Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 956
Filtrar
1.
Cell ; 187(9): 2158-2174.e19, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38604175

RESUMO

Centriole biogenesis, as in most organelle assemblies, involves the sequential recruitment of sub-structural elements that will support its function. To uncover this process, we correlated the spatial location of 24 centriolar proteins with structural features using expansion microscopy. A time-series reconstruction of protein distributions throughout human procentriole assembly unveiled the molecular architecture of the centriole biogenesis steps. We found that the process initiates with the formation of a naked cartwheel devoid of microtubules. Next, the bloom phase progresses with microtubule blade assembly, concomitantly with radial separation and rapid cartwheel growth. In the subsequent elongation phase, the tubulin backbone grows linearly with the recruitment of the A-C linker, followed by proteins of the inner scaffold (IS). By following six structural modules, we modeled 4D assembly of the human centriole. Collectively, this work provides a framework to investigate the spatial and temporal assembly of large macromolecules.


Assuntos
Centríolos , Microtúbulos , Centríolos/metabolismo , Humanos , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas de Ciclo Celular/metabolismo
2.
Cell ; 181(7): 1566-1581.e27, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32531200

RESUMO

The accurate timing and execution of organelle biogenesis is crucial for cell physiology. Centriole biogenesis is regulated by Polo-like kinase 4 (Plk4) and initiates in S-phase when a daughter centriole grows from the side of a pre-existing mother. Here, we show that a Plk4 oscillation at the base of the growing centriole initiates and times centriole biogenesis to ensure that centrioles grow at the right time and to the right size. The Plk4 oscillation is normally entrained to the cell-cycle oscillator but can run autonomously of it-potentially explaining why centrioles can duplicate independently of cell-cycle progression. Mathematical modeling indicates that the Plk4 oscillation can be generated by a time-delayed negative feedback loop in which Plk4 inactivates the interaction with its centriolar receptor through multiple rounds of phosphorylation. We hypothesize that similar organelle-specific oscillations could regulate the timing and execution of organelle biogenesis more generally.


Assuntos
Relógios Biológicos/fisiologia , Centríolos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Biogênese de Organelas , Fosforilação , Proteínas Serina-Treonina Quinases/fisiologia
3.
Annu Rev Biochem ; 88: 691-724, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30601682

RESUMO

The centriole is an ancient microtubule-based organelle with a conserved nine-fold symmetry. Centrioles form the core of centrosomes, which organize the interphase microtubule cytoskeleton of most animal cells and form the poles of the mitotic spindle. Centrioles can also be modified to form basal bodies, which template the formation of cilia and play central roles in cellular signaling, fluid movement, and locomotion. In this review, we discuss developments in our understanding of the biogenesis of centrioles and cilia and the regulatory controls that govern their structure and number. We also discuss how defects in these processes contribute to a spectrum of human diseases and how new technologies have expanded our understanding of centriole and cilium biology, revealing exciting avenues for future exploration.


Assuntos
Centríolos/fisiologia , Cílios/patologia , Biogênese de Organelas , Animais , Ciclo Celular , Centríolos/metabolismo , Centríolos/ultraestrutura , Cílios/metabolismo , Cílios/ultraestrutura , Ciliopatias , Eucariotos/citologia , Eucariotos/fisiologia , Humanos , Mitose , Transdução de Sinais
4.
Annu Rev Cell Dev Biol ; 33: 23-49, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28813178

RESUMO

The centriole is a beautiful microtubule-based organelle that is critical for the proper execution of many fundamental cellular processes, including polarity, motility, and division. Centriole biogenesis, the making of this miniature architectural wonder, has emerged as an exemplary model to dissect the mechanisms governing the assembly of a eukaryotic organelle. Centriole biogenesis relies on a set of core proteins whose contributions to the assembly process have begun to be elucidated. Here, we review current knowledge regarding the mechanisms by which these core characters function in an orderly fashion to assemble the centriole. In particular, we discuss how having the correct proteins at the right place and at the right time is critical to first scaffold, then initiate, and finally execute the centriole assembly process, thus underscoring fundamental principles governing organelle biogenesis.


Assuntos
Centríolos/metabolismo , Biogênese de Organelas , Animais , Humanos , Microtúbulos/metabolismo , Modelos Biológicos
5.
Cell ; 162(3): 580-92, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26213385

RESUMO

Although it is known that the centrioles play instructive roles in pericentriolar material (PCM) assembly and that the PCM is essential for proper centriole formation, the mechanism that governs centriole-PCM interaction is poorly understood. Here, we show that ATF5 forms a characteristic 9-fold symmetrical ring structure in the inner layer of the PCM outfitting the proximal end of the mother centriole. ATF5 controls the centriole-PCM interaction in a cell-cycle- and centriole-age-dependent manner. Interaction of ATF5 with polyglutamylated tubulin (PGT) on the mother centriole and with PCNT in the PCM renders ATF5 as a required molecule in mother centriole-directed PCM accumulation and in PCM-dependent centriole formation. ATF5 depletion blocks PCM accumulation at the centrosome and causes fragmentation of centrioles, leading to the formation of multi-polar mitotic spindles and genomic instability. These data show that ATF5 is an essential structural protein that is required for the interaction between the mother centriole and the PCM.


Assuntos
Fatores Ativadores da Transcrição/metabolismo , Centríolos/metabolismo , Centrossomo/metabolismo , Citoesqueleto/metabolismo , Regulação para Baixo , Instabilidade Genômica , Células HeLa , Humanos , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
6.
Nature ; 630(8015): 214-221, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811726

RESUMO

The canonical mitotic cell cycle coordinates DNA replication, centriole duplication and cytokinesis to generate two cells from one1. Some cells, such as mammalian trophoblast giant cells, use cell cycle variants like the endocycle to bypass mitosis2. Differentiating multiciliated cells, found in the mammalian airway, brain ventricles and reproductive tract, are post-mitotic but generate hundreds of centrioles, each of which matures into a basal body and nucleates a motile cilium3,4. Several cell cycle regulators have previously been implicated in specific steps of multiciliated cell differentiation5,6. Here we show that differentiating multiciliated cells integrate cell cycle regulators into a new alternative cell cycle, which we refer to as the multiciliation cycle. The multiciliation cycle redeploys many canonical cell cycle regulators, including cyclin-dependent kinases (CDKs) and their cognate cyclins. For example, cyclin D1, CDK4 and CDK6, which are regulators of mitotic G1-to-S progression, are required to initiate multiciliated cell differentiation. The multiciliation cycle amplifies some aspects of the canonical cell cycle, such as centriole synthesis, and blocks others, such as DNA replication. E2F7, a transcriptional regulator of canonical S-to-G2 progression, is expressed at high levels during the multiciliation cycle. In the multiciliation cycle, E2F7 directly dampens the expression of genes encoding DNA replication machinery and terminates the S phase-like gene expression program. Loss of E2F7 causes aberrant acquisition of DNA synthesis in multiciliated cells and dysregulation of multiciliation cycle progression, which disrupts centriole maturation and ciliogenesis. We conclude that multiciliated cells use an alternative cell cycle that orchestrates differentiation instead of controlling proliferation.


Assuntos
Ciclo Celular , Diferenciação Celular , Cílios , Animais , Feminino , Masculino , Camundongos , Ciclo Celular/genética , Centríolos/metabolismo , Cílios/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Replicação do DNA/genética , Fator de Transcrição E2F7/metabolismo , Camundongos Endogâmicos C57BL , Mitose
7.
Genes Dev ; 36(11-12): 647-649, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35835509

RESUMO

Polo-like kinase 4 (Plk4) is the master regulator of centriole assembly. Several evolutionarily conserved mechanisms strictly regulate Plk4 abundance and activity to ensure cells maintain a proper number of centrioles. In this issue of Genes & Development, Phan et al. (pp. 718-736) add to this growing list by describing a new mechanism of control that restricts Plk4 translation through competitive ribosome binding at upstream open reading frames (uORFs) in the mature Plk4 mRNA. Fascinatingly, this mechanism is especially critical in the development of primordial germ cells in mice that are transcriptionally hyperactive and thus exquisitely sensitive to Plk4 mRNA regulation.


Assuntos
Proteínas de Ciclo Celular , Centríolos , Animais , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Genes Dev ; 36(11-12): 718-736, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35772791

RESUMO

Centrosomes are microtubule-organizing centers comprised of a pair of centrioles and the surrounding pericentriolar material. Abnormalities in centriole number are associated with cell division errors and can contribute to diseases such as cancer. Centriole duplication is limited to once per cell cycle and is controlled by the dosage-sensitive Polo-like kinase 4 (PLK4). Here, we show that PLK4 abundance is translationally controlled through conserved upstream open reading frames (uORFs) in the 5' UTR of the mRNA. Plk4 uORFs suppress Plk4 translation and prevent excess protein synthesis. Mice with homozygous knockout of Plk4 uORFs (Plk4 Δu/Δu ) are viable but display dramatically reduced fertility because of a significant depletion of primordial germ cells (PGCs). The remaining PGCs in Plk4 Δu/Δu mice contain extra centrioles and display evidence of increased mitotic errors. PGCs undergo hypertranscription and have substantially more Plk4 mRNA than somatic cells. Reducing Plk4 mRNA levels in mice lacking Plk4 uORFs restored PGC numbers and fully rescued fertility. Together, our data uncover a specific requirement for uORF-dependent control of PLK4 translation in counterbalancing the increased Plk4 transcription in PGCs. Thus, uORF-mediated translational suppression of PLK4 has a critical role in preventing centriole amplification and preserving the genomic integrity of future gametes.


Assuntos
Proteínas de Ciclo Celular , Centríolos , Animais , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centríolos/genética , Centríolos/metabolismo , Células Germinativas/metabolismo , Camundongos , Fases de Leitura Aberta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Genes Dev ; 35(21-22): 1445-1460, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34711653

RESUMO

Joubert syndrome (JS) is a recessive ciliopathy in which all affected individuals have congenital cerebellar vermis hypoplasia. Here, we report that CEP120, a JS-associated protein involved in centriole biogenesis and cilia assembly, regulates timely neuronal differentiation and the departure of granule neuron progenitors (GNPs) from their germinal zone during cerebellar development. Our results show that depletion of Cep120 perturbs GNP cell cycle progression, resulting in a delay of cell cycle exit in vivo. To dissect the potential mechanism, we investigated the association between CEP120 interactome and the JS database and identified KIAA0753 (a JS-associated protein) as a CEP120-interacting protein. Surprisingly, we found that CEP120 recruits KIAA0753 to centrioles, and that loss of this interaction induces accumulation of GNPs in the germinal zone and impairs neuronal differentiation. Importantly, the replenishment of wild-type CEP120 rescues the above defects, whereas expression of JS-associated CEP120 mutants, which hinder KIAA0753 recruitment, does not. Together, our data reveal a close interplay between CEP120 and KIAA0753 for the germinal zone exit and timely neuronal differentiation of GNPs during cerebellar development, and mutations in CEP120 and KIAA0753 may participate in the heterotopia and cerebellar hypoplasia observed in JS patients.


Assuntos
Centríolos , Doenças Renais Císticas , Anormalidades Múltiplas , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Centríolos/genética , Centríolos/metabolismo , Cerebelo/anormalidades , Cerebelo/metabolismo , Anormalidades do Olho , Humanos , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Proteínas Associadas aos Microtúbulos , Retina/anormalidades
10.
EMBO J ; 43(3): 414-436, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233576

RESUMO

Mitotic centrosomes assemble when centrioles recruit large amounts of pericentriolar material (PCM) around themselves. In early C. elegans embryos, mitotic centrosome size appears to be set by the limiting amount of a key component. In Drosophila syncytial embryos, thousands of mitotic centrosomes are assembled as the embryo proceeds through 13 rounds of rapid nuclear division, driven by a core cell cycle oscillator. These divisions slow during nuclear cycles 11-13, and we find that centrosomes respond by reciprocally decreasing their growth rate, but increasing their growth period-so that they grow to a relatively consistent size at each cycle. At the start of each cycle, moderate CCO activity initially promotes centrosome growth, in part by stimulating Polo/PLK1 recruitment to centrosomes. Later in each cycle, high CCO activity inhibits centrosome growth by suppressing the centrosomal recruitment and/or maintenance of centrosome proteins. Thus, in fly embryos, mitotic centrosome size appears to be regulated predominantly by the core cell cycle oscillator, rather than by the depletion of a limiting component.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Caenorhabditis elegans/metabolismo , Centrossomo/metabolismo , Centríolos/metabolismo , Ciclo Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mitose
11.
Cell ; 155(2): 333-44, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24120134

RESUMO

Primary cilia are key sensory organelles that are thought to be disassembled prior to mitosis. Inheritance of the mother centriole, which nucleates the primary cilium, in relation to asymmetric daughter cell behavior has previously been studied. However, the fate of the ciliary membrane upon cell division is unknown. Here, we followed the ciliary membrane in dividing embryonic neocortical stem cells and cultured cells. Ciliary membrane attached to the mother centriole was endocytosed at mitosis onset, persisted through mitosis at one spindle pole, and was asymmetrically inherited by one daughter cell, which retained stem cell character. This daughter re-established a primary cilium harboring an activated signal transducer earlier than the noninheriting daughter. Centrosomal association of ciliary membrane in dividing neural stem cells decreased at late neurogenesis when these cells differentiate. Our data imply that centrosome-associated ciliary membrane acts as a determinant for the temporal-spatial control of ciliogenesis.


Assuntos
Divisão Celular , Cílios/metabolismo , Células-Tronco Neurais/citologia , Fatores de Ribosilação do ADP , Animais , Centríolos/metabolismo , Centrossomo/metabolismo , Células HEK293 , Humanos , Camundongos , Mitose , Células-Tronco Neurais/metabolismo
12.
EMBO J ; 42(24): e115076, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37987153

RESUMO

In most metazoans, centrioles are lost during oogenesis, ensuring that the zygote is endowed with the correct number of two centrioles, which are paternally contributed. How centriole architecture is dismantled during oogenesis is not understood. Here, we analyze with unprecedent detail the ultrastructural and molecular changes during oogenesis centriole elimination in Caenorhabditis elegans. Centriole elimination begins with loss of the so-called central tube and organelle widening, followed by microtubule disassembly. The resulting cluster of centriolar proteins then disappears gradually, usually moving in a microtubule- and dynein-dependent manner to the plasma membrane. Our analysis indicates that neither Polo-like kinases nor the PCM, which modulate oogenesis centriole elimination in Drosophila, do so in C. elegans. Furthermore, we demonstrate that the central tube protein SAS-1 normally departs initially from the organelle, which loses integrity earlier in sas-1 mutants. Overall, our work provides novel mechanistic insights regarding the fundamental process of oogenesis centriole elimination.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Centríolos/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Drosophila/metabolismo , Oogênese , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
13.
Proc Natl Acad Sci U S A ; 121(25): e2305260121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857398

RESUMO

Human Cep57 is a coiled-coil scaffold at the pericentriolar matrix (PCM), controlling centriole duplication and centrosome maturation for faithful cell division. Genetic truncation mutations of Cep57 are associated with the mosaic-variegated aneuploidy (MVA) syndrome. During interphase, Cep57 forms a complex with Cep63 and Cep152, serving as regulators for centrosome maturation. However, the molecular interplay of Cep57 with these essential scaffolding proteins remains unclear. Here, we demonstrate that Cep57 undergoes liquid-liquid phase separation (LLPS) driven by three critical domains (NTD, CTD, and polybasic LMN). In vitro Cep57 condensates catalyze microtubule nucleation via the LMN motif-mediated tubulin concentration. In cells, the LMN motif is required for centrosomal microtubule aster formation. Moreover, Cep63 restricts Cep57 assembly, expansion, and microtubule polymerization activity. Overexpression of competitive constructs for multivalent interactions, including an MVA mutation, leads to excessive centrosome duplication. In Cep57-depleted cells, self-assembly mutants failed to rescue centriole disengagement and PCM disorganization. Thus, Cep57's multivalent interactions are pivotal for maintaining the accurate structural and functional integrity of human centrosomes.


Assuntos
Proteínas de Ciclo Celular , Centríolos , Centrossomo , Microtúbulos , Humanos , Centrossomo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Microtúbulos/metabolismo , Centríolos/metabolismo , Centríolos/genética , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Mutação , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Ligação Proteica , Proteínas Nucleares
14.
EMBO J ; 41(20): e104582, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36093892

RESUMO

The conserved nine-fold structural symmetry of the centriole is thought to be generated by cooperation between two mechanisms, one dependent on and the other independent of the cartwheel, a sub-centriolar structure consisting of a hub and nine spokes. However, the molecular entity of the cartwheel-independent mechanism has not been elucidated. Here, using Chlamydomonas reinhardtii mutants, we show that Bld10p/Cep135, a conserved centriolar protein that connects cartwheel spokes and triplet microtubules, plays a central role in this mechanism. Using immunoelectron microscopy, we localized hemagglutinin epitopes attached to distinct regions of Bld10p along two lines that connect adjacent triplets. Consistently, conventional and cryo-electron microscopy identified crosslinking structures at the same positions. In centrioles formed in the absence of the cartwheel, truncated Bld10p was found to significantly reduce the inter-triplet distance and frequently form eight-microtubule centrioles. These results suggest that the newly identified crosslinks are comprised of part of Bld10p/Cep135. We propose that Bld10p determines the inter-triplet distance in the centriole and thereby regulates the number of triplets in a cartwheel-independent manner.


Assuntos
Centríolos , Hemaglutininas , Centríolos/genética , Centríolos/metabolismo , Microscopia Crioeletrônica , Epitopos/metabolismo , Hemaglutininas/metabolismo , Microtúbulos/metabolismo
15.
EMBO J ; 41(11): e110891, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35505659

RESUMO

Mitotic centrosomes are formed when centrioles start to recruit large amounts of pericentriolar material (PCM) around themselves in preparation for mitosis. This centrosome "maturation" requires the centrioles and also Polo/PLK1 protein kinase. The PCM comprises several hundred proteins and, in Drosophila, Polo cooperates with the conserved centrosome proteins Spd-2/CEP192 and Cnn/CDK5RAP2 to assemble a PCM scaffold around the mother centriole that then recruits other PCM client proteins. We show here that in Drosophila syncytial blastoderm embryos, centrosomal Polo levels rise and fall during the assembly process-peaking, and then starting to decline, even as levels of the PCM scaffold continue to rise and plateau. Experiments and mathematical modelling indicate that a centriolar pulse of Polo activity, potentially generated by the interaction between Polo and its centriole receptor Ana1 (CEP295 in humans), could explain these unexpected scaffold assembly dynamics. We propose that centrioles generate a local pulse of Polo activity prior to mitotic entry to initiate centrosome maturation, explaining why centrioles and Polo/PLK1 are normally essential for this process.


Assuntos
Centríolos , Proteínas de Drosophila , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Centrossomo/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/genética
16.
EMBO J ; 41(21): e112107, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36125182

RESUMO

Over the course of evolution, the centrosome function has been conserved in most eukaryotes, but its core architecture has evolved differently in some clades, with the presence of centrioles in humans and a spindle pole body (SPB) in yeast. Similarly, the composition of these two core elements has diverged, with the exception of Centrin and SFI1, which form a complex in yeast to initiate SPB duplication. However, it remains unclear whether this complex exists at centrioles and whether its function has been conserved. Here, using expansion microscopy, we demonstrate that human SFI1 is a centriolar protein that associates with a pool of Centrin at the distal end of the centriole. We also find that both proteins are recruited early during procentriole assembly and that depletion of SFI1 results in the loss of the distal pool of Centrin, without altering centriole duplication. Instead, we show that SFI1/Centrin complex is essential for centriolar architecture, CEP164 distribution, and CP110 removal during ciliogenesis. Together, our work reveals a conserved SFI1/Centrin module displaying divergent functions between mammals and yeast.


Assuntos
Proteínas de Ligação ao Cálcio , Proteínas de Ciclo Celular , Centríolos , Animais , Humanos , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Corpos Polares do Fuso/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo
17.
J Cell Sci ; 137(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38661008

RESUMO

DPF3, along with other subunits, is a well-known component of the BAF chromatin remodeling complex, which plays a key role in regulating chromatin remodeling activity and gene expression. Here, we elucidated a non-canonical localization and role for DPF3. We showed that DPF3 dynamically localizes to the centriolar satellites in interphase and to the centrosome, spindle midzone and bridging fiber area, and midbodies during mitosis. Loss of DPF3 causes kinetochore fiber instability, unstable kinetochore-microtubule attachment and defects in chromosome alignment, resulting in altered mitotic progression, cell death and genomic instability. In addition, we also demonstrated that DPF3 localizes to centriolar satellites at the base of primary cilia and is required for ciliogenesis by regulating axoneme extension. Taken together, these findings uncover a moonlighting dual function for DPF3 during mitosis and ciliogenesis.


Assuntos
Cílios , Mitose , Fatores de Transcrição , Animais , Humanos , Camundongos , Axonema/metabolismo , Centríolos/metabolismo , Centrossomo/metabolismo , Cílios/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Células HeLa , Cinetocoros/metabolismo , Fuso Acromático/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
18.
PLoS Biol ; 21(11): e3002391, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37983248

RESUMO

Centrioles duplicate when a mother centriole gives birth to a daughter that grows from its side. Polo-like-kinase 4 (PLK4), the master regulator of centriole duplication, is recruited symmetrically around the mother centriole, but it then concentrates at a single focus that defines the daughter centriole assembly site. How PLK4 breaks symmetry is unclear. Here, we propose that phosphorylated and unphosphorylated species of PLK4 form the 2 components of a classical Turing reaction-diffusion system. These 2 components bind to/unbind from the surface of the mother centriole at different rates, allowing a slow-diffusing activator species of PLK4 to accumulate at a single site on the mother, while a fast-diffusing inhibitor species of PLK4 suppresses activator accumulation around the rest of the centriole. This "short-range activation/long-range inhibition," inherent to Turing systems, can drive PLK4 symmetry breaking on a either a continuous or compartmentalised Plk4-binding surface, with PLK4 overexpression producing multiple PLK4 foci and PLK4 kinase inhibition leading to a lack of symmetry-breaking and PLK4 accumulation-as observed experimentally.


Assuntos
Proteínas de Ciclo Celular , Centríolos , Centríolos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia
19.
EMBO Rep ; 25(6): 2698-2721, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744971

RESUMO

Centrioles organize centrosomes, the cell's primary microtubule-organizing centers (MTOCs). Centrioles double in number each cell cycle, and mis-regulation of this process is linked to diseases such as cancer and microcephaly. In C. elegans, centriole assembly is controlled by the Plk4 related-kinase ZYG-1, which recruits the SAS-5-SAS-6 complex. While the kinase activity of ZYG-1 is required for centriole assembly, how it functions has not been established. Here we report that ZYG-1 physically interacts with and phosphorylates SAS-5 on 17 conserved serine and threonine residues in vitro. Mutational scanning reveals that serine 10 and serines 331/338/340 are indispensable for proper centriole assembly. Embryos expressing SAS-5S10A exhibit centriole assembly failure, while those expressing SAS-5S331/338/340A possess extra centrioles. We show that in the absence of serine 10 phosphorylation, the SAS-5-SAS-6 complex is recruited to centrioles, but is not stably incorporated, possibly due to a failure to coordinately recruit the microtubule-binding protein SAS-4. Our work defines the critical role of phosphorylation during centriole assembly and reveals that ZYG-1 might play a role in preventing the formation of excess centrioles.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas de Ciclo Celular , Centríolos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Centríolos/metabolismo , Fosforilação , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Serina/metabolismo , Sequência de Aminoácidos , Proteínas Quinases
20.
EMBO Rep ; 25(1): 102-127, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200359

RESUMO

Centrioles are part of centrosomes and cilia, which are microtubule organising centres (MTOC) with diverse functions. Despite their stability, centrioles can disappear during differentiation, such as in oocytes, but little is known about the regulation of their structural integrity. Our previous research revealed that the pericentriolar material (PCM) that surrounds centrioles and its recruiter, Polo kinase, are downregulated in oogenesis and sufficient for maintaining both centrosome structural integrity and MTOC activity. We now show that the expression of specific components of the centriole cartwheel and wall, including ANA1/CEP295, is essential for maintaining centrosome integrity. We find that Polo kinase requires ANA1 to promote centriole stability in cultured cells and eggs. In addition, ANA1 expression prevents the loss of centrioles observed upon PCM-downregulation. However, the centrioles maintained by overexpressing and tethering ANA1 are inactive, unlike the MTOCs observed upon tethering Polo kinase. These findings demonstrate that several centriole components are needed to maintain centrosome structure. Our study also highlights that centrioles are more dynamic than previously believed, with their structural stability relying on the continuous expression of multiple components.


Assuntos
Centríolos , Centrossomo , Proteínas de Drosophila , Proteínas Associadas aos Microtúbulos , Centríolos/metabolismo , Centrossomo/metabolismo , Oócitos/metabolismo , Oogênese , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Drosophila melanogaster , Proteínas de Drosophila/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa