RESUMO
Severe acute pancreatitis (SAP) is an inflammatory disease of the pancreas with a high mortality rate. Macrophages play a crucial role in the pathogenesis of pancreatitis. Tectoridin (Tec) is a highly active isoflavone with anti-inflammatory pharmacological activity. However, the role of Tec in the SAP process is not known. The purpose of this study was to investigate the therapeutic effect and potential mechanism of Tec on SAP. To establish SAP mice by intraperitoneal injection of caerulein and Lipopolysaccharide (LPS), the role of Tec in the course of SAP was investigated based on histopathology, biochemical indicators of amylase and lipase and inflammatory factors. The relationship between Tec and macrophage polarization was verified by immunofluorescence, real-time quantitative PCR and Western blot analysis. We then further predicted the possible targets and signal pathways of action of Tec by network pharmacology and molecular docking, and validated them by in vivo and in vitro. In this study, we demonstrated that Tec significantly reduced pancreatic injury in SAP mice, and decreased serum levels of amylase and lipase. The immunofluorescence and Western blot analysis showed that Tec promoted macrophage M2 polarization. Network pharmacology and molecular docking predicted that Tec may target ERK2 for the treatment of SAP, and in vivo and in vitro experiments proved that Tec inhibited the ERK MAPK signal pathway. In summary, Tec can target ERK2, promote macrophage M2 polarization and attenuate pancreatic injury, Tec may be a potential drug for the treatment of SAP.
Assuntos
Isoflavonas , Pancreatite , Camundongos , Animais , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Ceruletídeo/efeitos adversos , Doença Aguda , Simulação de Acoplamento Molecular , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Macrófagos/metabolismo , Amilases , LipaseRESUMO
BACKGROUND: Acute pancreatitis (AP) is one of the most common acute abdominal disorders; due to the lack of specific treatment, the treatment of acute pancreatitis, especially serious acute pancreatitis (SAP), is difficult and challenging. We will observe the changes of Interleukin -22 levels in acute pancreatitis animal models, and explore the mechanism of Interleukin -22 in acute pancreatitis. OBJECTIVE: This study aims to assess the potential protective effect of Interleukin -22 on caerulein-induced acute pancreatitis and to explore its mechanism. METHODS: Blood levels of amylase and lipase and Interleukin -22 were assessed in mice with acute pancreatitis. In animal model and cell model of caerulein-induced acute pancreatitis, the mRNA levels of P62 and Beclin-1 were determined using PCR, and the protein expression of P62, LC3-II, mTOR, AKT, p-mTOR, and p-AKT were evaluated through Western blot analysis. RESULTS: Interleukin -22 administration reduced blood amylase and lipase levels and mitigated tissue damage in acute pancreatitis mice model. Interleukin -22 inhibited the relative mRNA levels of P62 and Beclin-1, and the Interleukin -22 group showed a decreased protein expression of LC3-II and P62 and the phosphorylation of the AKT/mTOR pathway. Furthermore, we obtained similar results in the cell model of acute pancreatitis. CONCLUSION: This study suggests that Interleukin -22 administration could alleviate pancreatic damage in caerulein-induced acute pancreatitis. This effect may result from the activation of the AKT/mTOR pathway, leading to the inhibition of autophagy. Consequently, Interleukin -22 shows potential as a treatment.
Assuntos
Ceruletídeo , Interleucina 22 , Interleucinas , Pancreatite , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Masculino , Camundongos , Doença Aguda , Amilases/sangue , Amilases/metabolismo , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Proteína Beclina-1/genética , Ceruletídeo/efeitos adversos , Ceruletídeo/metabolismo , Modelos Animais de Doenças , Interleucina 22/metabolismo , Interleucina 22/farmacologia , Interleucinas/metabolismo , Interleucinas/farmacologia , Lipase/sangue , Lipase/metabolismo , Camundongos Endogâmicos C57BL , Pâncreas/metabolismo , Pâncreas/patologia , Pâncreas/efeitos dos fármacos , Pancreatite/induzido quimicamente , Pancreatite/metabolismo , Pancreatite/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismoRESUMO
OBJECTIVE: Nafamostat mesilate (NM), a synthetic broad-spectrum serine protease inhibitor, has been commonly used for treating acute pancreatitis (AP) and other inflammatory-associated diseases in some East Asia countries. Although the potent inhibitory activity against inflammation-related proteases (such as thrombin, trypsin, kallikrein, plasmin, coagulation factors, and complement factors) is generally believed to be responsible for the anti-inflammatory effects of NM, the precise target and molecular mechanism underlying its anti-inflammatory activity in AP treatment remain largely unknown. METHODS: The protection of NM against pancreatic injury and inhibitory effect on the NOD-like receptor protein 3 (NLRP3) inflammasome activation were investigated in an experimental mouse model of AP. To decipher the molecular mechanism of NM, the effects of NM on nuclear factor kappa B (NF-κB) activity and NF-κB mediated NLRP3 inflammasome priming were examined in lipopolysaccharide (LPS)-primed THP-1 cells. Additionally, the potential of NM to block the activity of histone deacetylase 6 (HDAC6) and disrupt the association between HDAC6 and NLRP3 was also evaluated. RESULTS: NM significantly suppressed NLRP3 inflammasome activation in the pancreas, leading to a reduction in pancreatic inflammation and prevention of pancreatic injury during AP. NM was found to interact with HDAC6 and effectively inhibit its function. This property allowed NM to influence HDAC6-dependent NF-κB transcriptional activity, thereby blocking NF-κB-driven transcriptional priming of the NLRP3 inflammasome. Furthermore, NM exhibited the potential to interfere the association between HDAC6 and NLRP3, impeding HDAC6-mediated intracellular transport of NLRP3 and ultimately preventing NLRP3 inflammasome activation. CONCLUSIONS: Our current work has provided valuable insight into the molecular mechanism underlying the immunomodulatory effect of NM in the treatment of AP, highlighting its promising application in the prevention of NLRP3 inflammasome-associated inflammatory pathological damage.
Assuntos
Inflamassomos , Pancreatite , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Pancreatite/prevenção & controle , NF-kappa B/metabolismo , Ceruletídeo/efeitos adversos , Proteínas NLR , Desacetilase 6 de Histona/uso terapêutico , Doença Aguda , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêuticoRESUMO
Acute pancreatitis (AP) is a frequent abdominal inflammatory disease. Despite the high morbidity and mortality, the management of AP remains unsatisfactory. Disulfiram (DSF) is an FDA-proved drug with potential therapeutic effects on inflammatory diseases. In this study, we aim to investigate the effect of DSF on pancreatic acinar cell necrosis, and to explore the underlying mechanisms. Cell necrosis was induced by sodium taurocholate or caerulein, AP mice model was induced by nine hourly injections of caerulein. Network pharmacology, molecular docking, and molecular dynamics simulation were used to explore the potential targets of DSF in protecting against cell necrosis. The results indicated that DSF significantly inhibited acinar cell necrosis as evidenced by a decreased ratio of necrotic cells in the pancreas. Network pharmacology, molecular docking, and molecular dynamics simulation identified RIPK1 as a potent target of DSF in protecting against acinar cell necrosis. qRT-PCR analysis revealed that DSF decreased the mRNA levels of RIPK1 in freshly isolated pancreatic acinar cells and the pancreas of AP mice. Western blot showed that DSF treatment decreased the expressions of RIPK1 and MLKL proteins. Moreover, DSF inhibited NF-κB activation in acini. It also decreased the protein expression of TLR4 and the formation of neutrophils extracellular traps (NETs) induced by damage-associated molecular patterns released by necrotic acinar cells. Collectively, DSF could ameliorate the severity of mouse acute pancreatitis by inhibiting RIPK-dependent acinar cell necrosis and the following formation of NETs.
Assuntos
Pancreatite , Camundongos , Animais , Pancreatite/tratamento farmacológico , Pancreatite/induzido quimicamente , Células Acinares , Dissulfiram/efeitos adversos , Ceruletídeo/efeitos adversos , Doença Aguda , Simulação de Acoplamento Molecular , Necrose , Proteína Serina-Treonina Quinases de Interação com Receptores/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/uso terapêuticoRESUMO
BACKGROUND: Acute pancreatitis (AP) is an inflammatory process of the pancreas resulting from biliary obstruction or alcohol consumption. Approximately, 10-20% of AP can evolve into severe AP (SAP). In this study, we sought to explore the physiological roles of the transcription factor serum response factor (SRF), annexin A2 (ANXA2), and nuclear factor-kappaB (NF-κB) in SAP. METHODS: C57BL/6 mice and rat pancreatic acinar cells (AR42J) were used to establish an AP model in vivo and in vitro by cerulein with or without lipopolysaccharide (LPS). Production of pro-inflammatory cytokines (IL-1ß and TNF-α) were examined by ELISA and immunoblotting analysis. Hematoxylin and eosin (HE) staining and TUNEL staining were performed to evaluate pathological changes in the course of AP. Apoptosis was examined by flow cytometric and immunoblotting analysis. Molecular interactions were tested by dual luciferase reporter, ChIP, and Co-IP assays. RESULTS: ANXA2 was overexpressed in AP and correlated to the severity of AP. ANXA2 knockdown rescued pancreatic acinar cells against inflammation and apoptosis induced by cerulein with or without LPS. Mechanistic investigations revealed that SRF bound with the ANXA2 promoter region and repressed its expression. ANXA2 could activate the NF-κB signaling pathway by inducing the nuclear translocation of p50. SRF-mediated transcriptional repression of ANXA2-protected pancreatic acinar cells against AP-like injury through repressing the NF-κB signaling pathway. CONCLUSION: Our study highlighted a regulatory network consisting of SRF, ANXA2, and NF-κB that was involved in AP progression, possibly providing some novel targets for treating SAP.
Assuntos
Anexina A2/metabolismo , Pancreatite , Fator de Resposta Sérica/metabolismo , Doença Aguda , Animais , Anexina A2/genética , Ceruletídeo/efeitos adversos , Ceruletídeo/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Pâncreas/patologia , Pancreatite/induzido quimicamente , Pancreatite/patologia , Ratos , Transdução de SinaisRESUMO
Acute pancreatitis (AP), an inflammatory disorder of the pancreas, is a complicated disease without specific drug therapy. (R)-4,6-dimethoxy-3-(4-methoxy phenyl)-2,3-dihydro-1H-indanone [(R)-TML104] is a synthesized analog of the natural product resveratrol sesquiterpenes (±) -isopaucifloral F. This study aimed to investigate the effect and underlying mechanism of (R)-TML104 on AP. The experimental AP model was induced by caerulein hyperstimulation in BALB/c mice. (R)-TML104 markedly attenuated caerulein-induced AP, as evidenced by decreased pancreatic edema, serum amylase levels, serum lipase levels, and pancreatic myeloperoxidase activity. In addition, (R)-TML104 significantly inhibited the expression of pancreatic chemokines C-C motif chemokine ligand 2 and macrophage inflammatory protein-2 and the infiltration of neutrophils and macrophages. Mechanistically, (R)-TML104 activated AMP-activated protein kinase and induced sirtuin 1 (SIRT1) expression. (R)-TML104 treatment markedly induced the SIRT1-signal transducer and activator of transcription 3 (STAT3) interaction and reduced acetylation of STAT3, thus inhibiting the inflammatory response mediated by the interleukin 6-STAT3 pathway. The effect of (R)-TML104 on SIRT1-STAT3 interaction was reversed by treatment with a SIRT1 inhibitor selisistat (EX527). Together, our findings indicate that (R)-TML104 alleviates experimental pancreatitis by reducing the infiltration of inflammatory cells through modulating SIRT1.
Assuntos
Ceruletídeo , Pancreatite , Doença Aguda , Animais , Ceruletídeo/efeitos adversos , Camundongos , Pâncreas/metabolismo , Pancreatite/tratamento farmacológico , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Sirtuína 1/metabolismoRESUMO
Mounting evidence suggests that long non-coding RNAs (lncRNAs) and microRNAs exert a critical regulatory role in acute pancreatitis. The present study aimed to explore the role of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in acute pancreatitis (AP) that was induced by caerulein in rat pancreatic acinar cells (AR42J). The potential target sites of lncRNA NEAT1 and miR-365a-3p were predicted using starBase and were confirmed using dual-luciferase reporter assay. Reverse transcription-quantitative polymerase chain reaction was performed to assess lncRNA NEAT1 and miR-365a-3p expression levels in AP induced by caerulein. Cell Counting Kit-8 and flow cytometry assays were performed to assess AR42J cell viability. Western blotting was performed to evaluate the expression of apoptosis-related proteins. Interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α levels were detected by ELISA. The results of the dual-luciferase reporter assay confirmed that miR-365a-3p could bind to NEAT1. LncRNA NEAT1 was upregulated in AR42J cells treated with 10 nmol/l caerulein, and miR-365a-3p was expressed at low levels in an AP model. Overexpression of miR-365a-3p suppressed the apoptosis and inflammatory response of AR42J cells induced by caerulein. Importantly, inhibition of lncRNA NEAT1 decreased apoptosis and inflammation in caerulein-treated AR42J cells, while these effects were reverted upon co-transfection with a miR-365a-3p inhibitor. In conclusion, lncRNA NEAT1 was involved in AP progression by sponging miR-365a-3p and may thus be a novel target for treating patients with AP.
Assuntos
MicroRNAs , Pancreatite , RNA Longo não Codificante , Animais , Ratos , Doença Aguda , Apoptose/genética , Ceruletídeo/efeitos adversos , Regulação para Baixo , MicroRNAs/genética , MicroRNAs/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
Triptolide (TP), the main active ingredient of Tripterygium wilfordii Hook.f., displays potent anti-inflammatory, antioxidant, and antiproliferative activities. In the present study, the effect of TP on acute pancreatitis and the underlying mechanisms of the disease were investigated using a caerulein-induced animal model of acute pancreatitis (AP) and an in vitro cell model. In vivo, pretreatment with TP notably ameliorated pancreatic damage, shown as the improvement in serum amylase and lipase levels and pancreatic morphology. Meanwhile, TP modulated the infiltration of neutrophils and macrophages (Ly6G staining and CD68 staining) and decreased the levels of proinflammatory factors (TNF-α and IL-6) through inhibiting the transactivation of nuclear factor-κB (NF-κB) in caerulein-treated mice. Furthermore, TP reverted changes in oxidative stress markers, including pancreatic glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA), in acute pancreatitis mice. Additionally, TP pretreatment inhibited intracellular reactive oxygen species (ROS) levels via upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and Nrf2-regulated redox genes expression (HO-1, SOD1, GPx1 and NQO1) in vitro. Taken together, our data suggest that TP exert protection against pancreatic inflammation and tissue damage by inhibiting NF-κB transactivation, modulating immune cell responses and activating the Nrf2-mediated antioxidative system, thereby alleviating acute pancreatitis.
Assuntos
Diterpenos/farmacologia , Pancreatite/tratamento farmacológico , Fenantrenos/farmacologia , Doença Aguda , Animais , Antioxidantes/farmacologia , Ceruletídeo/efeitos adversos , Ceruletídeo/farmacologia , China , Modelos Animais de Doenças , Diterpenos/metabolismo , Compostos de Epóxi/metabolismo , Compostos de Epóxi/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/metabolismo , Pancreatite/imunologia , Pancreatite/fisiopatologia , Fenantrenos/metabolismo , Espécies Reativas de OxigênioRESUMO
This study was to investigate the changes of autophagy in pancreatic tissue cells from hyperlipidemic acute pancreatitis (HLAP) rats and the molecular mechanism of autophagy to induce inflammatory injury in pancreatic tissue cells. Male Sprague Dawley (SD) rats were intraperitoneally injected with caerulein to establish acute pancreatitis (AP) model and then given a high fat diet to further prepare HLAP model. The HLAP rats were treated with autophagy inducer rapamycin or inhibitor 3-methyladenine. Pancreatic acinar (AR42J) cells were treated with caerulein to establish HLAP cell model. The HLAP cell model were treated with rapamycin or transfected with vascular endothelial growth factor (VEGF) siRNA. The inflammatory factors in serum and cell culture supernatant were detected by ELISA method. The histopathological changes of pancreatic tissue were observed by HE staining. The changes of ultrastructure and autophagy in pancreatic tissue were observed by electron microscopy. The expression levels of Beclin-1, microtubule- associated protein light chain 3-II (LC3-II), mammalian target of rapamycin complex 1 (mTORC1), and VEGF were measured by immunohistochemistry and Western blot. The results showed that, compared with control group, the autophagy levels and inflammatory injury of pancreatic tissue cells from HLAP model rats were obviously increased, and these changes were aggravated by rapamycin treatment, but alleviated by 3-methyladenine treatment. In HLAP cell model, rapamycin aggravated the autophagy levels and inflammatory injury, whereas VEGF siRNA transfection increased mTORC1 protein expression, thus alleviating the autophagy and inflammatory injury of HLAP cell model. These results suggest that VEGF-induced autophagy plays a key role in HLAP pancreatic tissue cell injury, and interference with VEGF-mTORC1 pathway can reduce the autophagy levels and alleviate the inflammatory injury. The present study provides a new target for prevention and treatment of HLAP.
Assuntos
Pancreatite , Doença Aguda , Animais , Autofagia , Ceruletídeo/efeitos adversos , Masculino , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Associadas aos Microtúbulos/metabolismo , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Sirolimo/efeitos adversos , Fator A de Crescimento do Endotélio Vascular/genéticaRESUMO
BACKGROUND: Acute pancreatitis is a clinical picture with a wide range of symptoms from mild inflammation to multiorgan failure and death. The aim of this study is to investigate the effects of Adalimumab (ADA) on inflammation and apoptosis in a cerulein-induced acute pancreatitis model in rats. METHODS: Experimental cerulein-induced acute pancreatitis model was created by applying 4 intraperitoneal cerulein injections at 1-h intervals. A total of 40 rats, 8 in each group, were randomly distributed into five groups. In the groups that ADA treatment was given, two different doses of ADA were administered 5 mg/kg and 20 mg/kg as low and high doses, respectively. The rats were sacrificed 12 h after the last intraperitoneal administration of ADA. Blood samples were obtained from each rat for amylase, IL-6, and IL-1ß measurements. Hematoxylin and Eosin (H&E) stains were used to undertake the histopathological analysis of the pancreas. The terminal deoxynucleotidyl transferase-mediated nick-end-labeling (TUNEL) method was used to evaluate apoptosis. RESULTS: : Plasma amylase, IL-6, and IL-1ß levels were significantly elevated in acute pancreatitis groups (p < 0.05). It was determined that both low (5 mg/kg) and high doses (20 mg/kg) of ADA ameliorated the parameters (plasma amylase, IL-6, and IL-1ß) (p < 0.05). Although significant improvements were detected in the Schoenberg scoring system and the apoptotic index from the TUNEL method after highdose ADA treatment, no significant amelioration was observed in the histopathological examinations in the low-dose ADA group. DISCUSSION: : It has been determined that the administration of high-dose ADA effectively alleviated the symptoms of acute pancreatitis and reduced the level of apoptosis. In line with the findings of our study, we have predicted that high-dose (20 mg/kg) ADA can be used as an effective and safe drug in the treatment of patients with acute pancreatitis.
Assuntos
Pancreatite , Ratos , Animais , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Adalimumab/uso terapêutico , Ceruletídeo/efeitos adversos , Doença Aguda , Interleucina-6 , Ratos Wistar , Inflamação , Amilases/efeitos adversos , Modelos Animais de DoençasRESUMO
The intracellular sensor NOD1 has important host-defense functions relating to a variety of pathogens. Here, we showed that this molecule also participates in the induction of a noninfectious pancreatitis via its response to commensal organisms. Pancreatitis induced by high-dose cerulein (a cholecystokinin receptor agonist) administration depends on NOD1 stimulation by gut microflora. To analyze this NOD1 activity, we induced pancreatitis by simultaneous administration of a low dose of cerulein (that does not itself induce pancreatitis) and FK156, an activator of NOD1 that mimics the effect of gut bacteria that have breached the mucosal barrier. The pancreatitis was dependent on acinar cell production of the chemokine MCP-1 and the intrapancreatic influx of CCR2(+) inflammatory cells. Moreover, MCP-1 production involved activation of the transcription factors NF-κB and STAT3, each requiring complementary NOD1 and cerulein signaling. These studies indicate that gut commensals enable noninfectious pancreatic inflammation via NOD1 signaling in pancreatic acinar cells.
Assuntos
Células Acinares/imunologia , Imunidade nas Mucosas/imunologia , Mucosa/imunologia , Proteína Adaptadora de Sinalização NOD1/imunologia , Pancreatite/imunologia , Acetilmuramil-Alanil-Isoglutamina/efeitos adversos , Animais , Bactérias/imunologia , Ceruletídeo/efeitos adversos , Quimiocina CCL2/biossíntese , Quimiocina CCL2/imunologia , Ácido Diaminopimélico/efeitos adversos , Ácido Diaminopimélico/análogos & derivados , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucosa/microbiologia , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Pancreatite/induzido quimicamente , Receptores CCR2/biossíntese , Receptores CCR2/imunologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/imunologiaRESUMO
BACKGROUND: Acute pancreatitis (AP) lacks targeted prevention and treatment measures. Some key points in the pathogenesis of AP remain unclear, such as early activation of pancreatic enzymes. Several recent reports have shown the protective effect of hydrogen on several AP animal models, and the mechanism is related to antioxidant activity. Heat shock protein 60 (Hsp60) is known to accompany pancreatic enzymes synthesis and secretion pathway of in pancreatic acinar cells, while role of hsp60 in AP remains a topic. Aim of this study was to investigate effect of hydrogen pretreatment on AP and the mechanisms, focusing on pancreatic oxidative stress and Hsp60 expression. METHODS: 80 mice were randomly assigned into four groups: HAP group, AP group, HNS group, and NS group and each group were set 3 observation time point as 1 h, 3 h and 5 h (n = 6-8). Mouse AP model was induced by intraperitoneal injection of 50 µg/kg caerulein per hour for 6 injections both in AP and HAP groups, and mice in NS group and HNS group given normal saline (NS) injections at the same way as control respectively. Mice in HAP group and HNS group were treated with hydrogen-rich gases inhalation for 3 days before the first injection of caerulein or saline, while mice in AP group and NS group in normal air condition. Histopathology of pancreatic tissue, plasma amylase and lipase, plasma IL-1 and IL-6, pancreatic glutathione (GSH) and malondialdehyde (MDA), and Hsp60 mRNA and protein expression were investigated. Comparisons were made by one-way analysis of variance. RESULTS: The pancreatic pathological changes, plasma amylase and lipase activity, and the increase of plasma IL-1 and IL-6 levels in AP mice were significantly improved by the hydrogen-rich gases pretreatment, Meanwhile, the pancreatic GSH content increased and the pancreatic MDA content decreased. And, the hydrogen-rich gases pretreatment improved the Hsp60 protein expression in pancreatic tissues of AP mice at 1 h and 5 h. CONCLUSIONS: Pre-inhalation of hydrogen-rich gases have a good protective effect on AP mice, and the possible mechanisms of reduced oxidative stress and the early increased pancreatic Hsp60 protein deserve attention.
Assuntos
Ceruletídeo , Chaperonina 60/biossíntese , Fármacos Gastrointestinais , Hidrogênio/administração & dosagem , Pancreatite , Administração por Inalação , Animais , Ceruletídeo/efeitos adversos , Modelos Animais de Doenças , Feminino , Gases/administração & dosagem , Fármacos Gastrointestinais/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Pâncreas/metabolismo , Pancreatite/sangue , Pancreatite/induzido quimicamente , Pancreatite/metabolismo , Pancreatite/prevenção & controle , Distribuição AleatóriaRESUMO
BACKGROUND: Protecting the intestinal mucosa from being destroyed helps reduce the inflammation caused by acute pancreatitis (AP). In this study, whether okra pectin (OP) could attenuate the inflammation of AP through protecting the intestinal barrier was investigated. RESULTS: OP was obtained from crude okra pectin (COP) through the purification by DEAE cellulose 52 column. Supplementation with OP or COP in advance reduced the severity of AP, as revealed by lower serum amylase and lipase levels, abated pancreatic edema, attenuated myeloperoxidase activity and pancreas histology. OP or COP inhibited the production of pancreatic proinflammatory cytokines, including tumor necrosis factor-α and interleukin-6. In addition, the upregulation of AP-related proteins including ZO-1, occludin, the antibacterial peptide-defensin-1 (DEFB1) and cathelicidin-related antimicrobial peptide (CRAMP), as well as the histological examination of colon injuries, demonstrated that OP or COP provision could effectively maintain intestinal barrier function. Ultimately, dietary OP or COP supplementation could inhibit AP-induced intestinal inflammation. For the above, the effect of OP was better than COP. CONCLUSION: Dietary OP supplementation could be considered as a preventive method that effectively interferes with intestinal damage and attenuates inflammatory responses trigged by AP. © 2020 Society of Chemical Industry.
Assuntos
Abelmoschus/química , Ceruletídeo/efeitos adversos , Mucosa Intestinal/efeitos dos fármacos , Pancreatite/tratamento farmacológico , Pectinas/administração & dosagem , Extratos Vegetais/administração & dosagem , Animais , Citocinas/genética , Citocinas/imunologia , Frutas/química , Humanos , Mucosa Intestinal/imunologia , Masculino , Camundongos , Ocludina/genética , Ocludina/imunologia , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/imunologia , Pectinas/química , Extratos Vegetais/química , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/imunologiaRESUMO
Chronic pancreatitis (CP) is characterized by persistent inflammation of the pancreas that results in progressive loss of the endocrine and exocrine compartment owing to atrophy and/or replacement with fibrotic tissue. Currently, the clinical therapeutic scheme of CP is mainly symptomatic treatment including pancreatic enzyme replacement, glycaemic control and nutritional support therapy, lacking of specific therapeutic drugs for prevention and suppression of inflammation and fibrosis aggravating in CP. Here, we investigated the effect of isoliquiritigenin (ILG), a chalcone-type dietary compound derived from licorice, on pancreatic fibrosis and inflammation in a model of caerulein-induced murine CP, and the results indicated that ILG notably alleviated pancreatic fibrosis and infiltration of macrophages. Further in vitro studies in human pancreatic stellate cells (hPSCs) showed that ILG exerted significant inhibition on the proliferation and activation of hPSCs, which may be due to negative regulation of the ERK1/2 and JNK1/2 activities. Moreover, ILG significantly restrained the M1 polarization of macrophages (RAW 264.7) via attenuation of the NF-κB signalling pathway, whereas the M2 polarization was hardly affected. These findings indicated that ILG might be a potential anti-inflammatory and anti-fibrotic therapeutic agent for CP.
Assuntos
Ceruletídeo/efeitos adversos , Chalconas/farmacologia , Macrófagos/efeitos dos fármacos , Células Estreladas do Pâncreas/efeitos dos fármacos , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/tratamento farmacológico , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Fibrose/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Células Estreladas do Pâncreas/metabolismo , Pancreatite Crônica/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND & AIMS: Acute pancreatitis (AP) of different etiologies is associated with the activation of different signaling pathways in pancreatic cells, posing challenges to the development of targeted therapies. We investigated whether local pancreatic hypothermia, without systemic hypothermia, could lessen the severity of AP induced by different methods in rats. METHODS: A urethane balloon with 2 polyurethane tubes was placed inside the stomach of rats. AP was induced in Wistar rats by the administration of cerulein or glyceryl tri-linoleate (GTL). Then, cold water was infused into the balloon to cool the pancreas. Pancreatic temperatures were selected based on those found to decrease acinar cell injury. An un-perfused balloon was used as a control. Pancreatic and rectal temperatures were monitored, and an infrared lamp or heating pad was used to avoid generalized hypothermia. We collected blood, pancreas, kidney, and lung tissues and analyzed them by histology, immunofluorescence, immunoblot, cytokine and chemokine magnetic bead, and DNA damage assays. The effect of hypothermia on signaling pathways initiated by cerulein and GTL was studied in acinar cells. RESULTS: Rats with pancreatic cooling developed less severe GTL-induced AP compared with rats that received the control balloon. In acinar cells, cooling decreased the lipolysis induced by GTL, increased the micellar form of its fatty acid, lowered the increase in cytosolic calcium, prevented the loss of mitochondrial membrane potential (by 70%-80%), and resulted in a 40%-50% decrease in the uptake of a fatty acid tracer. In rats with AP, cooling decreased pancreatic necrosis by 48%, decreased serum levels of cytokines and markers of cell damage, and decreased markers of lung and renal damage. Pancreatic cooling increased the proportions of rats surviving 6 hours after induction of AP (to 90%, from <10% of rats that received the control balloon). In rats with cerulein-induced AP, pancreatic cooling decreased pancreatic markers of apoptosis and inflammation. CONCLUSIONS: In rats with AP, transgastric local pancreatic hypothermia decreases pancreatic necrosis, apoptosis, inflammation, and markers of pancreatitis severity and increases survival.
Assuntos
Hipotermia Induzida/métodos , Pancreatite Necrosante Aguda/patologia , Pancreatite Necrosante Aguda/terapia , Animais , Biópsia por Agulha , Ceruletídeo/efeitos adversos , Ceruletídeo/farmacologia , Crioterapia/métodos , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Pancreatite Necrosante Aguda/mortalidade , Distribuição Aleatória , Ratos , Ratos Wistar , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Estômago , Taxa de Sobrevida , Fatores de TempoRESUMO
The aim of this study was to investigate the role and mechanism of miR-155 in regulating autophagy in a caerulein-induced acute pancreatitis (AP) cellular model. GFP-LC3 immunofluorescence assay was performed to detect autophagy vesicle formation in pancreatic acinar cell line AR42J. AR42J cells were transfected with miR-155 mimic, inhibitor, and corresponding controls to explore the effect of miR-155 on autophagy. The protein levels of LC3-I, LC3-II, Beclin-1, and p62 were analyzed by western blot analysis. Dual-luciferase reporter assay was performed to verify the interaction between miR-155 and Rictor (RPTOR independent companion of MTOR complex 2). The results showed that caerulein treatment induced impaired autophagy as evidenced by an increase in the accumulation of p62 together with LC3-II in AR42J cells, accompanied by miR-155 upregulation. Furthermore, miR-155 overexpression aggravated, whereas miR-155 silencing reduced the caerulein-induced impairment of autophagy. Mechanistically, Rictor was confirmed to be a direct target of miR-155, which could rescue the miR-155 overexpression-mediated aggravation of impaired autophagy. Collectively, these findings indicate that miR-155 aggravates impaired autophagy in caerulein-treated pancreatic acinar cells by targeting Rictor.
Assuntos
Células Acinares/patologia , Autofagia/efeitos dos fármacos , MicroRNAs/farmacologia , Pancreatopatias/patologia , Proteína Companheira de mTOR Insensível à Rapamicina/antagonistas & inibidores , Células Acinares/efeitos dos fármacos , Linhagem Celular , Ceruletídeo/efeitos adversos , Humanos , MicroRNAs/genética , Pancreatopatias/induzido quimicamente , TransfecçãoRESUMO
Epithelial pancreatic acinar cells perform crucial functions in food digestion, and acinar cell homeostasis required for secretion of digestive enzymes relies on SNARE-mediated exocytosis. The ubiquitously expressed Sec1/Munc18 protein mammalian uncoordinated-18c (Munc18c) regulates membrane fusion by activating syntaxin-4 (STX-4) to bind cognate SNARE proteins to form a SNARE complex that mediates exocytosis in many cell types. However, in the acinar cell, Munc18c's functions in exocytosis and homeostasis remain inconclusive. Here, we found that pancreatic acini from Munc18c-depleted mice (Munc18c+/-) and human pancreas (lenti-Munc18c-shRNA-treated) exhibit normal apical exocytosis of zymogen granules (ZGs) in response to physiologic stimulation with the intestinal hormone cholecystokinin (CCK-8). However, when stimulated with supraphysiologic CCK-8 levels to mimic pancreatitis, Munc18c-depleted (Munc18c+/-) mouse acini exhibited a reduction in pathological basolateral exocytosis of ZGs resulting from a decrease in fusogenic STX-4 SNARE complexes. This reduced basolateral exocytosis in part explained the less severe pancreatitis observed in Munc18c+/- mice after hyperstimulation with the CCK-8 analog caerulein. Likely as a result of this secretory blockade, Munc18c-depleted acini unexpectedly activated a component of the endoplasmic reticulum (ER) stress response that contributed to autophagy induction, resulting in downstream accumulation of autophagic vacuoles and autolysosomes. We conclude that Munc18c's role in mediating ectopic basolateral membrane fusion of ZGs contributes to the initiation of CCK-induced pancreatic injury, and that blockade of this secretory process could increase autophagy induction.
Assuntos
Ceruletídeo/efeitos adversos , Proteínas Munc18/metabolismo , Pancreatite/metabolismo , Idoso , Animais , Ceruletídeo/metabolismo , Colecistocinina/efeitos adversos , Colecistocinina/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Exocitose , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Munc18/genética , Pâncreas/metabolismo , Pancreatite/genética , Proteínas SNARE/genética , Proteínas SNARE/metabolismoRESUMO
OBJECTIVE: We aimed to investigate the association of macrophage inflammatory protein (MIP)-1α (CCL3) expression with the severity of acute pancreatitis (AP). METHODS: The patients with AP were selected and divided into mild AP (MAP), moderately severe AP (MSAP), and severe AP (SAP) groups according to the severity of AP. The pancreatic acinar cell line Ar42 j was treated with cerulein to induce in vitro cell AP model. The expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and the activation of the c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) signaling pathway in stimulated or transfected Ar42 j cells were detected. RESULTS: We detected that the upregulation of MIP-1α was associated with the severity of AP. Patients with SAP showed the highest MIP-1α contents, followed by MSAP, and, lastly, MAP. In cerulein-stimulated Ar42 j cells, the upregulation of MIP-1α, CCR5, TNF-α, and IL-6 was time dependent. In addition, in human recombinant MIP-1α treated Ar42 j cells, the upregulation of TNF-α and IL-6 was MIP-1α-dose-dependent. In contrast, we detected the inhibition of TNF-α and IL-6 in MIP-1α small interfering RNA (siRNA)-treated cells. Also, the activation of the JNK/p38 MAPK signaling pathway was induced and inhibited by human recombinant MIP-1α and MIP-1α siRNA, respectively. CONCLUSION: These results suggested that MIP-1α might be used as a biomarker for the prognosis of AP severity. The MIP-1α-induced inflammatory responses in AP were mediated by TNF-α and IL-6, which were associated with the activation of the JNK/p38 MAPK signaling pathway.
Assuntos
Quimiocina CCL3/metabolismo , Pancreatite/metabolismo , Receptores CCR1/metabolismo , Receptores CCR5/metabolismo , Regulação para Cima , Adulto , Idoso , Linhagem Celular , Ceruletídeo/efeitos adversos , Feminino , Humanos , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/metabolismo , Adulto JovemRESUMO
To investigate the apoptosis and inflammatory response of microRNA-27a-5p (miR-27a-5p) in pancreatic acinar cells of acute pancreatitis (AP) and its related mechanisms. Rat pancreatic acinar cell line AR42J was treated with caerulein (10nmol/L) to construct an acute pancreatitis cell model. Quantitative real-time polymerase chain reaction was performed to measure the expression of miR-27a-5p; The miR-27a-5p mimic was transfected into cell, and the apoptosis rate of the cells was detected by flow cytometry; The levels of TNF-α, IL-1, and IL-6 in the culture supernatant were determined by enzyme-linked immunosorbent assay; TargetScans database predicted and dual luciferase reporter gene assay verified the relationship between miR-27a-5p and the phosphatase and tensin homolog deleted on chromosome 10 (PTEN); The recovery experiment explored the apoptosis and the effects of inflammatory responses. The expression of miR-27a-5p decreased gradually (P < 0.05) and the expression of PTEN increased gradually (P < 0.05) with the prolongation of acting time. Upregulation of miR-27a-5p significantly promoted cell apoptosis (P < 0.05) and inhibited inflammatory response (P < 0.05); The TargetScans database predicted that the 3'UTR of PTEN contains a base complementary to the miR-27a-5p seed region. Cotransfection of wild-type vector (PTEN-WT) with miR-27a-5p mimic or miR-27a-5p inhibitor significantly affected the relative activity of luciferase (P < 0.05), and no significant impact was observed in mutant PTEN-MUT. Compared with miR-27a-5p + pcDNA group, transfection of miR-27a-5p mimic and pcDNA-PTEN significantly increased the expression of PTEN (P < 0.05), decreased the apoptotic rate (P < 0.05), and increased the inflammatory response (P < 0.05). miR-27a-5p induced apoptosis and inhibited the inflammatory response of pancreatic acinar cells in AP by targeting PTEN.