Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 892
Filtrar
1.
Annu Rev Cell Dev Biol ; 39: 23-44, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37437210

RESUMO

Our understanding of cell and developmental biology has been greatly aided by a focus on a small number of model organisms. However, we are now in an era where techniques to investigate gene function can be applied across phyla, allowing scientists to explore the diversity and flexibility of developmental mechanisms and gain a deeper understanding of life. Researchers comparing the eyeless cave-adapted Mexican tetra, Astyanax mexicanus, with its river-dwelling counterpart are revealing how the development of the eyes, pigment, brain, cranium, blood, and digestive system evolves as animals adapt to new environments. Breakthroughs in our understanding of the genetic and developmental basis of regressive and constructive trait evolution have come from A. mexicanus research. They include understanding the types of mutations that alter traits, which cellular and developmental processes they affect, and how they lead to pleiotropy. We review recent progress in the field and highlight areas for future investigations that include evolution of sex differentiation, neural crest development, and metabolic regulation of embryogenesis.


Assuntos
Evolução Biológica , Characidae , Animais , Characidae/genética , Modelos Biológicos , Encéfalo , Biologia do Desenvolvimento
2.
Trends Genet ; 40(1): 24-38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38707509

RESUMO

How genotype determines phenotype is a well-explored question, but genotype-environment interactions and their heritable impact on phenotype over the course of evolution are not as thoroughly investigated. The fish Astyanax mexicanus, consisting of surface and cave ecotypes, is an ideal emerging model to study the genetic basis of adaptation to new environments. This model has permitted quantitative trait locus mapping and whole-genome comparisons to identify the genetic bases of traits such as albinism and insulin resistance and has helped to better understand fundamental evolutionary mechanisms. In this review, we summarize recent advances in A. mexicanus genetics and discuss their broader impact on the fields of adaptation and evolutionary genetics.


Assuntos
Cavernas , Characidae , Locos de Características Quantitativas , Animais , Locos de Características Quantitativas/genética , Characidae/genética , Adaptação Fisiológica/genética , Evolução Biológica , Fenótipo , Genótipo , Evolução Molecular , Interação Gene-Ambiente , Peixes/genética
3.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007346

RESUMO

Developmental evolution and diversification of morphology can arise through changes in the regulation of gene expression or protein-coding sequence. To unravel mechanisms underlying early developmental evolution in cavefish of the species Astyanax mexicanus, we compared transcriptomes of surface-dwelling and blind cave-adapted morphs at the end of gastrulation. Twenty percent of the transcriptome was differentially expressed. Allelic expression ratios in cave X surface hybrids showed that cis-regulatory changes are the quasi-exclusive contributors to inter-morph variations in gene expression. Among a list of 108 genes with change at the cis-regulatory level, we explored the control of expression of rx3, which is a master eye gene. We discovered that cellular rx3 levels are cis-regulated in a cell-autonomous manner, whereas rx3 domain size depends on non-autonomous Wnt and Bmp signalling. These results highlight how uncoupled mechanisms and regulatory modules control developmental gene expression and shape morphological changes. Finally, a transcriptome-wide search for fixed coding mutations and differential exon use suggested that variations in coding sequence have a minor contribution. Thus, during early embryogenesis, changes in gene expression regulation are the main drivers of cavefish developmental evolution.


Assuntos
Characidae , Regulação da Expressão Gênica no Desenvolvimento , Transcriptoma , Animais , Characidae/genética , Characidae/embriologia , Transcriptoma/genética , Evolução Biológica , Cavernas , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Gastrulação/genética , Evolução Molecular
4.
Development ; 151(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38940473

RESUMO

The direction of left-right visceral asymmetry is conserved in vertebrates. Deviations of the standard asymmetric pattern are rare, and the underlying mechanisms are not understood. Here, we use the teleost Astyanax mexicanus, consisting of surface fish with normal left-oriented heart asymmetry and cavefish with high levels of reversed right-oriented heart asymmetry, to explore natural changes in asymmetry determination. We show that Sonic Hedgehog (Shh) signaling is increased at the posterior midline, Kupffer's vesicle (the teleost left-right organizer) is enlarged and contains longer cilia, and the number of dorsal forerunner cells is increased in cavefish. Furthermore, Shh increase in surface fish embryos induces asymmetric changes resembling the cavefish phenotype. Asymmetric expression of the Nodal antagonist Dand5 is equalized or reversed in cavefish, and Shh increase in surface fish mimics changes in cavefish dand5 asymmetry. Shh decrease reduces the level of right-oriented heart asymmetry in cavefish. Thus, naturally occurring modifications in cavefish heart asymmetry are controlled by the effects of Shh signaling on left-right organizer function.


Assuntos
Padronização Corporal , Coração , Proteínas Hedgehog , Transdução de Sinais , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Padronização Corporal/genética , Coração/embriologia , Characidae/embriologia , Characidae/genética , Regulação da Expressão Gênica no Desenvolvimento , Cílios/metabolismo , Embrião não Mamífero/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(5): e2204427120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36693105

RESUMO

Physical inactivity is a scourge to human health, promoting metabolic disease and muscle wasting. Interestingly, multiple ecological niches have relaxed investment into physical activity, providing an evolutionary perspective into the effect of adaptive physical inactivity on tissue homeostasis. One such example, the Mexican cavefish Astyanax mexicanus, has lost moderate-to-vigorous activity following cave colonization, reaching basal swim speeds ~3.7-fold slower than their river-dwelling counterpart. This change in behavior is accompanied by a marked shift in body composition, decreasing total muscle mass and increasing fat mass. This shift persisted at the single muscle fiber level via increased lipid and sugar accumulation at the expense of myofibrillar volume. Transcriptomic analysis of laboratory-reared and wild-caught cavefish indicated that this shift is driven by increased expression of pparγ-the master regulator of adipogenesis-with a simultaneous decrease in fast myosin heavy chain expression. Ex vivo and in vivo analysis confirmed that these investment strategies come with a functional trade-off, decreasing cavefish muscle fiber shortening velocity, time to maximal force, and ultimately maximal swimming speed. Despite this, cavefish displayed a striking degree of muscular endurance, reaching maximal swim speeds ~3.5-fold faster than their basal swim speeds. Multi-omic analysis suggested metabolic reprogramming, specifically phosphorylation of Pgm1-Threonine 19, as a key component enhancing cavefish glycogen metabolism and sustained muscle contraction. Collectively, we reveal broad skeletal muscle changes following cave colonization, displaying an adaptive skeletal muscle phenotype reminiscent to mammalian disuse and high-fat models while simultaneously maintaining a unique capacity for sustained muscle contraction via enhanced glycogen metabolism.


Assuntos
Characidae , Animais , Humanos , Characidae/genética , Evolução Biológica , Glicogênio , Músculos , México , Cavernas , Mamíferos
6.
Development ; 149(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35388410

RESUMO

The vertebrate retinas originate from a specific anlage in the anterior neural plate called the eye field. Its identity is conferred by a set of 'eye transcription factors', whose combinatorial expression has been overlooked. Here, we use the dimorphic teleost Astyanax mexicanus, which develops proper eyes in the wild type and smaller colobomatous eyes in the blind cavefish embryos, to unravel the molecular anatomy of the eye field and its variations within a species. Using a series of markers (rx3, pax6a, cxcr4b, zic1, lhx2, emx3 and nkx2.1a), we draw a comparative 3D expression map at the end of gastrulation/onset of neurulation, which highlights hyper-regionalization of the eye field into sub-territories of distinct sizes, shapes, cell identities and combinatorial gene expression levels along the three body axes. All these features show significant variations in the cavefish natural mutant. We also discover sub-domains within the prospective telencephalon and characterize cell identities at the frontiers of the eye field. We propose putative fates for some of the characterized eye-field subdivisions, and suggest the existence of a trade-off between some subdivisions in the two Astyanax morphs on a micro-evolutionary scale.


Assuntos
Characidae , Placa Neural , Animais , Evolução Biológica , Olho , Gastrulação , Estudos Prospectivos , Retina
7.
Dev Biol ; 493: 13-16, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347313

RESUMO

Charles Breder, a pioneering researcher of blind Mexican cavefish was the first to note extreme variation in the facial skeleton of this intriguing subterranean-dwelling organism. Using a system of polar coordinate plots, he identified substantial dysmorphic changes affecting bones of the orbital skeleton. A complication of his landmark publication from 1944 was an error in the number of orbital bones depicted for this species. Intriguingly, however, he proposed an unknown "organizing force" likely influences final bone position and associated dysmorphia. At the time this was merely hypothetical. Roughly eight decades since its publication, however, insights into sensory influences on facial bone development may explain dysmorphia and variation in bone numbers for Astyanax cavefish. A morphological association between mechano-sensory neuromasts of the lateral line and dermal bones of the facial skeleton had been appreciated in the classical literature, but the polarity of this interaction has long remained unclear. Here, we propose that sensory-skeletal integration between sensory neuromasts and bones explain the incomplete numbers of bones, and dysmorphic features such as fusion between neighboring elements. We propose that in closely-related surface fish (and most teleost fish) this developmental coupling enables the sensory and skeletal systems to become integrated into a functional unit over the course of life history. In this opinion article, we discuss the relevance of this (poorly understood) phenomenon as a potential evolutionary source of variation in the facial bone structures of taxa across deep geologic time. We provide three potential explanations for the error in Breder's drawings, that may be explained by natural developmental variation documented in other related species. Moreover, we argue that the natural variation in this "evolutionary" model system is useful for explaining diverse cranial features by uniting aberrations occurring during embryogenesis with long-term adult dysmorphia.


Assuntos
Characidae , Sistema da Linha Lateral , Animais , Crânio , Mecanorreceptores , Evolução Biológica
8.
J Exp Zool B Mol Dev Evol ; 342(3): 178-188, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38247307

RESUMO

Extreme environmental conditions have profound impacts on shaping the evolutionary trajectory of organisms. Exposure to these conditions elicits stress responses, that can trigger phenotypic changes in novel directions. The Mexican Tetra, Astyanax mexicanus, is an excellent model for understanding evolutionary mechanisms in response to extreme or new environments. This fish species consists of two morphs; the classical surface-dwelling fish and the blind cave-dwellers that inhabit dark and biodiversity-reduced ecosystems. In this review, we explore the specific stressors present in cave environments and examine the diverse adaptive strategies employed by cave populations to not only survive but thrive as successful colonizers. By analyzing the evolutionary responses of A. mexicanus, we gain valuable insights into the genetic, physiological, and behavioral adaptations that enable organisms to flourish under challenging environmental conditions.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Cavernas , Characidae , Ambientes Extremos , Estresse Fisiológico , Animais , Characidae/fisiologia , Estresse Fisiológico/fisiologia
9.
J Exp Zool B Mol Dev Evol ; 342(3): 301-312, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38192038

RESUMO

In vitro assays are crucial tools for gaining detailed insights into various biological processes, including metabolism. Cave morphs of the river-dwelling fish species, Astyanax mexicanus, have adapted their metabolism allowing them to thrive in the biodiversity-deprived and nutrient-limited environment of caves. Liver-derived cells from the cave and river morphs of A. mexicanus have proven to be excellent in vitro resources to better understand the unique metabolism of these fish. However, the current 2D cultures have not fully captured the complex metabolic profile of the Astyanax liver. It is known that 3D culturing can modulate the transcriptomic state of cells when compared to its 2D monolayer culture. Therefore, to broaden the possibilities of the in vitro system by modeling a wider gamut of metabolic pathways, we cultured the liver-derived Astyanax cells of both surface and cavefish into 3D spheroids. We successfully established 3D cultures at various cell seeding densities for several weeks and characterized the resultant transcriptomic and metabolic variations. We found that the 3D cultured Astyanax cells exhibit an altered transcriptomic profile and consequently represent a wider range of metabolic pathways, including cell cycle changes and antioxidant activities, associated with liver functioning as compared to its monolayer culture. Enzymatic assay measuring antioxidants in 2D culture and 3D spheroids also revealed enhanced antioxidative capacity of 3D cultured spheroids, in line with the differential gene expression data. Additionally, the spheroids also exhibited surface and cave-specific metabolic signatures, making it a suitable system for evolutionary studies associated with cave adaptation. Notably, cavefish derived spheroids enriched for genes responding to xenobiotic stimulus, while the ones from surface enriched for immune response, both of which resonated with known physiologically adaptations associated with each morph. Taken together, the liver-derived spheroids prove to be a promising in vitro model for widening our understanding of metabolism in A. mexicanus and of vertebrates in general.


Assuntos
Técnicas de Cultura de Células , Characidae , Fígado , Esferoides Celulares , Transcriptoma , Animais , Characidae/genética , Characidae/metabolismo , Fígado/metabolismo , Fígado/citologia , Técnicas de Cultura de Células/métodos , Esferoides Celulares/metabolismo , Linhagem Celular , Cavernas
10.
Mol Ecol ; 33(9): e17339, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556927

RESUMO

Copy number variation is a common contributor to phenotypic diversity, yet its involvement in ecological adaptation is not easily discerned. Instances of parallelly evolving populations of the same species in a similar environment marked by strong selective pressures present opportunities to study the role of copy number variants (CNVs) in adaptation. By identifying CNVs that repeatedly occur in multiple populations of the derived ecotype and are not (or are rarely) present in the populations of the ancestral ecotype, the association of such CNVs with adaptation to the novel environment can be inferred. We used this paradigm to identify CNVs associated with recurrent adaptation of the Mexican tetra (Astyanax mexicanus) to cave environment. Using a read-depth approach, we detected CNVs from previously re-sequenced genomes of 44 individuals belonging to two ancestral surfaces and three derived cave populations. We identified 102 genes and 292 genomic regions that repeatedly diverge in copy number between the two ecotypes and occupy 0.8% of the reference genome. Functional analysis revealed their association with processes previously recognized to be relevant for adaptation, such as vision, immunity, oxygen consumption, metabolism, and neural function and we propose that these variants have been selected for in the cave or surface waters. The majority of the ecotype-divergent CNVs are multiallelic and display copy number increases in cavefish compared to surface fish. Our findings suggest that multiallelic CNVs - including gene duplications - and divergence in copy number provide a fast route to produce novel phenotypes associated with adaptation to subterranean life.


Assuntos
Cavernas , Characidae , Variações do Número de Cópias de DNA , Variações do Número de Cópias de DNA/genética , Animais , Characidae/genética , Genética Populacional , Adaptação Fisiológica/genética , Ecótipo , México
11.
PLoS Genet ; 17(7): e1009642, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34252077

RESUMO

Circadian rhythms are nearly ubiquitous throughout nature, suggesting they are critical for survival in diverse environments. Organisms inhabiting largely arrhythmic environments, such as caves, offer a unique opportunity to study the evolution of circadian rhythms in response to changing ecological pressures. Populations of the Mexican tetra, Astyanax mexicanus, have repeatedly invaded caves from surface rivers, where individuals must contend with perpetual darkness, reduced food availability, and limited fluctuations in daily environmental cues. To investigate the molecular basis for evolved changes in circadian rhythms, we investigated rhythmic transcription across multiple independently-evolved cavefish populations. Our findings reveal that evolution in a cave environment has led to the repeated disruption of the endogenous biological clock, and its entrainment by light. The circadian transcriptome shows widespread reductions and losses of rhythmic transcription and changes to the timing of the activation/repression of core-transcriptional clock. In addition to dysregulation of the core clock, we find that rhythmic transcription of the melatonin regulator aanat2 and melatonin rhythms are disrupted in cavefish under darkness. Mutants of aanat2 and core clock gene rorca disrupt diurnal regulation of sleep in A. mexicanus, phenocopying circadian modulation of sleep and activity phenotypes of cave populations. Together, these findings reveal multiple independent mechanisms for loss of circadian rhythms in cavefish populations and provide a platform for studying how evolved changes in the biological clock can contribute to variation in sleep and circadian behavior.


Assuntos
Evolução Biológica , Characidae/fisiologia , Relógios Circadianos/genética , Proteínas de Peixes/genética , Animais , Encéfalo/fisiologia , Cavernas , Characidae/genética , Relógios Circadianos/fisiologia , Evolução Molecular , Regulação da Expressão Gênica , Genética Populacional , Hibridização in Situ Fluorescente , Fígado/fisiologia , Melatonina/metabolismo , Mutação , Sono/genética , Sono/fisiologia
12.
J Fish Dis ; 47(9): e13979, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38879867

RESUMO

The increasing significance of the aquaculture sector and commercially valuable species underscores the need to develop alternatives for controlling diseases such as Ichthyophthirius multifiliis-induced ichthyophthiriasis. This ciliated protozoan parasite threatens nearly all freshwater fish species, causing substantial losses in the fishery industry. Despite this, effective large-scale treatments are lacking, emphasizing the necessity of adopting preventive strategies. While the pathogenesis of ichthyophthiriasis and its immune stimulation allows for vaccination strategies, precise adjustments are crucial to ensure the production of an effective vaccine compound. Therefore, this study aimed to evaluate the impact of immunizing Astyanax lacustris with a genetic vaccine containing IAG52A from I. multifiliis and the molecular adjuvant IL-8 from A. lacustris. Transcript analysis in immunized A. lacustris indicated mRNA production in fish muscles, demonstrating an expression of this mRNA. Fish were divided into five groups, receiving different vaccine formulations, and all groups received a booster dose 14 days after the initial immunization. Samples from vaccinated fish showed increased IL-1ß mRNA expression in the spleen within 6 h post the second dose and after 14 days. In the head kidney, IL-1ß mRNA expression showed no significant difference at 6 and 24 h but an increase was noted in fish injected with IAG and IAG + IL-8 after 14 days. IL-8 mRNA expression in the spleen and kidney did not significantly differ from the control group. Histological analysis revealed no variation in leukocyte concentration at 6 and 24 h post-vaccination; however, after 14 days, the groups injected with IAG and IAG + IL-8 exhibited a higher leukocyte density at the application sites than the control. The obtained data suggest that the used vaccine is transcribed, indicating its potential to stimulate innate immune response parameters through mRNA cytokine expression and leukocyte migration.


Assuntos
Adjuvantes Imunológicos , Infecções por Cilióforos , Doenças dos Peixes , Hymenostomatida , Vacinas de DNA , Animais , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Doenças dos Peixes/parasitologia , Infecções por Cilióforos/veterinária , Infecções por Cilióforos/prevenção & controle , Infecções por Cilióforos/imunologia , Hymenostomatida/imunologia , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Vacinação/veterinária , Vacinas Protozoárias/imunologia , Vacinas Protozoárias/administração & dosagem , Characidae/imunologia , Interleucinas/imunologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-37956900

RESUMO

We tested the hypothesis that water Ca2+ is involved in control of branchial Na+ permeability in low pH tolerant convict cichlids and black neon tetras. We measured Na+ efflux in water with different Ca2+ concentrations during exposure to low pH, silver, and copper, at levels which are known to stimulate Na+ efflux. For convict cichlids at pH 7.5 exposure to 0 µmol L-1 Ca2+caused Na+ efflux to rise 2.5 times above controls at 100 µmol L-1 Ca2+. However, raising [Ca2+] to 500 µmol L-1 had no effect. Upon exposure to pH 3.5 (control [Ca2+]) Na+ efflux rose almost 5× and increasing the [Ca2+] 5-fold did not reduce the magnitude of stimulation. Exposure to 1 µmol L-1 silver and 25 µmol L-1 copper stimulated Na+ efflux 7×, and 2×, respectively. Raising [Ca2+] concentration during metal exposure halved the stimulation of Na+ efflux caused by silver, and eliminated the stimulation elicited by copper. For black neon tetras raising or lowering water [Ca2+] had no effect on Na+ efflux at pH 7.5. Exposure to pH 3.5 caused Na+ efflux to rise 2.5× but changing [Ca2+] had no effect. Exposure to 1 µmol L-1 silver, or 25 µmol L-1 copper caused Na+ efflux of tetras to rise 4-fold and 3-fold, respectively. Raising [Ca2+] during silver exposure reduced the stimulation of Na+ efflux by about 50%, but during copper exposure increased [Ca2+] had no effect on stimulation of Na+ efflux. These results suggest water Ca2+ plays a role in control of branchial Na+ permeability in cichlids, but perhaps not tetras. In addition, the silver and copper concentrations required to inhibit Na+ uptake and stimulate Na+ efflux were higher than the concentrations used on non-characids and non-cichlids, which indicates that our fish are much more tolerant of these metals.


Assuntos
Characidae , Ciclídeos , Animais , Ciclídeos/fisiologia , Cálcio , Água , Cobre , Prata/farmacologia , Neônio/farmacologia , Sódio , Permeabilidade , Brânquias
14.
An Acad Bras Cienc ; 96(2): e20230652, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38922275

RESUMO

Trophic plasticity is a distinctive feature of freshwater fishes, representing an essential strategy for fish living in resource-variable environments. We analyzed the stomach contents of individuals sampled in two Atlantic Forest streams to identify the primary food sources consumed by Psalidodon aff. fasciatus and verify the existence of spatial, seasonal, and ontogenetic variations. The diet was determined by analyzing the stomach contents using the Volume Method to quantify the importance of food items. In general, Psalidodon aff. fasciatus was classified as an omnivorous species, consuming mainly insects, plant material, and filamentous algae. The results also showed significant effects for all factors considered (spatial, seasonal, and ontogenetic). Finally, Psalidodon aff. fasciatus demonstrated considerable trophic plasticity, which can result in better use of available resources in the environment and improved resource partitioning, reducing intraspecific and interspecific competition.


Assuntos
Characidae , Conteúdo Gastrointestinal , Rios , Estações do Ano , Animais , Brasil , Characidae/fisiologia , Characidae/classificação , Comportamento Alimentar/fisiologia , Florestas , Cadeia Alimentar
15.
An Acad Bras Cienc ; 96(1): e20220805, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656052

RESUMO

Piaractus mesopotamicus, is a fish usually farmed in semi-intensive systems with access to natural food and supplementary feed. This study evaluates effects of feed allowance on the productive performance, carbon turnover and proportions of nutrient (carbon) contribution of feed and natural food for the growth of pacu. Juvenile fish were stocked in fiberglass tanks and fed to 100, 75, 50, 25, 0% apparent satiety (ApS), with a practical, extruded (C4 photosynthetic pathway) feed in a randomized design trial (n=3); plankton production for simulated semi-intensive farming system condition was induced by chemical fertilization. A control treatment was set up in tanks devoid of natural food. Data on muscle stable carbon isotope ratios were used to study carbon turnover using a relative growth-based model. Low variation of the δ13C impaired fitting a turnover model curve for the 0 and 25 % ApS treatments. Fish of the 100% and 75% ApS treatments reached circa 95% and 82.85% of the carbon turnover, respectively. Extruded feed was the main nutrient source for the growth of pacu in the semi-intensive, simulated farming condition. The current study contributes to the knowledge of the relationship between feeding rates and carbon turnover rates in the pacu muscle.


Assuntos
Ração Animal , Isótopos de Carbono , Carbono , Animais , Ração Animal/análise , Carbono/metabolismo , Carbono/análise , Isótopos de Carbono/análise , Characidae/fisiologia , Characidae/crescimento & desenvolvimento , Characidae/metabolismo , Aquicultura/métodos , Fenômenos Fisiológicos da Nutrição Animal
16.
An Acad Bras Cienc ; 96(suppl 1): e20230847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39082589

RESUMO

Pacu (Piaractus mesopotamicus) is a fish with a high production potential in Brazil. However, one limitation is the excessive amount of ether extract in its carcass, an undesirable characteristic for the consumer. One approach to overcome this limitation is to improve carcass quality through zootechnical additives such as caffeine. The aim of this study was to evaluate the effect of supplementing the diet of pacu with caffeine on cut yield, biological indices, and carcass composition. Two hundred pacu with an initial weight of 1,687 g were used. The animals were allocated to 20 aquaculture cages of 1 m³, with 10 animals per cage. A completely randomized design with four treatments and five replicates was used. The treatments evaluated consisted of four inclusion levels of caffeine: T1 = 0.00 g; T2 = 0.16 g; T3 = 0.32 g, and T4 = 0.48 g caffeine.kg-1 of feed. The findings show that caffeine can be recommended as a diet supplement for carcass improvement of pacu, reducing the fat content and increasing the protein content of the carcass. Caffeine up to 0.32 g.kg-1 of feed can be added to the diet of pacu without affecting its performance or cut yield.


Assuntos
Ração Animal , Cafeína , Suplementos Nutricionais , Animais , Cafeína/administração & dosagem , Cafeína/farmacologia , Cafeína/análise , Ração Animal/análise , Brasil , Composição Corporal/efeitos dos fármacos , Aquicultura/métodos , Characidae
17.
BMC Biol ; 21(1): 219, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37840141

RESUMO

BACKGROUND: Social affinity and collective behavior are nearly ubiquitous in the animal kingdom, but many lineages feature evolutionarily asocial species. These solitary species may have evolved to conserve energy in food-sparse environments. However, the mechanism by which metabolic shifts regulate social affinity is not well investigated. RESULTS: In this study, we used the Mexican tetra (Astyanax mexicanus), which features riverine sighted surface (surface fish) and cave-dwelling populations (cavefish), to address the impact of metabolic shifts on asociality and other cave-associated behaviors in cavefish, including repetitive turning, sleeplessness, swimming longer distances, and enhanced foraging behavior. After 1 month of ketosis-inducing ketogenic diet feeding, asocial cavefish exhibited significantly higher social affinity, whereas social affinity regressed in cavefish fed the standard diet. The ketogenic diet also reduced repetitive turning and swimming in cavefish. No major behavioral shifts were found regarding sleeplessness and foraging behavior, suggesting that other evolved behaviors are not largely regulated by ketosis. We further examined the effects of the ketogenic diet via supplementation with exogenous ketone bodies, revealing that ketone bodies are pivotal molecules positively associated with social affinity. CONCLUSIONS: Our study indicated that fish that evolved to be asocial remain capable of exhibiting social affinity under ketosis, possibly linking the seasonal food availability and sociality.


Assuntos
Characidae , Cetose , Distúrbios do Início e da Manutenção do Sono , Animais , Characidae/fisiologia , Corpos Cetônicos , Evolução Biológica , Cavernas
18.
J Fish Biol ; 104(1): 315-319, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37726229

RESUMO

The lectotype specimen of Bryconamericus rubropictus (Berg) and its designation have remained imprecisely documented since its publication. The lack of a photograph or an unambiguous illustration, correct size, inaccurate labelling, and proper specimen separation has led to an uncertainty about the identity and nomenclatural status of the lectotype. We recovered and provided detailed morphological data on the specimen that must be recognised as the lectotype. This contribution brings stability and clarity on the nomenclatural status of the species and its type material.


Assuntos
Characidae , Caraciformes , Animais , Characidae/anatomia & histologia , Brasil , Rios
19.
J Fish Biol ; 104(6): 1947-1959, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38553979

RESUMO

A new species of characid with remarkable sexual characteristics is described from the upper Guayabero River drainage from the Orinoco basin in Colombia. The new species is included in the genus Monotocheirodon by sharing most of the previously proposed diagnostic features of this genus. It differs from all Stevardiinae by the combination, in adult males, of an enlarged urogenital papilla in contact with the first anal-fin unbranched ray and a highly modified anal fin with enlarged and distally elongated first and second branched anal-fin rays, forming a gonopodium-like structure. In addition, it differs from congeners by the presence of an adipose fin, an incomplete lateral line, an ascending process of the premaxilla dorsally oriented, and a long snout. The new species was discovered from a poorly sampled region in Colombia and is an unexpected new record given its disjunct geographic distribution from other species of the genus. Monotocheirodon species were previously known from piedmont drainages in Bolivia and Peru. The conservation status of the new species is herein categorized following IUCN criteria.


Assuntos
Characidae , Rios , Caracteres Sexuais , Animais , Colômbia , Masculino , Feminino , Characidae/anatomia & histologia , Characidae/classificação
20.
J Fish Biol ; 104(6): 2008-2021, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561933

RESUMO

The present study aimed to characterize the diet of Moenkhausia collettii and investigate possible changes due to environmental variations and its body size in streams in the eastern Amazon. The specimens were sampled monthly between April 2019 and March 2020. They were measured for standard length (SL) and total mass (Tm) and eviscerated for analysis of stomach contents. Food items were identified and grouped into categories. Dietary aspects such as food importance index (AI%), trophic niche width, and stomach repletion index (SRI%) were evaluated. Furthermore, generalized linear models (GLMs) were used to evaluate the relation between diet and the SL, as well as between diet and the environmental variables of streams. A total of 355 specimens with SL ranging from 11.06 to 46.03 mm and weight ranging from 0.020 to 2.373 g were evaluated. Out of the 355 stomachs analysed, 88 contained material in an advanced stage of decomposition and 12 were empty. The diet of M. collettii was considered omnivorous, with a tendency toward insectivory. Formicidae was the most important category in the diet of the species, followed by immature Diptera and plant material. The GLMs showed a relationship between the diet and a set of environmental variables such as dissolved oxygen, conductivity, flow, width, depth, wood, leaf bank, and SL. The trophic niche width and feeding intensity increased with the length of the species, as well as in the period of higher precipitation, reinforcing trophic opportunism for M. collettii. Therefore, new studies that combine the traditional method of stomach content analysis, the use of stable isotopes, as well as ecomorphological attributes, are crucial for a profound understanding of the trophic ecology of the ichthyofauna in the face of natural changes occurring in their environment.


Assuntos
Tamanho Corporal , Characidae , Dieta , Comportamento Alimentar , Rios , Animais , Brasil , Dieta/veterinária , Characidae/anatomia & histologia , Characidae/fisiologia , Conteúdo Gastrointestinal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa