetal/genética , Pseudomonas syringae , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
3.
J Clin Invest ; 112(7): 989-98, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14523036

RESUMO

Signal transducer and activator of transcription-3 (Stat3) is one of the most important molecules involved in the initiation of liver development and regeneration. In order to investigate the hepatoprotective effects of Stat3, we examined whether Stat3 protects against Fas-mediated liver injury in the mouse. A constitutively activated form of Stat3 (Stat3-C) was adenovirally overexpressed in mouse liver by intravenous injection, and then a nonlethal dose of Fas agonist (Jo2) was injected intraperitoneally into the mouse (0.3 microg/g body wt). Stat3-C dramatically suppressed both apoptosis and necrosis induced by Jo2. In contrast, liver-specific Stat3-knockout mice failed to survive following Jo2 injection. Stat3-C upregulated expression of FLICE inhibitor protein (FLIP), Bcl-xL, and Bcl-2, and accordingly downregulated activities of FLICE and caspase-3 that were redox-independent. Interestingly, Stat3-C also upregulated the redox-associated protein redox factor-1 (Ref-1) and reduced apoptosis in liver following Jo2 injection by suppressing oxidative stress and redox-sensitive caspase-3 activity. These findings indicate that Stat3 activation protects against Fas-mediated liver injury by inhibiting caspase activities in redox-dependent and -independent mechanisms.


Assuntos
Apoptose , Citoproteção , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Proteínas de Ligação a DNA/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Fígado/patologia , Transativadores/fisiologia , Receptor fas/fisiologia , Animais , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Carbono-Oxigênio Liases/fisiologia , Proteínas de Transporte/fisiologia , Caspase 3 , Caspase 8 , Caspase 9 , Caspases/metabolismo , Caspases/fisiologia , Interleucina-6/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Espécies Reativas de Oxigênio , Fator de Transcrição STAT3 , Transcrição Gênica
4.
Mol Cell Biol ; 19(6): 4324-33, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10330173

RESUMO

Heme plays key regulatory roles in numerous molecular and cellular processes for systems that sense or use oxygen. In the yeast Saccharomyces cerevisiae, oxygen sensing and heme signaling are mediated by heme activator protein 1 (Hap1). Hap1 contains seven heme-responsive motifs (HRMs): six are clustered in the heme domain, and a seventh is near the activation domain. To determine the functional role of HRMs and to define which parts of Hap1 mediate heme regulation, we carried out a systematic analysis of Hap1 mutants with various regions deleted or mutated. Strikingly, the data show that HRM1 to -6, located in the previously designated Hap1 heme domain, have little impact on heme regulation. All seven HRMs are dispensable for Hap1 repression in the absence of heme, but HRM7 is required for Hap1 activation by heme. More importantly, we show that a novel class of repression modules-RPM1, encompassing residues 245 to 278; RPM2, encompassing residues 1061 to 1185; and RPM3, encompassing residues 203 to 244-is critical for Hap1 repression in the absence of heme. Biochemical analysis indicates that RPMs mediate Hap1 repression, at least partly, by the formation of a previously identified higher-order complex termed the high-molecular-weight complex (HMC), while HRMs mediate heme activation by permitting heme binding and the disassembly of the HMC. These findings provide significant new insights into the molecular interactions critical for Hap1 repression in the absence of heme and Hap1 activation by heme.


Assuntos
Carbono-Oxigênio Liases/fisiologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Regulação Fúngica da Expressão Gênica , Heme/fisiologia , Western Blotting , Eletroforese em Gel de Poliacrilamida , Modelos Genéticos , Mutagênese Sítio-Dirigida , Proteínas Repressoras/classificação , Proteínas Repressoras/fisiologia , Saccharomyces cerevisiae/genética , beta-Galactosidase/metabolismo
5.
Mol Cell Biol ; 22(18): 6480-6, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12192046

RESUMO

The Apn2 protein of Saccharomyces cerevisiae contains 3'-->5' exonuclease and 3'-phosphodiesterase activities, and these activities function in the repair of DNA strand breaks that have 3'-damaged termini and which are formed in DNA by the action of oxygen-free radicals. Apn2 also has an AP endonuclease activity and functions in the removal of abasic sites from DNA. Here, we provide evidence for the physical and functional interaction of Apn2 with proliferating cell nuclear antigen (PCNA). As indicated by gel filtration and two-hybrid studies, Apn2 interacts with PCNA both in vitro and in vivo and mutations in the consensus PCNA-binding motif of Apn2 abolish this interaction. Importantly, PCNA stimulates the 3'-->5' exonuclease and 3'-phosphodiesterase activities of Apn2. We have examined the involvement of the interdomain connector loop (IDCL) and of the carboxy-terminal domain of PCNA in Apn2 binding and found that Apn2 binds PCNA via distinct domains dependent upon whether the binding is in the absence or presence of DNA. In the absence of DNA, Apn2 binds PCNA through its IDCL domain, whereas in the presence of DNA, when PCNA has been loaded onto the template-primer junction by replication factor C, the C-terminal domain of PCNA mediates the binding.


Assuntos
Carbono-Oxigênio Liases/fisiologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas de Saccharomyces cerevisiae , Motivos de Aminoácidos , Sequência de Aminoácidos , Carbono-Oxigênio Liases/genética , Cromatografia em Gel , DNA/metabolismo , Dano ao DNA , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Relação Dose-Resposta a Droga , Hidrólise , Dados de Sequência Molecular , Mutação , Oxigênio/metabolismo , Plasmídeos/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/enzimologia , Técnicas do Sistema de Duplo-Híbrido
6.
Mol Cell Biol ; 21(5): 1656-61, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11238902

RESUMO

In Saccharomyces cerevisiae, the AP endonucleases encoded by the APN1 and APN2 genes provide alternate pathways for the removal of abasic sites. Oxidative DNA-damaging agents, such as H(2)O(2), produce DNA strand breaks which contain 3'-phosphate or 3'-phosphoglycolate termini. Such 3' termini are inhibitory to synthesis by DNA polymerases. Here, we show that purified yeast Apn2 protein contains 3'-phosphodiesterase and 3'-->5' exonuclease activities, and mutation of the active-site residue Glu59 to Ala in Apn2 inactivates both these activities. Consistent with these biochemical observations, genetic studies indicate the involvement of APN2 in the repair of H(2)O(2)-induced DNA damage in a pathway alternate to APN1, and the Ala59 mutation inactivates this function of Apn2. From these results, we conclude that the ability of Apn2 to remove 3'-end groups from DNA is paramount for the repair of strand breaks arising from the reaction of DNA with reactive oxygen species.


Assuntos
Carbono-Oxigênio Liases/fisiologia , Dano ao DNA , Reparo do DNA , Exodesoxirribonucleases/metabolismo , Nucleotidases/metabolismo , Oxigênio/metabolismo , Proteínas de Saccharomyces cerevisiae , Alanina/química , Sequência de Bases , Sítios de Ligação , Carbono-Oxigênio Liases/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Desoxirribonuclease IV (Fago T4-Induzido) , Relação Dose-Resposta a Droga , Exodesoxirribonuclease V , Ácido Glutâmico/química , Glutationa Transferase/metabolismo , Peróxido de Hidrogênio/farmacologia , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Mutação , Saccharomyces cerevisiae/enzimologia , Especificidade por Substrato , Fatores de Tempo
7.
Mol Cell Biol ; 22(17): 6111-21, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12167705

RESUMO

DNA N-glycosylase/AP (apurinic/apyrimidinic) lyase enzymes of the endonuclease III family (nth in Escherichia coli and Nth1 in mammalian organisms) initiate DNA base excision repair of oxidized ring saturated pyrimidine residues. We generated a null mouse (mNth1(-/-)) by gene targeting. After almost 2 years, such mice exhibited no overt abnormalities. Tissues of mNth1(-/-) mice contained an enzymatic activity which cleaved DNA at sites of oxidized thymine residues (thymine glycol [Tg]). The activity was greater when Tg was paired with G than with A. This is in contrast to Nth1, which is more active against Tg:A pairs than Tg:G pairs. We suggest that there is a back-up mammalian repair activity which attacks Tg:G pairs with much greater efficiency than Tg:A pairs. The significance of this activity may relate to repair of oxidized 5-methyl cytosine residues (5meCyt). It was shown previously (S. Zuo, R. J. Boorstein, and G. W. Teebor, Nucleic Acids Res. 23:3239-3243, 1995) that both ionizing radiation and chemical oxidation yielded Tg from 5meCyt residues in DNA. Thus, this previously undescribed, and hence novel, back-up enzyme activity may function to repair oxidized 5meCyt residues in DNA while also being sufficient to compensate for the loss of Nth1 in the mutant mice, thereby explaining the noninformative phenotype.


Assuntos
Carbono-Oxigênio Liases/fisiologia , Reparo do DNA , Desoxirribonuclease (Dímero de Pirimidina) , Endodesoxirribonucleases/fisiologia , Proteínas de Escherichia coli , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Ácido Apurínico/metabolismo , Carbono-Oxigênio Liases/análise , Cruzamentos Genéticos , Metilação de DNA , Reparo do DNA/genética , Reparo do DNA/fisiologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Endodesoxirribonucleases/deficiência , Endodesoxirribonucleases/genética , Feminino , Marcação de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos , Fenótipo , Especificidade por Substrato , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/efeitos da radiação
8.
Nucleic Acids Res ; 28(4): 1026-35, 2000 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-10648797

RESUMO

Hap1 is a yeast transcriptional activator which controls expression of genes such as CYC1 and CYC7. Our results show that Hap1 activity is dependent on a functional chromatin remodeling complex SWI/SNF. Using a modified two-hybrid screen with Hap1 as bait, we recovered expression vectors encoding the Gal4 activation domain fused to histone H3 [Gal4(AD)-H3]. Hap1 activity at CYC1 or CYC7 was increased by Gal4(AD)-H3 and the effect was dependent on the presence of the activation domain of Hap1 and a functional SWI complex. Importantly, overexpression of H3 alone had no effect on Hap1 activity. Analysis of Gal4(AD)-H3 revealed that the fusion is not incorporated into the nucleosome while a functional Gal4 activation domain is dispensable. Activity of many other transcriptional activators was unchanged or slightly affected in the presence of Gal4(AD)-H3. Thus, our results identify a new class of histone H3 variants that cause highly specific alteration of gene expression. Hap1 may interact directly with H3 favoring chromatin remodeling by the SWI/SNF complex.


Assuntos
Fusão Gênica Artificial , Carbono-Oxigênio Liases/fisiologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Regulação Fúngica da Expressão Gênica/fisiologia , Histonas/genética , Transativadores/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA
9.
Nucleic Acids Res ; 28(5): 1099-105, 2000 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-10666449

RESUMO

The Ref-1 (also called APE or HAP1) protein is a bifunctional enzyme impacting on a wide variety of important cellular functions. It acts as a major member of the DNA base excision repair pathway. Moreover, Ref-1 stimulates the DNA-binding activity of several transcription factors (TFs) through the reduction of highly reactive cysteine residues. Therefore, it represents a mechanism that regulates eukaryotic gene expression in a fast way. However, it has been demonstrated that external stimuli directly act on Ref-1 by increasing its expression levels, a time-consuming mechanism representing a paradox in terms of rapidity of TF regulation. In this paper we demonstrate that this is only an apparent paradox. Exposure of B lymphocytes to H(2)O(2)induced a rapid and sustained increase in Ref-1 protein levels in the nucleus as evaluated by both western blot analysis and by pulse-chase experiments. A time course, two color in situ immunocytochemistry indicated that the up-regulation of Ref-1 in the nucleus at <30 min was primarily the consequence of translocation of its cytoplasmic form. This early nuclear accumulation is effective in modulating the DNA-binding activity of the B cell-specific activator protein BSAP/Pax-5. In fact, EMSA experiments demonstrate that a transient interaction with Ref-1 up-regulates the DNA-binding activity of BSAP/Pax-5. Moreover, in a co-transfection experiment, Ref-1 increased the BSAP/Pax-5 activating effect on an oligomerized BSAP/Pax-5 binding site of the CD19 promoter by 5- to 8-fold. Thus, Ref-1 mediates its effect by up-regulating the DNA-binding activity of BSAP/Pax-5, accounting for a new and fast outside/inside pathway of signaling in B cells.


Assuntos
Linfócitos B/fisiologia , Carbono-Oxigênio Liases/fisiologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Proteínas de Ligação a DNA/fisiologia , Proteínas Nucleares/fisiologia , Transdução de Sinais/fisiologia , Transporte Biológico/fisiologia , Linhagem Celular , Humanos , Oxirredução , Fator de Transcrição PAX5 , Fatores de Transcrição/fisiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-11554297

RESUMO

8-Oxoguanine (8-oxoG) is a critical mutagenic lesion because of its propensity to mispair with A during DNA replication. All organisms, from bacteria to mammals, express at least two types of 8-oxoguanine-DNA glycosylase (OGG) for repair of 8-oxoG. The major enzyme class (OGG1), first identified in Escherichia coli as MutM (Fpg), and later in yeast and humans, excises 8-oxoG when paired with C, T, and G but rarely with A. In contrast, a distinct and less abundant OGG, OGG2, prefers 8-oxoG when paired with G and A as a substrate, and has been characterized in yeast and human cells. Recently, OGG2 activity was detected in E. coli which was subsequently identified to be Nei (Endo VIII). In view of the ubiquity of OGG2, we have proposed a model named "bipartite antimutagenic processing of 8-oxoguanine" and is an extension of the original "GO model." The GO model explains the presence of OGG1 (MutM) that excises 8-oxoG from nonreplicated DNA. If 8-oxoG mispairs with A during replication, MutY excises A and provides an opportunity for insertion of C opposite 8-oxoG during subsequent repair replication. Our model postulates that whereas OGG1 (MutM) is responsible for global repair of 8-oxoG in the nonreplicating genome, OGG2 (Nei) repairs 8-oxoG in nascent or transcriptionally active DNA. Interestingly, we observed that MutY and MutM reciprocally inhibited each other's catalytic activity but observed no mutual interference between Nei and MutY. This suggests that the recognition sites on the same substrate for Nei and MutY are nonoverlapping. Human OGG1 is distinct from other oxidized base-specific DNA glycosylases because of its extremely low turnover, weak AP lyase activity, and nonproductive affinity for the abasic (AP) site, its first reaction product. OGG1 is activated nearly 5-fold in the presence of AP-endonuclease (APE) as a result of its displacement by the latter. These results support the "handoff" mechanism of BER in which the enzymatic steps are coordinated as a result of displacement of the DNA glycosylase by APE, the next enzyme in the pathway. The physiological significance of multiple OGGs and their in vivo reaction mechanisms remain to be elucidated by further studies.


Assuntos
DNA Glicosilases , DNA Ligases/fisiologia , Reparo do DNA , Proteínas de Escherichia coli , Guanina/análogos & derivados , Guanina/metabolismo , Proteínas de Bactérias/fisiologia , Carbono-Oxigênio Liases/fisiologia , DNA/metabolismo , Dano ao DNA , DNA Ligases/classificação , Replicação do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA-Formamidopirimidina Glicosilase , Desoxirribonuclease (Dímero de Pirimidina) , Desoxirribonuclease IV (Fago T4-Induzido) , Endodesoxirribonucleases/fisiologia , Proteínas Fúngicas/fisiologia , Humanos , Modelos Genéticos , Mutação , N-Glicosil Hidrolases/fisiologia , Especificidade por Substrato , Transcrição Gênica
11.
Prog Nucleic Acid Res Mol Biol ; 68: xvii-xxx, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11554316

RESUMO

Covalent alterations of DNA bases, which may have promutagenic or cytotoxic effects, are major consequences of endogenous DNA damage caused by hydrolysis, reactive oxygen species, and several metabolites and coenzymes. A common strategy for initiation of DNA base excision repair (BER) involves a DNA glycosylase that binds the altered deoxynucleoside in an extrahelical position and catalyzes cleavage of the base-sugar bond. Subsequently, an AP endonuclease or AP lyase activity incises the abasic site, followed by short-patch gap-filling, excision of the base-free sugar-phosphate residue, and ligation. The initial work that resulted in the discovery of DNA glycosylases and AP endonucleases is briefly reviewed. In recent years, it has been shown that the latter steps of the BER pathway differ greatly between mammalian cells and microorganisms such as yeast and bacteria. Three distinct subpathways of BER occur in mammalian cells, and these have been individually reconstituted with purified enzymes. Gene knockout mice are now revealing specific roles and backup mechanisms for repair functions in murine cells, and the results in general are also applicable to human cells. Future developments in the field of base excision repair include definition by proteomics of all factors involved in handling many different types of DNA lesions, clarification of mechanisms of repair of chromatin at a high level of accuracy, manifestation of repair proteins as drug targets for cellular sensitization to ionizing radiation and anticancer medicines, and elucidation of cross-talk between the base excision repair factors and other cellular proteins involved in a variety of stress responses.


Assuntos
Reparo do DNA , Envelhecimento/genética , Animais , Proteínas de Bactérias/fisiologia , Carbono-Oxigênio Liases/fisiologia , Cromatina/metabolismo , Dano ao DNA , DNA Glicosilases , DNA Polimerase beta/fisiologia , Reparo do DNA/genética , Reparo do DNA/fisiologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Desoxirribonuclease IV (Fago T4-Induzido) , Desenho de Fármacos , Previsões , Teste de Complementação Genética , Proteínas de Choque Térmico/fisiologia , Humanos , Mamíferos/genética , Camundongos , N-Glicosil Hidrolases/deficiência , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/fisiologia , Neoplasias/genética , Proteoma
12.
Artigo em Inglês | MEDLINE | ID: mdl-11554292

RESUMO

In higher eukaryotes, base excision repair can proceed by two alternative pathways: a DNA polymerase beta-dependent pathway and a proliferating cell nuclear antigen (PCNA)-dependent pathway. Recently, we have reconstituted the PCNA-dependent AP site repair reaction with six purified human proteins: AP endonuclease, replication factor C (RFC), PCNA, flap endonuclease 1 (FEN1), DNA polymerase delta (pol delta), and DNA ligase I. In this reconstituted system, the number of nucleotides replaced during the repair reaction (patch size) was predominantly two nucleotides. PCNA can directly interact with RFC, pol delta, FEN1 and DNA ligase I. These interactions are partly through a consensus motif, QXX(I/L/M)XX(F/H)(F/Y), found in each of the four proteins. PCNA functions as a molecular adaptor for recruiting these factors to the site of DNA repair. Two DNA-N-glycosylases among those so far cloned from human, UNG2 and MYH, are found to have the same PCNA-binding motif. Major substrates of these enzymes, a uracil opposite an adenine for UNG2 and an adenine opposite an 8-oxoguanine for MYH, are formed during DNA replication. Therefore, UNG2 and MYH may serve for replication-coupled base excision repair through the direct interaction with PCNA in the replication machinery.


Assuntos
DNA Glicosilases , Reparo do DNA/fisiologia , Antígeno Nuclear de Célula em Proliferação/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Ácido Apurínico/metabolismo , Sítios de Ligação , Carbono-Oxigênio Liases/fisiologia , Sistema Livre de Células , Sequência Consenso , DNA Ligase Dependente de ATP , DNA Ligases/fisiologia , DNA Polimerase III/fisiologia , Replicação do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Proteínas de Ligação a DNA/fisiologia , Desoxirribonuclease IV (Fago T4-Induzido) , Endodesoxirribonucleases/fisiologia , Endonucleases Flap , Humanos , Substâncias Macromoleculares , Modelos Genéticos , Dados de Sequência Molecular , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/fisiologia , Proteína de Replicação C , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Uracila-DNA Glicosidase
13.
Artigo em Inglês | MEDLINE | ID: mdl-11554309

RESUMO

Cells have evolved distinct mechanisms for both preventing and removing mutagenic and lethal DNA damage. Structural and biochemical characterization of key enzymes that function in DNA repair pathways are illuminating the biological and chemical mechanisms that govern initial lesion detection, recognition, and excision repair of damaged DNA. These results are beginning to reveal a higher level of DNA repair coordination that ensures the faithful repair of damaged DNA. Enzyme-induced DNA distortions allow for the specific recognition of distinct extrahelical lesions, as well as tight binding to cleaved products, which has implications for the ordered transfer of unstable DNA repair intermediates between enzymes during base excision repair.


Assuntos
Dano ao DNA , DNA Glicosilases , DNA Ligases/fisiologia , Reparo do DNA , Guanina/análogos & derivados , Alquilação , Animais , Carbono-Oxigênio Liases/química , Carbono-Oxigênio Liases/fisiologia , DNA/química , DNA/genética , DNA Ligases/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Desoxirribonuclease IV (Fago T4-Induzido) , Endodesoxirribonucleases/fisiologia , Endonucleases Flap , Guanina/metabolismo , Humanos , Modelos Moleculares , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/fisiologia , Ligação Proteica , Conformação Proteica , Pirofosfatases/química , Pirofosfatases/fisiologia , Uracila-DNA Glicosidase
14.
Artigo em Inglês | MEDLINE | ID: mdl-11554312

RESUMO

Methylating carcinogens and cytostatic drugs induce different methylation products in DNA. In cells not expressing the repair protein MGMT or expressing it at a low level, O6-methylguanine is the major genotoxic, recombinogenic, and apoptotic lesion. Genotoxicity and apoptosis triggered by O6-methylguanine require mismatch repair (MMR). In cells expressing O6-methylguanine-DNA methyl transferase (MGMT) at a high level or for agents producing low amounts of O6-methylguanine, N-alkylations become the major genotoxic lesions. N-Alkylations are repaired by base excision repair (BER). In mammalian cells, naturally occurring mutants of BER have not been detected, which points to the importance of BER for viability. In order to ascertain the role of BER in cellular defense, BER was modulated either by transfection or mutational inactivation. It has been shown that overexpression of N-methylpurine-DNA glycosylase (MPG) does not protect, but rather sensitizes cells to SN2 agents. This has been interpreted in terms of an imbalance in BER. Regarding abasic site endonuclease (APE), transient but not stable overexpression of the enzyme was achieved upon transfection in CHO cells, which indicates that unphysiologic APE levels are not tolerated by the cell. Besides the repair function, APE (alias Ref-1) exerts redox capability by which the activity of various transcription factors is modulated. Therefore, it is possible that stable overexpression of mammalian APE impairs transcriptional regulation of genes, whereas transient overexpression may exert some protective effect. DNA polymerase beta (Pol beta) transfection was ineffective in conferring resistance to methylmethane sulfonate (MMS). On the other hand, Pol beta-deficient cells proved to be highly sensitive to methylation-induced chromosomal aberrations and reproductive cell death. The dramatic hypersensitivity in the killing response is largely due to induction of apoptosis. Obviously, nonrepaired BER intermediates are clastogenic and act as a strong trigger of the apoptotic pathway. The elements of this pathway are currently under investigation.


Assuntos
Apoptose/fisiologia , DNA Glicosilases , Reparo do DNA , Guanina/análogos & derivados , Alquilação , Animais , Apoptose/genética , Pareamento Incorreto de Bases , Células CHO , Carbono-Oxigênio Liases/fisiologia , Cricetinae , Cricetulus , Adutos de DNA/química , Dano ao DNA , DNA Polimerase beta/deficiência , DNA Polimerase beta/fisiologia , Reparo do DNA/genética , Reparo do DNA/fisiologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Desoxirribonuclease IV (Fago T4-Induzido) , Guanina/química , Humanos , Mamíferos , Metilação , Camundongos , Camundongos Knockout , Mutagênese , Mutagênicos/toxicidade , N-Glicosil Hidrolases/fisiologia , O(6)-Metilguanina-DNA Metiltransferase/fisiologia , Oxidantes/toxicidade , Oxirredução , Fosforilação , Processamento de Proteína Pós-Traducional , Transfecção
15.
Artigo em Inglês | MEDLINE | ID: mdl-11554313

RESUMO

DNA beta-polymerase (beta-pol) carries out two critical enzymatic reactions in mammalian single-nucleotide base excision repair (BER): DNA synthesis to fill the repair patch and lyase removal of the 5'-deoxyribose phosphate (dRP) group following cleavage of the abasic site by apurinic/apyrimidinic (AP) endonuclease (1). The requirement for beta-pol in single-nucleotide BER is exemplified in mouse fibroblasts with a null mutation in the beta-pol gene. These cells are hypersensitive to monofunctional DNA methylating agents such as methyl methane-sulfonate (MMS) (2). This hypersensitivity is associated with an abundance of chromosomal damage and induction of apoptosis and necrotic cell death (3). We have found that beta-pol null cells are defective in repair of MMS-induced DNA lesions, consistent with a cellular BER deficiency as a causative agent in the observed hypersensitivity. Further, the N-terminal 8-kDa domain of beta-pol, which contains the dRP lyase activity in the wild-type enzyme, is sufficient to reverse the methylating agent hypersensitivity in beta-pol null cells. These results indicate that lyase removal of the dRP group is a pivotal step in BER in vivo. Finally, we examined MMS-induced genomic DNA mutagenesis in two isogenic mouse cell lines designed for study of the role of BER. MMS exposure strongly increases mutant frequency in beta-pol null cells, but not in wild-type cells. With MMS treatment, beta-pol null cells have a higher frequency of all six base-pair substitutions, suggesting that BER plays a role in protecting the cell against methylation-induced mutations.


Assuntos
DNA Ligases/fisiologia , DNA Polimerase beta/fisiologia , Reparo do DNA , Alquilação , Animais , Ácido Aspártico/química , Bacteriófago lambda/genética , Carbono-Oxigênio Liases/fisiologia , Dano ao DNA , DNA Polimerase beta/química , DNA Polimerase beta/deficiência , DNA Polimerase beta/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Desoxirribonuclease IV (Fago T4-Induzido) , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Genótipo , Metanossulfonato de Metila/toxicidade , Metilação , Camundongos , Mutagênese , Mutagênese Sítio-Dirigida , Mutagênicos/toxicidade , Fósforo-Oxigênio Liases/fisiologia , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Ribosemonofosfatos/química
16.
Artigo em Inglês | MEDLINE | ID: mdl-11554305

RESUMO

The removal of oxidative base damage from the genome of Saccharomyces cerevisiae is thought to occur primarily via the base excision repair (BER) pathway in a process initiated by several DNA N-glycosylase/AP lyases. We have found that yeast strains containing simultaneous multiple disruptions of BER genes are not hypersensitive to killing by oxidizing agents, but exhibit a spontaneous hyperrecombinogenic (hyper-rec) and mutator phenotype. The hyper-rec and mutator phenotypes are further enhanced by elimination of the nucleotide excision repair (NER) pathway. Furthermore, elimination of either the lesion bypass (REV3-dependent) or recombination (RAD52-dependent) pathway results in a further, specific enhancement of the hyper-rec or mutator phenotypes, respectively. Sensitivity (cell killing) to oxidizing agents is not observed unless multiple pathways are eliminated simultaneously. These data suggest that the BER, NER, recombination, and lesion bypass pathways have overlapping specificities in the removal of, or tolerance to, exogenous or spontaneous oxidative DNA damage in S. cerevisiae. Our results also suggest a physiological role for the AP lyase activity of certain BER N-glycosylases in vivo.


Assuntos
DNA Ligases/fisiologia , Reparo do DNA , DNA Fúngico/genética , DNA Polimerase Dirigida por DNA , Proteínas Fúngicas/fisiologia , Saccharomyces cerevisiae/genética , Carbono-Oxigênio Liases/fisiologia , Dano ao DNA , DNA Glicosilases , DNA Ligases/deficiência , DNA Ligases/genética , Enzimas Reparadoras do DNA , DNA Fúngico/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Proteínas de Ligação a DNA/fisiologia , Desoxirribonuclease IV (Fago T4-Induzido) , Endodesoxirribonucleases/deficiência , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/fisiologia , Endonucleases/deficiência , Endonucleases/genética , Endonucleases/fisiologia , Proteínas Fúngicas/genética , Modelos Genéticos , Mutagênese , N-Glicosil Hidrolases/deficiência , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/fisiologia , Oxidantes/toxicidade , Oxirredução , Fenótipo , Proteína Rad52 de Recombinação e Reparo de DNA , Recombinação Genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-11554307

RESUMO

To preserve genomic beta DNA from common endogenous and exogenous base and sugar damage, cells are provided with multiple base excision repair (BER) pathways: the DNA polymerase (Pol) beta-dependent single nucleotide BER and the long-patch (2-10 nt) BER that requires PCNA. It is a challenge to identify the factors that govern the mechanism of switching among these pathways. One of these factors is the type of DNA damage induced in DNA. By using different model lesions we have shown that base damages (like hypoxanthine and 1, N6-ethenoadenine) excised by monofunctional DNA glycosylases are repaired via both single-nucleotide and long-patch BER, while lesions repaired by a bifunctional DNA glycosylase (like 7,8-dihydro-8-oxoguanine) are repaired mainly by single-nucleotide BER. The presence of a genuine 5' nucleotide, as in the case of cleavage by a bifunctional DNA glycosylase-beta lyase, would then minimize the strand displacement events. Another key factor in the selection of the BER branch is the relative level of cellular polymerases. While wild-type embryonic mouse fibroblast cell lines repair abasic sites predominantly via single-nucleotide replacement reactions (80% of the repair events), cells homozygous for a deletion in the Pol beta gene repair these lesions exclusively via long-patch BER. Following treatment with methylmethane sulfonate, these mutant cells accumulate DNA single-strand breaks in their genome in keeping with the fact that repair induced by monofunctional alkylating agents goes predominantly via single-nucleotide BER. Since the long-patch BER is strongly stimulated by PCNA, the cellular content of this cell-cycle regulated factor is also extremely effective in driving the repair reaction to either BER branch. These findings raise the interesting possibility that different BER pathways might be acting as a function of the cell cycle stage.


Assuntos
DNA Ligases/fisiologia , Reparo do DNA/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Células CHO/enzimologia , Carbono-Oxigênio Liases/fisiologia , Linhagem Celular , Sistema Livre de Células , Cricetinae , Cricetulus , DNA/química , DNA/efeitos dos fármacos , Adutos de DNA , Dano ao DNA , DNA Glicosilases , DNA Ligases/deficiência , DNA Ligases/genética , DNA Polimerase beta/fisiologia , Replicação do DNA , DNA Fúngico/química , DNA Fúngico/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA-Formamidopirimidina Glicosilase , Desoxirribonuclease IV (Fago T4-Induzido) , Fibroblastos/citologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Camundongos , Camundongos Transgênicos , Modelos Genéticos , Mutagênicos/toxicidade , N-Glicosil Hidrolases/fisiologia , Oxirredução , Antígeno Nuclear de Célula em Proliferação/fisiologia , Saccharomyces cerevisiae/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-11554310

RESUMO

To understand the structural basis of the recognition and removal of specific mismatched bases in double-stranded DNAs by the DNA repair glycosylase MutY, a series of structural and functional analyses have been conducted. MutY is a 39-kDa enzyme from Escherichia coli, which to date has been refractory to structural determination in its native, intact conformation. However, following limited proteolytic digestion, it was revealed that the MutY protein is composed of two modules, a 26-kDa domain that retains essential catalytic function (designated p26MutY) and a 13-kDa domain that is implicated in substrate specificity and catalytic efficiency. Several structures of the 26-kDa domain have been solved by X-ray crystallographic methods to a resolution of up to 1.2 A. The structure of a catalytically incompetent mutant of p26MutY complexed with an adenine in the substrate-binding pocket allowed us to propose a catalytic mechanism for MutY. Since reporting the structure of p26MutY, significant progress has been made in solving the solution structure of the noncatalytic C-terminal 13-kDa domain of MutY by NMR spectroscopy. The topology and secondary structure of this domain are very similar to that of MutT, a pyrophosphohydrolase. Molecular modeling techniques employed to integrate the two domains of MutY with DNA suggest that MutY can wrap around the DNA and initiate catalysis by potentially flipping adenine and 8-oxoguanine out of the DNA helix.


Assuntos
Adenina/análogos & derivados , Proteínas de Bactérias/fisiologia , DNA Glicosilases , Reparo do DNA , Proteínas de Escherichia coli , Escherichia coli/enzimologia , Guanina/análogos & derivados , N-Glicosil Hidrolases/fisiologia , Adenina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Pareamento Incorreto de Bases , Carbono-Oxigênio Liases/química , Carbono-Oxigênio Liases/fisiologia , Catálise , Domínio Catalítico , Dano ao DNA , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Desoxirribonuclease IV (Fago T4-Induzido) , Escherichia coli/genética , Guanina/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , N-Glicosil Hidrolases/química , Monoéster Fosfórico Hidrolases/química , Conformação Proteica , Estrutura Terciária de Proteína , Pirofosfatases , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato
19.
Oncogene ; 18(4): 1033-40, 1999 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-10023679

RESUMO

The DNA repair protein apurinic endonuclease (APE/Ref-1) exerts several physiological functions such as cleavage of apurinic/apyrimidinic sites and redox regulation of the transcription factor AP-1, whose activation is part of the cellular response to DNA damaging treatments. Here we demonstrate that APE/Ref-1 is phosphorylated by casein kinase II (CKII). This was shown for both the recombinant APE/Ref-1 protein (Km=0.55 mM) and for APE/Ref-1 expressed in COS cells. Phosphorylation of APE/Ref-1 did not alter the repair activity of the enzyme, whereas it stimulated its redox capability towards AP-1, thus promoting DNA binding activity of AP-1. Inhibition of CKII mediated phosphorylation of APE/Ref-1 blocked mutagen-stimulated increase in AP-1 binding. It also abrogated the induction of c-Jun protein and rendered cells more sensitive to induced DNA damage. Thus, phosphorylation of APE/Ref-1 appears to be involved in regulating the different physiological activities of the enzyme. CKII mediated phosphorylation of APE/Ref-1 and concomitant increase in AP-1 binding activity appears to be a novel mechanism of cellular stress response, forcing transcription of AP-1 target gene(s) the product(s) of which may exert protective function.


Assuntos
Carbono-Oxigênio Liases/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Células CHO/efeitos dos fármacos , Células COS/efeitos dos fármacos , Carbono-Oxigênio Liases/genética , Carbono-Oxigênio Liases/fisiologia , Caseína Quinase II , Cricetinae , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dano ao DNA , Células HeLa/efeitos dos fármacos , Humanos , Metanossulfonato de Metila/farmacologia , Mutagênicos/farmacologia , Oxirredução , Fosforilação , Proteínas Proto-Oncogênicas c-jun/metabolismo , Especificidade por Substrato , Transfecção
20.
Genetics ; 150(4): 1487-95, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9832526

RESUMO

In a search for modifiers of gene expression with the white eye color gene as a target, a third chromosomal P-element insertion mutant l(3)01544 has been identified that exhibits a strong pigment increase in a white-apricot background. Molecular analysis shows that the P-element insertion is found in the first intron of the gene surrounding the insertion site. Sequencing both the cDNA and genomic fragments revealed that the identified gene is identical to one encoding ribosomal protein P0/apurinic/apyrimidinic endonuclease. The P-element-induced mutation, l(3)01544, affects the steady-state level of white transcripts and transcripts of some other genes. In addition, l(3)01544 suppresses the variegated phenotypes of In(1)wm4h and In(1)y3P, suggesting a potential involvement of the P0 protein in modifying position effect variegation. The revertant generated by the precise excision of the P element has lost all mutant phenotypes. Recent work revealed that Drosophila ribosomal protein P0 contains an apurinic/apyrimidinic endonuclease activity. Our results suggest that this multifunctional protein is also involved in regulation of gene expression in Drosophila.


Assuntos
Carbono-Oxigênio Liases/fisiologia , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Fosfoproteínas/fisiologia , Proteínas Ribossômicas/fisiologia , Alelos , Animais , Carbono-Oxigênio Liases/genética , Clonagem Molecular , Elementos de DNA Transponíveis , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Desoxirribonuclease IV (Fago T4-Induzido) , Drosophila/fisiologia , Genes de Insetos , Mutação , Fosfoproteínas/genética , Proteínas Ribossômicas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa